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Angler Heterogeneity and the Species-Specific Demand for  
Recreational Fishing in the Southeast United States 

Executive Summary 

In this study we assess the ability of the Marine Recreational Fishery Statistics Survey 
(MRFSS) to support single-species recreation demand models. We use the 2000 MRFSS 
southeast intercept data combined with the economic add-on. We determine that the 
MRFSS data will support only a few species-specific recreation demand models. 
Considering species of management interest in the southeast, we focus on dolphin, king 
mackerel, red snapper and red drum. We examine single-species recreational fishing 
behavior using random utility models of demand. We explore several methods for dealing 
with angler heterogeneity, including mixed logit (i.e., random parameter) logit and finite 
mixture (i.e., latent class logit) models. We compare these techniques to the commonly 
used conditional and nested logit models in terms of the value of catching (and keeping) 
one additional fish.  

The conditional and nested logit models estimated illustrate that accounting for mode and 
species substitution possibilities has a potentially large impact on economic values. 
Failure to account for substitution possibilities appropriately will, in general, lead to 
economic values that are upwardly biased.  

Mixed logit models allow the estimation of a distribution of economic values, relative to 
point estimates (with standard errors). Our models illustrate that the value of catch can be 
highly heterogeneous and, in some cases, can include both positive and negative values. 
The high degree of preference heterogeneity in the MRFSS data set calls into question the 
results from the conditional and nested logit models. 

The finite mixture model exploits the preference heterogeneity to determine different 
types of anglers. The finite mixture model is able to determine latent heterogeneity by 
partitioning anglers into types that depend on their species targeting preferences and their 
levels of fishing experience.  Latent partitioning generated value estimates that were 
some times strikingly different than conditional, nested and mixed logit models. This 
suggests that further caution should be used when using value estimates because different 
specifications may generate a substantially diverse range of value measures.  

Our results indicate that single species modeling is important as the willingness-to-pay 
for changes in catch rates are significantly different across species. Preference 
heterogeneity is significant within the MRFSS data and that the value estimates are 
dependent on the model specification. Given that the nested logit, mixed logit and finite 
mixture model estimates are built on the foundation of the conditional logit model and are 
statistically superior, it may be necessary to combine the models’ value estimates to 
determine the entire range of possible values that may exist within this heterogeneous 
population.   
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1. Introduction 

Efficient and effective management for recreational fisheries is needed to accomplish an 
economically and biologically sustainable level of harvest in marine fisheries. According 
to the National Marine Fisheries Service (NMFS), in 2001 there were 15 to 17 million 
marine recreational anglers, taking over 86 million fishing trips and harvesting over 189 
million fish weighing almost 266 million pounds. In addition, over 254 million fish were 
caught and released. Marine recreational fishing has significant economic effects on 
coastal areas and non-coastal areas where market goods related to this activity are 
produced. To develop fishery management plans and evaluate the impacts of resulting 
regulations on marine recreational anglers and fisheries, the NMFS collects data on the 
number and socio-economic characteristics of participants, total number of fishing trips, 
and the number, size, and weight of recreational harvest through its Marine Recreational 
Fishing Statistical Survey (MRFSS).  

Marine recreational fishing demand models often assume that anglers are targeting either 
a species complex (e.g. all coastal migratory pelagic) or a specific species (e.g. king 
mackerel). These models artificially impose constraints on the tradeoffs anglers face with 
regard to targeting behavior especially in the presence of common management tools 
such as bag or size limits. Because current fishery regulations are directed at single 
species and species groups, management must be formulated in ways that capture the 
likely behavioral responses by anglers. If in response to management, anglers switch 
target species or significantly alter effort geographically, effective recreational fisheries 
management should take this behavior into account.  If not, then fishing effort displaced 
by management could cause recreational over-fishing elsewhere or for other species.    

We examine species targeting behavior using random utility models of recreation 
demand. By focusing on several key species in the southeast United States, this research 
extends the recreational demand methodology to specifically address targeting behavior 
by anglers. We explore several methods for dealing with differences in angler 
heterogeneity in recreation demand modeling, including random parameter (i.e., mixed) 
logit and latent class logit (i.e., finite mixture) models.  We compare these techniques to 
the commonly used conditional and nested logit models. 

This research helps to identify the extent to which angler heterogeneity impacts the 
economic value of marine recreational fishing. When managers tighten regulations (e.g., 
bag and size limits), recreational anglers are likely to respond in several ways: (1) by 
decreasing their recreational fishing activity or stopping it altogether, (2) continue 
targeting the same species but choose fishing areas with less stringent regulations, (3) 
continuing to fish but release more fish to comply with regulations and (4) targeting other 
species of fish. The reaction is likely to result in a loss of economic value because the 
angler can no longer behave as they were before the regulation was changed. We focus 
on deriving results that will facilitate the ability of fishery managers to gauge the effects 
of common management tools for different species across different types of anglers. Our 
modeling efforts focus on species substitution reactions to regulations.  
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Past MRFSS-based marine recreational fishing demand research ignores differences 
among anglers (McConnell and Strand, 1994; Hicks, Steinbeck, Gautam, Thunberg, 
1999; Haab, Whitehead, and McConnell, 2001). Each of these studies assume that all 
anglers make decisions about trip benefits, costs and constraints in the same way. It is 
likely that there exists heterogeneity among anglers with regard to how they might react 
to trip benefits, costs and constraints. Angler preferences are likely to vary substantially 
and this has potential implications for how they might value changes in fisheries 
regulations. An angler focused on taking home the maximum amount of fish may react 
differently to bag limit decreases than a catch-and-release angler. The latter may change 
behavior little if any and may not care about regulations at all. Consequently, 
econometric models that allow for heterogeneity may yield better predictions of fishing 
behavior and changes in economic value.  

Targeting Behavior 

For marine recreational fishing, management actions are typically directed at a specific 
species. In order to examine the benefits or costs of management actions it is necessary to 
measure value based on species-specific changes. The MRFSS data can be problematic 
when trying to characterize fishing quality on a species by species basis. Consider the 
southeast United States (North Carolina to Louisiana) for the year 2000. There were 425 
unique species caught by recreational anglers sampled by the MRFSS. Of these, 15 
species account for 82% of the targeting activity by anglers and some 38% of the catch. 

This paucity of data for some species is further exacerbated if random utility models of 
recreation demand are employed. In their simplest form, these models assume that 
anglers choose from among a set of recreation sites. In order to model this choice, the 
researcher needs data for all sites considered by the individual. The basic data required 
includes travel cost and measures of expected fishing quality for each site. To 
characterize fishing quality historical catch data is needed across at least two strata: 
species and sites. Other studies have stratified on species, sites, time of the year, and the 
mode of fishing. Because data are missing for many of these strata, most studies have 
aggregated across species to reduce the dimensionality of the problem, thereby reducing 
data requirements.  

For the reasons listed above, many studies of saltwater fishing have employed species 
aggregations (Bockstael, McConnell, and Strand, 1999; Green, Moss, Spreen, 1997; Haab 
and Hicks, 1999). These approaches assume that an aggregate species model can roughly 
approximate changes in welfare resulting from species-specific changes. If the goal of the 
analysis is to measure changes in value due to changes in the conditions of a single 
species, it is important to develop a species-specific model.   

Most models of marine recreational fishing demand have focused on species groups, or 
when possible, a particular species of fish when characterizing fishing quality. The choice 
of target species and how to incorporate substitute species in a marine setting, where 
many species may be sought, is an important choice. To accurately assess angler values 
for marine fishing in a recreational demand setting, modeling of target species and the 



 
 

 3

existence of substitutes is critically important.  If anglers are assumed to target a species 
complex, when in fact they are targeting only one species, then estimates of angler 
preferences and economic values for fishing quality may be biased due to aggregation 
over species.  The degree of aggregation bias increases as species become less 
substitutable. 

The importance of targeting behavior is further magnified when the recreation demand 
model is intended to capture the impacts due to commonly used management tools such 
as bag and size limits, or seasonal closures.  These policies are typically designed on a 
species by species basis, and therefore some anglers may be more willing and able to 
substitute to other species. 

Preference Heterogeneity 

Recent advancements in econometrics have allowed researchers to investigate 
heterogeneous preferences with random parameter models and finite mixture models. 
Each of these methods possesses its own advantages and they have been applied in a 
number of different settings. The mixed logit model provides modeling flexibility. The 
mixed logit model can approximate any random utility based behavioral model, and 
allows for more flexible patterns of substitution between alternatives than the standard 
logit based models. In addition, the mixed logit model allows for random preference 
variation across individuals in the sample. In the context of recreational fishing, the 
mixed logit allows the researcher to estimate different economic values of changes in 
fishing quality and common management tools for each angler type based on 
characteristics of the angler.  

Whereas the mixed logit model estimates a distribution of parameter estimates, and 
therefore a distribution of economic value measures and preferences, finite mixture 
models can be used to estimate separate parameter estimates for individuals who possess 
similar preferences, declared a different “type” within the population.  Motivation for 
different “types” of anglers in a recreational fishery can easily be made by noting that 
there exist a number of different objectives (catch-and-release, partial retention, 
subsistence targeting). Each of these objectives can easily combine to represent a 
different “type” of angler. Therefore, a model that can be used to determine the number 
of “types” within the recreational fishery, the anglers who are contained in each “type” 
and the preferences for a representative angler within each “type” may be extremely 
advantageous. 

Based on data support we develop species-specific demand models for: (1) dolphin and 
big game in the south Atlantic (Florida), (2) mackerel and small game in the south 
Atlantic and Gulf of Mexico, (3) red drum and seatrout in the south Atlantic and Gulf of 
Mexico and (2) snapper-grouper in the Gulf of Mexico. For each species we develop a 
series of models where anglers are assumed to choose a mode of fishing (private boat, 
shore, or party/charter), a target species group, and a recreation site. To alleviate the 
independence of irrelevant alternatives (IIA) restrictions inherent in the conditional logit 
model we vary our assumptions concerning the behavior of anglers. Specifically, we 
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develop four models for each of the species. In each model anglers target individual 
species and can substitute to other species or species groups. Models 1 and 2 are the 
standard conditional logit and nested logit models. Model 3 allows for heterogeneity of 
preferences through the use of a mixed logit model. Model 4 allows for heterogeneity of 
preferences through the use of a finite mixture model. In all, we estimate 16 random 
utility models.  

The rest of this report is organized as follows. In the next two sections we describe the 
data and conditional logit and nested logit models. Then we present mixed logit and 
latent class logit models. In the final section we discuss the results, offer some 
conclusions and make some suggestions for future research. 
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2. Data Description 

The 2000 MRFSS southeast intercept data is combined with the economic add-on data to 
characterize anglers and their spatial fishing choices. Measures of fishing quality for 
individual species and aggregate species groups are calculated using the MRFSS creel 
data. We focus on shore, charter boat and private/rental boat hook-and-line day trip 
anglers. In the 2000 MRFSS intercept there are 70,781 anglers interviewed from 
Louisiana to North Carolina. The 2000 intercept add-on data included 42,051 of the 
intercepted anglers. Twenty-eight percent of these anglers have missing data on their 
primary target species. We exclude one percent who do not use hook and line gear. We 
also exclude 33 percent of the anglers that self-reported a multiple day trip and that live 
greater than 200 miles from the nearest site. Estimation of consumer surplus values for 
overnight trips tends to produce upwardly biased estimates of consumer surplus 
(McConnell and Strand, 1999). After deleting cases with missing values on other key 
variables we are left with 18,709 anglers in our sample. Of these anglers, 11,257 target a 
species.  

In Table 2-1 we present descriptions of variables used in this report. In Table 2-2 we 
compare those anglers who target species with those who do not. On average, targeting 
anglers have 23 years of fishing experience and fish 9 days every two months.1 Sixty-
eight percent of targeting anglers are boat owners. Only 14 percent fish from shore and 8 
percent fish from party/charter boats. Fifty-nine percent of targeting anglers are 
intercepted on a Gulf of Mexico trip.  

Non-targeting anglers have 19 years of fishing experience and fish 7 days every two 
months. Fifty-three percent of targeting anglers are boat owners. Thirty-three percent fish 
from shore and 8 percent fish from party/charter boats. Sixty-seven percent of targeting 
anglers are intercepted on a Gulf of Mexico trip. 

In a binary logistic regression analysis we consider the factors that influence targeting 
behavior (Table 2-3). Anglers are more likely to report targeting a species if they are 
more experienced, more avid and boat owners. Anglers intercepted in Waves 5 and 6 are 
more likely to report targeting a species. Anglers are less likely to target a species if they 
are fishing from the shore. Gulf of Mexico anglers are also less likely to report targeting a 
specific species. Additional targeting anglers are excluded from subsequent analysis 
based on feasible and logical substitute species and modes for each of the primary species 
(e.g., we exclude shore anglers that target grouper). Final sample size for the four models 
is 7788 targeting anglers. In the remainder of this report we focus on targeting anglers.  

The theory behind random utility models is that anglers make fishing choices based on 
the utility (i.e., happiness) that each alternative provides. Anglers will tend to choose 
fishing modes, target species and sites that provide the most utility for the least cost. The 
angler target, mode and site selection decision depends on the costs and benefits of the 
fishing trip. Fishing costs include travel costs. Travel costs are equal to the product of 
round trip travel distance and an estimate of the cost per mile. In addition, a measure of 
                                                 
1 See the supporting website for more details: http://econ.appstate.edu/marfin. 
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lost income is included for anglers who lost wages during the trip. Benefits of the fishing 
trip include catch rates.  

Travel costs are computed using distances calculated with PCMiler by the NMFS. Travel 
costs are split into two separate variables depending on the ability of the angler to trade-
off labor and leisure.  Ideally, travel costs would represent the full opportunity costs of 
taking an angling trip in the form of foregone expenses and foregone wages associated 
with taking an angling trip.  Because not all anglers can trade-off labor and leisure at the 
margin, we allow for flexibility in modeling these tradeoffs.  For anglers that can directly 
trade-off labor and leisure at the wage rate (those that indicate they lost income by taking 
the trip), travel costs are defined as the sum of the explicit travel cost (i.e., round trip 
distance valued at $0.30 per mile) and the travel time valued at the wage rate. Travel time 
is calculated by dividing the travel distance by an assumed 40 miles per hour for travel.  
For anglers that do not forego wages to take a trip, travel cost is simply defined as the 
explicit travel cost. For simplicity all charter boat anglers are assigned the average charter 
boat fee for the east coast of Florida ($107.06) obtained from Gentner, Price and 
Steinbeck (2001).  

We measure catch rate with the historic targeted harvest (hereafter, catch is synonymous 
with harvest). Five year (1995-1999) targeted historic catch and keep rates per day are 
calculated using MRFSS data in each county of intercept to measure site quality. The 
random utility models exploit the empirical observation that anglers tend to choose 
fishing alternatives with relatively low fishing trip costs and relatively high chances at 
fishing success. We also include the log of the number of MRFSS intercept sites in each 
county to control for site aggregation bias (Parsons and Needleman, 1993). 

Data Summary 

Considering species of management interest in the southeast, twenty-percent of the 
anglers that report targeting a specific species target red drum. Six percent target dolphin, 
six percent target king mackerel, four percent target Spanish mackerel, and two percent 
target red snapper.  

Dolphin and Big Game 

In the dolphin and big game model we focus on dolphin and big game boat trips taken on 
the Atlantic coast of Florida (Table 2-4). We also include the Gulf of Mexico trips taken 
from Monroe County (i.e., Florida Keys). Eighty-three percent of 823 anglers target 
dolphin relative to other big game.2 Dolphin anglers have 20 years of fishing experience 
and fish an average of 7 days each wave. Sixty-five percent are boat owners. Thirteen 
percent of the trips are charter trips. Big game anglers have 22 years of experience and 
fish 11 days each wave. Sixty-nine percent are boat owners and 17 percent are charter 
boat trips. Dolphin and big game anglers fish an average of 5 hours each day. 

                                                 
2 The big game species included are: atlantic tarpon, billfish family, blackfin tuna, cobia, little tunny, 
sailfish, swordfish, tuna genus, wahoo, and yellowfin tuna.  
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There are 12 county level fishing sites in the dolphin and big game model.3 Each of these 
counties is comprised of a varying number of MRFSS intercept sites. Anglers choose 
among two modes and two target species. Eleven percent (n = 87) of all anglers target 
dolphin and choose among 8 county alternative sites in the party/charter mode. Seventy-
three percent (n = 598) of dolphin target anglers choose among 10 county alternative sites 
in the private/rental mode. Fourteen percent (n = 136) of all anglers target big game and 
choose among 16 county/mode alternative sites in the combined party/charter and 
private/rental boat mode. 

With 823 anglers and 34 alternatives there are 27,982 cases. In Table 2-5 we present the 
means of the independent variables summed over the number of site choices within each 
target and mode category. After the 2000 MRFSS add-on data was collected a 20” size 
limit regulation for dolphin was imposed by the South Atlantic Fishery Management 
Council. We investigate the effect of size limits by sorting the historic catch rate into fish 
greater than or equal to 20” and less than 20”. A household production model, described 
below, is used to predict the number of big (>20”) and small (<20”) dolphin.  

Travel costs for dolphin target trips party/charter trips are about twice that of 
private/rental trips since they include the charter fee. Predicted big dolphin catch per day 
is 0.19 for party/charter mode trips and 0.18 for private/rental mode trips. Predicted small 
dolphin catch per day is 1.15 and 0.28 for party/charter and private/rental mode trips. The 
historic catch rate of big game fish per day is 0.13 for party/charter and private/rental 
mode trips. The average number of MRFSS interview sites ranges from 33 to 39 for 
dolphin and is 76 for big game.  

Mackerel and Small Game 

In the mackerel and small game model we focus on king mackerel, Spanish mackerel and 
small game private boat trips taken in the south Atlantic and Gulf of Mexico (Table 2-6). 
Thirty-two percent of the sub-sample of 1526 are king mackerel target anglers who have 
22 years of fishing experience and fish an average of 9 days each wave. Eighty percent 
are boat owners. Forty percent of boat trips are in the Gulf of Mexico. Seventeen percent 
of the anglers target Spanish mackerel and have 25 years of fishing experience and fish 
an average of 8 days each wave. Seventy-nine percent are boat owners. Forty-nine 
percent of the private boat trips are in the Gulf of Mexico. Fifty-one percent target small 
game species.4 Small game target anglers have 24 years of experience and fish 11 days 
each wave. Eighty-one percent are boat owners and 64 percent fish in the Gulf of 
Mexico. Hours fished ranges from 4 to 5 per day. 

There are 51 county level fishing sites from North Carolina to Louisiana in the mackerel 
model. Anglers choose across three target species. A number of county/species 
alternatives have empty cells which leaves 104 alternatives. Twelve percent of all angler 

                                                 
3 The full frequency distribution of all dependent variables is available at http://econ.appstate.edu/marfin.  
4 The small game species are: common snook, sand seatrout, seatrout genus, florida pompano, striped bass, 
bonefish, mackerel genus, bluefish, silver seatrout, permit, greater amberjack, great barracuda, drum 
family, ladyfish, weakfish, irish pompano, jack family, lookdown, tarpon family and fat snook. 
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trips take place in Alabama, 64% take place in Florida, 2% in Georgia, 1% in Louisiana, 
4% in Mississippi, 14% in North Carolina and 4% in South Carolina. For king mackerel 
17% of all targeted trips take place in Alabama, 61% take place in Florida, 6% in 
Georgia, 1% in Louisiana, less than 1% in Mississippi, 7% in North Carolina and 7% in 
South Carolina. Fifteen percent of all targeted Spanish mackerel trips take place in 
Alabama, 44% take place in Florida, 2% in Georgia, 0% in Louisiana, 1% in Mississippi, 
32% in North Carolina and 5% in South Carolina.  

Since many king mackerel target anglers have Spanish mackerel as a secondary target, 
and vice versa, we include the historic catch rate for both species as independent 
variables for both types of trips. Summed over alternatives, the average travel cost for 
Gulf of Mexico and South Atlantic private/rental boat trips ranges from $240 to $278 
across the four types of choices (Table 2-7). Small game targeted catch per day is 1.41 
fish in the Gulf and 0.27 fish in the South Atlantic. King mackerel targeted catch per day 
is 0.08 fish in the Gulf and 0.09 fish in the south Atlantic. Spanish mackerel targeted 
catch per day is 0.32 fish in the Gulf and 0.28 fish in the South Atlantic. The average 
number of MRFSS intercept sites in each county ranges from 20 to 24.  

Red Drum and Seatrout 

In the red drum and seatrout model we focus on 4353 red drum and spotted seatrout 
private/rental boat trips taken in the south Atlantic and Gulf of Mexico (Table 2-8). 
Forty-six percent of these angler trips target red drum. Red drum anglers have 22 years of 
experience and fish 9 days each wave. Eighty-two percent own a boat. Sixty-two percent 
fish in the Gulf of Mexico. Spotted seatrout anglers have 24 years of experience and fish 
8 days each wave. Eighty-one percent own a boat. Seventy-five percent fish in the Gulf 
of Mexico. 

There are 58 county level fishing sites from North Carolina to Louisiana in the red drum 
and seatrout model. Anglers choose across two species. Only a few county/species 
alternatives have empty cells which leave 110 choices. For red drum 2% of all targeted 
trips take place in Alabama, 61% take place in Florida, 2% in Georgia, 29% in Louisiana, 
1% in Mississippi and North Carolina and 4% in South Carolina. Four percent of all 
targeted spotted seatrout trips take place in Alabama, 45% take place in Florida, 7% in 
Georgia, 33% in Louisiana, 4% in Mississippi, 1% in North Carolina and 5% in South 
Carolina.  

The average travel cost over all alternatives for private/rental boat trips ranges from $260 
for red drum trips and $264 for spotted seatrout trips (Table 2-9). Red drum targeted 
catch per day is 0.32 fish. Spotted seatrout targeted catch per day is 0.95 fish. The 
average number of MRFSS intercept sites in each county is about 18 for each species.  

Snapper-Grouper 

In the snapper-grouper model we focus on 1086 red snapper, shallow water groupers and 
“other snappers” boat trips taken in the Gulf of Mexico (Table 2-10). Twenty-two percent 
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target red snapper, 67% target shallow water groupers, and 11% target other snapper 
species.5  

Red snapper anglers have 24 years of experience and fished an average of 6 days over the 
two months prior to the intercepted trip. Sixty percent are boat owners. Thirty-five 
percent of the red snapper anglers fish from charter boats. Shallow water grouper anglers 
have 21 years of experience and fished an average of 7 days over the two months prior to 
the intercepted trip. Sixty-five percent are boat owners. Twenty-one percent fish from 
charter boats. Other snapper anglers have 23 years of experience and fished an average of 
9 days over the two months prior to the intercepted trip. Seventy-nine percent are boat 
owners. Eleven percent fish from charter boats. Anglers fish an average of 4 to 5 hours 
per day. 

Anglers choose across two modes, three species and 28 counties in the Gulf of Mexico. 
Many mode/species/county alternatives have empty cells which leave 71 choices. For red 
snapper targeted trips 51% take place in Alabama, 32% take place in Florida, 9% in 
Louisiana and 9% in Mississippi. One percent of all targeted grouper trips take place in 
Alabama, 99% take place in Florida and 0% in Louisiana and Mississippi. Seven percent 
of all targeted other snappers trips take place in Alabama, 89% take place in Florida, 3% 
in Louisiana and 1% in Mississippi. 

Over all alternatives the average travel cost for party/charter boat trips is $317 and $183 
for private/rental boat trips (Table 2-11). Other snappers targeted catch per day is 0.004 
fish on party/charter trips and 0.03 on private/rental trips. Grouper targeted catch per day 
is 0.04 fish on party/charter trips and 0.06 fish on private/rental trips. Red snapper 
targeted catch per day is 0.02 fish on party/charter trips and 0.02 fish on private/rental 
trips. The average number of MRFSS intercept sites in each county is 27 for party/charter 
trips and 19 for private/rental trips.  

Predicted Catch Models 

Poisson and negative binomial models are used to estimate expected catch rates at each 
site for the relevant species for each angler by mode (McConnell, Strand and Blake-
Hedges, 1995). The negative binomial model represents a generalization of the standard 
Poisson model and relaxes the equality between the mean and variance assumption of the 
Poisson. If overdispersion is present in the reported cach rates (i.e., unequal mean and 
variance) then the Poisson model will be misspecified and result in inefficient predictions 
of expected catch rates.  

In contrast to Haab, Whitehead and McConnell (2001) who estimate a single catch rate 
model pooled over all species, we estimate catch rate models for individual species. The 
dependent variable in each model is the number of fish caught and kept per trip. 

                                                 
5 The grouper species are: gag, red grouper, black grouper, grouper genus and unidentified groupers. The 
other snapper species are: amberjack genus, Atlantic spadefish, black sea bass, blackfin snapper, crevalle 
jack, gray snapper, gray triggerfish, silver seatrout, snapper family, vermilion snapper, white grunt, 
yellowtail snapper and Atlantic thread herring. 
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Independent variables are the mean historic catch and keep rate at each site, years fished, 
boat ownership, charter mode, days fished during the past two months, hours fished and 
survey wave.  

With the dolphin data we estimate models for dolphin greater than 20” and dolphin less 
than 20” for anglers that target dolphin (Table 2-12). For anglers that target big game 
species we estimate a similar model with aggregate big game catch as the dependent 
variable. The big game model is estimated with the Poisson distribution. For dolphin 
target anglers, catch per trip is positively correlated with mean historic catch rates. 
Anglers in the fifth wave tend to catch more dolphin longer than 20” per trip. Anglers in 
the third, fourth and fifth wave tend to catch more dolphin less than 20” in length per trip. 
No coefficients are statistically significant in the big game model.  

With the king mackerel data we estimate models for anglers targeting king mackerel, 
Spanish mackerel and the small game species aggregate (Table 2-13). Catch per trip is 
positively correlated with mean historic catch rate for king mackerel and small game. 
King mackerel and small game catch is greater in the Gulf of Mexico relative to the south 
Atlantic. Small game catch increases with fishing experience and is greater in waves 4 
and 5.  

With the red drum data we estimate catch models for anglers who target red drum and 
spotted seatrout (Table 2-14). Both species’ catch rates are positively correlated with 
mean historic catch rate and fishing experience. Boat owners catch more red drum. 
Anglers who fish more during the past two months catch more of both fish. More spotted 
seatrout are caught during wave 6. 

With the red snapper data we estimate catch models for anglers who target red snapper, 
the grouper aggregate and the other snappers aggregate (Table 2-15). Only a few 
coefficients are statistically significant and none of these appear in the snapper-grouper 
model.  

A necessary condition for using predicted catch as an independent variable in the 
recreation demand models is that catch varies with mean historic catch rate across site. 
Otherwise, predicted catch does not vary across site and is not helpful in explaining site 
selection. Therefore, only 6 of 11 catch models are candidates for using predicted catch in 
travel cost models. Predicted catch is estimated as in McConnell, Strand and Blake-
Hedges (1995), with linear hours fished instead of the natural log of hours fished, and 
included in preliminary demand models. Only predicted catch in the dolphin and big 
game models helps explain site selection behavior in expected ways. Other predicted 
catch coefficients are either statistically insignificant or wrong signed. These results are 
likely due to outliers. For example, some infrequently visited sites have high catch rates.  
Using these to predict catch generates unrealistically high predicted catch rates at 
infrequently visited sites. 
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Table 2-1. Variable Descriptions 
Variable Description 
Big game Big game fish aggregate catch and keep per trip 
Charter =1 if party/charter mode, 0 otherwise 
Boatown =1 if boat owner, 0 otherwise 
Ffdays2 Days fished in last 2 months 
Grouper Grouper aggregate catch and keep per trip 
Gulf =1 if Gulf of Mexico trip, 0 otherwise 
Hrsf Hours fished on intercepted trip 
King mackerel King mackerel catch and keep per trip 
Mean Mean historic catch and keep rate by species/site/mode 
Pr_big Predicted dolphin catch and keep > 20” per trip 
Pr_small Predicted dolphin catch and keep < 20” per trip 
Red drum Red drum catch and keep per trip 
Red snapper Red snapper catch and keep per trip 
Seatrout Seatrout catch and keep per trip 
Sites Number of MRFSS intercept sites in each county site 
Shore =1 if shore mode, 0 otherwise 
Small game  Small game aggregate fish catch and keep per trip 
Spanish mackerel Spanish mackerel catch per trip 
Snappers Aggregate other snappers catch per trip 
Travcost Travel cost of a fishing trip 
Yearfish Fishing experience (in years) 

 

Table 2-2. Comparison of Targeting and 
Non-Targeting Anglers 
 Targeting Not-Targeting 
Variable Mean Std Mean Std 
Yearfish 22.71 14.98 19.32 15.06 
Ffdays2 8.91 9.94 7.20 8.68 
Boatown 0.68 0.47 0.53 0.50 
Shore 0.14 0.34 0.33 0.47 
Charter 0.08 0.27 0.08 0.27 
Gulf 0.59 0.49 0.67 0.47 
Cases 11,257 7452 
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Table 2-3. Determinants of Targeting 
Behavior (Binary Logit Model) 
Variable Coeff. t-stat 
Constant 0.3216 6.29 
Yearfish 0.0113 10.56 
Ffdays2 0.0242 13.15 
Boatown 0.0953 2.49 
Shore -1.2027 -26.85 
Charter -0.07 -1.16 
Wave4 -0.0415 -0.99 
Wave5 0.2106 4.92 
Wave6 0.2482 5.37 
Gulf -0.3401 -10.43 
Model χ2 [df] 1622.16[9]  
Cases 18,709  

 

Table 2-4. Characteristics of Dolphin and Big Game Targeting Anglers 
 Dolphin Big Game 
Variable Mean StdDev Mean StdDev 
Yearfish 20.42 13.94 22.03 14.78 
Ffdays2 7.11 7.23 10.59 9.36 
Boatown 0.65 0.48 0.69 0.46 
Charter 0.13 0.33 0.17 0.38 
Hrsf 5.18 2.09 5.36 2.82 
Cases 685 138 

 

Table 2-5. Summary of Determinants of Mode/Target Site Choice for 
the Dolphin and Big Game Models 
 Dolphin Big Game 

 Party/Charter Private/Rental 
Party/Charter and 

Private/Rental 
Variable Mean StdDev Mean StdDev Mean StdDev 
Travcost 178.53 51.59 82.91 60.36 117.11 75.65 
Pr_big 0.19 0.13 0.18 0.11 0.00 0.00 
Pr_small 1.15 1.96 0.28 0.19 0.00 0.00 
Big game 0.00 0.00 0.00 0.00 0.13 0.13 
Sites 38.50 41.13 32.80 38.20 76.00 61.95 
Cases 6584 8230 4115 
Alternatives 8 10 16 
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Table 2-6. Characteristics of Mackerel and Small Game Targeting 
Anglers 
 King Mackerel Spanish Mackerel Small Game 
Variable Mean StdDev Mean StdDev Mean Std 
Yearfish 21.70 14.30 24.47 15.34 24.15 14.07 
Ffdays2 9.03 8.79 7.61 8.72 11.27 11.31 
Boatown 0.80 0.40 0.79 0.41 0.81 0.39 
Gulf 0.40 0.49 0.49 0.50 0.64 0.48 
Hrsf 4.60 2.13 4.16 1.96 4.76 1.97 
Cases 484 257 785 

 

Table 2-7. Summary of Determinants of Mode/Target Site Choice for the Mackerel and 
Small Game Models 
 Gulf of Mexico South Atlantic 

 Small Game 
King and Spanish 

Mackerel Small Game 
King and Spanish 

Mackerel 
Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev 
Travcost 265.75 177.58 239.80 155.92 278.75 171.67 254.46 145.67 
Small 1.41 1.69 0.00 0.00 0.27 0.39 0.00 0.00 
King 0.00 0.00 0.08 0.12 0.00 0.00 0.09 0.10 
Spanish 0.00 0.00 0.32 0.37 0.00 0.00 0.28 0.55 
Sites 19.82 12.45 20.67 14.96 24.33 14.78 22.41 15.18 
Cases 33,572 45,780 27,468 51,884 
Alternatives 22 30 18 34 
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Table 2-8. Characteristics of Red Drum and Seatrout Targeting Anglers 
 Red Drum Spotted Seatrout 
Variable Mean StdDev Mean StdDev 
Yearfish 22.48 14.71 23.85 15.27 
Ffdays2 9.04 8.87 7.52 7.48 
Boatown 0.82 0.38 0.81 0.39 
Gulf 0.62 0.48 0.75 0.43 
Hrsf 4.46 1.77 4.35 1.74 
Cases 1993 2360 

 

Table 2-9. Summary of Determinants of Mode/Target Site Choice for the Red Drum 
and Seatrout Models 
 Red Drum Spotted Seatrout 
Variable Mean StdDev Mean StdDev 
Travcost 260.36 161.78 263.92 164.64 
Drum 0.32 0.35 0.00 0.00 
Trout 0.00 0.00 0.95 0.84 
Sites 18.50 13.68 18.02 13.59 
Cases 235,062 243,768 
Alternatives 54 56 
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Table 2-10. Characteristics of Snapper-Grouper Anglers 
 Red Snapper Groupers Snappers 
Variable Mean StdDev Mean StdDev Mean StdDev 
Yearfish 23.62 13.88 20.82 13.84 23.19 15.18 
Ffdays2 6.00 7.64 6.65 6.98 9.23 9.6 
Boatown 0.60 0.49 0.65 0.48 0.79 0.41 
Charter 0.35 0.48 0.21 0.41 0.11 0.32 
Hrsf 4.27 1.91 5.10 2.06 4.43 2.15 
Cases 239 725 122 

 

Table 2-11. Summary of Determinants of Mode/Target Site Choice for the Snapper-
Grouper Models 
 Party/Charter Private/Rental 
Variable Mean StdDev Mean StdDev 
Travcost 317.29 142.83 183.49 143.04 
Snapper 0.004 0.11 0.03 0.24 
Grouper 0.04 0.26 0.06 0.15 
Red snapper 0.02 0.16 0.02 0.12 
Sites 27.59 27.49 18.80 13.33 
Cases 29,322 47,784 
Alternatives 27 44 
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Table 2-12. Negative Binomial Household Production Models: 
Dolphin and Big Game 

 Dolphin ≥  20" Dolphin < 20" 
Big Game 
(Poisson) 

Variable Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio 
Intercept -3.346 -5.382 -3.418 -3.956 0.077 0.869 
Mean 2.651 2.433 3.823 3.898 -0.161 -0.493 
Yearfish -0.002 -0.225 -0.007 -0.570 0.001 0.438 
Boatown 0.377 1.365 0.294 0.765 -0.068 -1.280 
Charter 0.247 0.624 -0.101 -0.170 0.117 1.292 
Ffdays2 0.023 1.439 -0.001 -0.052 0.002 0.654 
Hrsf 0.032 0.557 -0.061 -0.729 0.005 0.659 
Wave 3 0.655 1.426 1.798 2.554 -0.077 -1.336 
Wave 4 0.139 0.284 2.155 2.969 0.003 0.049 
Wave 5 1.149 2.269 2.432 3.101 0.028 0.423 
Dispersion 3.462 4.029 11.540 6.434 0.262 16.601 
Cases 685 685 138 

 

Table 2-13. Negative Binomial Household Production Models:  
Mackerel and Small Game 
 King Mackerel Spanish Mackerel Small Game 
Variable Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio 
Intercept -2.654 -4.968 -1.214 -1.214 -5.201 -5.446 
Mean 4.398 2.918 0.804 1.513 1.639 3.657 
Yearfish 0.000 -0.026 -0.004 -0.255 0.041 3.441 
Boatown 0.287 0.991 0.576 1.154 0.341 0.776 
Ffdays2 0.016 1.331 0.022 0.961 -0.025 -1.595 
Hrsf 0.014 0.261 0.030 0.249 0.107 1.128 
Wave 4 -0.142 -0.524 -0.108 -0.244 1.282 2.338 
Wave 5 -0.062 -0.191 -0.198 -0.398 0.810 1.834 
Wave 6 -0.338 -0.996 0.382 0.775 0.424 0.793 
Gulf 0.569 2.501 -0.530 -1.445 0.987 2.039 
Dispersion 1.550 3.194 5.915 5.490 15.569 7.377 
Cases 484 257 785 
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Table 2-14. Negative Binomial Household Production 
Models: Red Drum and Seatrout 
 Red Drum Seatrout 
Variable Coeff. t-ratio Coeff. t-ratio 
Intercept -3.463 -11.800 -2.448 -8.748 
Mean 2.812 13.797 0.796 13.084 
Yearfish 0.008 2.026 0.010 2.605 
Boatown 0.446 2.733 0.115 0.802 
Ffdays2 0.011 1.551 0.028 3.623 
Hrsf 0.088 2.618 0.187 5.662 
Wave 4 -0.015 -0.088 -0.167 -1.077 
Wave 5 0.015 0.095 0.142 0.900 
Wave 6 -0.007 -0.040 0.557 3.486 
Gulf 0.251 1.560 -0.226 -1.563 
Dispersion 2.828 10.324 5.494 17.761 
Cases 1993 2360 

  

Table 2-15. Negative Binomial Household Production Models:  
Snapper-Grouper 
 Red Snapper Groupers Snappers 
Variable Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio 
Intercept 0.104 0.136 -2.326 -5.157 -1.845 -1.313 
Mean 0.252 0.552 0.311 0.906 0.195 0.548 
Yearfish -0.006 -0.554 0.012 1.570 0.029 1.173 
Boatown -0.209 -0.694 0.321 1.297 0.402 0.515 
Charter -0.336 -0.997 0.859 3.019 1.127 0.880 
Ffdays2 -0.003 -0.147 0.016 1.080 -0.002 -0.064 
Hrsf 0.001 0.006 0.098 1.885 -0.047 -0.216 
Wave 3 -0.290 -0.858 -0.402 -1.237 0.739 0.896 
Wave 4 -0.135 -0.389 0.034 0.124 1.987 2.240 
Wave 5   -0.396 -1.445 1.544 1.469 
Dispersion 3.202 5.105 4.236 6.182 7.148 4.311 
Cases 239 725 122 
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3. Conditional and Nested Random Utility Models 

Nested random utility models (NRUM) allow for sequential choices. For example, in the 
standard NMFS travel cost marine recreational fishing model anglers are assumed to 
choose (1) target species and fishing mode and (2) fishing sites based on their attributes 
(McConnell and Strand, 1994; Hicks, Steinbeck, Gautam, Thunberg, 1999; Haab, 
Whitehead, and McConnell, 2000). The species-mode-site choice NRUMs developed 
here are based on the standard NMFS recreation demand model. First, the angler chooses 
among fishing modes (e.g., shore, charter boat, and private/rental boat fishing) and 
various species. Conditional on the mode-species choice from the first stage decision, the 
angler chooses the fishing site. The MRFSS fishing access sites are aggregated to the 
county level (i.e., zones) due to limited observations at some sites.  

The theory behind the NRUM is that anglers make fishing choices based on the utility 
(i.e., happiness) that each alternative provides. Anglers will tend to choose fishing modes, 
target species and sites that provide the most utility. The utility function depends on the 
costs and benefits of the fishing trip. Consider an angler who chooses from a set of j 
recreation sites. The individual utility from the trip is decreasing in trip cost and 
increasing in trip quality: 

(3-1) iiiii qcyvu ε+−= ),(  

where u is the individual indirect utility function, v is the nonstochastic portion of utility, 
y is the per-trip recreation budget, c is the trip cost, q is a vector of site qualities, ε is the 
error term, and i is a member of s recreation sites, s = 1, … , i , … J. The random utility 
model assumes that the individual chooses the site that gives the highest utility 

(3-2) )   Pr( isvv ssiii ≠∀+>+= εεπ  

where π is the probability that site i is chosen. If the error terms are independent and 
identically distributed extreme value variates then the conditional logit site selection 
model results 

(3-3) 
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The conditional logit model restricts the choices according to the assumption of the 
independence of irrelevant alternatives (IIA). The IIA restriction forces the relative 
probabilities of any two choices to be independent of other changes in the choice set. For 
example, if a quality characteristic at site j causes a 5% decrease in the probability of 
visiting site j then the probability of visiting each of the other k sites must increase by 
5%. This assumption is unrealistic if any of the k sites are better substitutes for site j than 
the others.  
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The nested logit model relaxes the IIA assumption. The nested logit site selection model 
assumes that recreation sites in the same species-mode nest are better substitutes than 
recreation sites in other species-mode nests. Choice probabilities for recreation sites 
within the same nest are still governed by the IIA assumption.  

Consider a two-level nested model. The site choice involves a choice among M groups of 
species-mode nests, m = 1, … , M. Within each nest is a set of Jm sites, j= 1, … , Jm. 
When the nest chosen, n, is an element in M and the site choice, i, is an element in Jn and 
the error term is distributed as generalized extreme value the site selection probability in 
a two-level nested logit model is: 

(3-4) 
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where the numerator of the probability is the product of the utility resulting from the 
choice of nest n and site i and the summation of the utilities over sites within the chosen 
nest n. The denominator of the probability is the product of the summation over the 
utilities of all sites within each nest summed over all nests. The dissimilarity parameter, 0 
< θ < 1, measures the degree of similarity of the sites within the nest. As the dissimilarity 
parameter approaches zero the alternatives within each nest become less similar to each 
other when compared to sites in other nests. If the dissimilarity parameter is equal to one, 
the nested logit model collapses to the conditional logit model where M × Jm = J.  

Welfare analysis is conducted with the site selection models by, first, specifying a 
functional form for the site utilities. It is typical to specify the utility function as linear: 

(3-5) 
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where α is the marginal utility of income. Since αy is a constant it will not affect the 
probabilities of site choice and can be dropped from the utility function.  

The next step is to recognize that the inclusive value is the expected maximum utility 
from the cost and quality characteristics of the sites. The inclusive value, IV, is measured 
as the natural log of the summation of the nest-site choice utilities: 

(3-6) 
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Hanemann (1999) shows that the choice occasion welfare change from a change in 
quality characteristics is:  

(3-7) 
α

βαβα ),;,(),;,( qqcIVqcIVWTP Δ+−
=  

where willingness-to-pay, WTP, is the compensating variation measure of welfare. Haab 
and McConnell (2003) show that the willingness-to-pay for a quality change (e.g., 
changes in catch rates) can be measured as  

(3-8) 
α

β q
niqWTP qΔ=Δ )|(  

The welfare measures apply for each choice occasion (i.e., trips taken by the individuals 
in the sample). If the number of trips taken is unaffected by the changes in trip quality, 
then the total willingness-to-pay is equal to the product of the per trip willingness-to-pay 
and the average number of recreation trips, x .   

In this chapter and the rest of the report 95% confidence intervals for willingness-to-pay 
are calculated using the asymptotic procedure adapted from Krinsky and Robb (see Haab 
and McConnell 2002 for a detailed explanation).  The confidence intervals are calculated 
by taking 1000 independent draws from a multivariate normal distribution with mean 
equal to the estimated parameter vector for each model and variance covariance matrix 
equal to the corresponding estimated variance covariance matrix.  At each draw, 
willingness-to-pay is calculated to give 1000 draws from the empirical distribution of 
willingness-to-pay.  Sorting the resulting empirical draws in ascending order and 
choosing the 2.5th and 97.5th percentile observations yields a consistent estimate of the 
desired confidence interval.   

Results 

The conditional and nested logit models are estimated using the full information 
maximum likelihood PROC MDC in SAS. The nested logit routine estimates the two 
stages of choice jointly. In the models that follow we estimate conditional and nested 
logit models for each species in order. Each species data leads to a different nesting 
structure. The dolphin data supports estimation of the welfare impacts of size since size 
limit regulations were put into place after data collection.  

Dolphin and Big Game 

The dolphin data considers 823 dolphin and big game anglers and 34 choices. The model 
likelihood ratio statistic indicates that all parameters are jointly significantly different 
from zero in both the conditional and nested logit models. The nested logit specification 
that best fit the data employs mode/species nests as described in Section 2 (Table 2-4). In 
the nested logit model the parameter estimate on the inclusive value is statistically 
different from zero and one which indicates that the nested model is more appropriate 
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then the conditional logit. In both logit models the likelihood that an angler would choose 
a county fishing site is negatively related to the trip cost and positively related to the 
catch rates. The log of the number of interview sites is not related to the site choice in 
either model.  

The trip cost coefficient in the conditional logit model is 30% lower in absolute value 
relative to the trip cost coefficient in the nested logit models. This will reduce the welfare 
measures of catch obtained from the nested logit model relative to the conditional logit 
model, holding catch rate coefficients constant. The effects of the predicted big and small 
dolphin catch and big game catch on choice are 16% larger, 6% smaller and 50% larger 
in the nested logit model relative to the conditional logit. This effect will increase the 
welfare measures of catch obtained from the nested logit model relative to the conditional 
logit model.6 

In Table 3-2 we present the willingness-to-pay for one additional fish caught and kept per 
trip. These values are similar across models with a 28% difference, at most, for big 
dolphin and big game. There is a 45% difference for predicted small dolphin. Dolphin 
greater than 20” is a highly valuable catch. In the nested logit model an additional big 
dolphin is worth $102 per trip, about 20% higher than big game. An additional small 
dolphin is worth only $11 per trip.  

The 95% confidence intervals for predicted big dolphin and big game catch willingness-
to-pay overlap in both conditional and nested logit models. Predicted small dolphin catch 
willingness-to-pay overlaps with big game catch in the conditional logit model due to the 
imprecise measurement of big game willingness-to-pay. From this analysis we conclude 
that there is little reason, in terms of willingness-to-pay estimation, to focus on a single 
species (big) dolphin and big game model relative to a model that includes dolphin in the 
big game aggregate species.  

Mackerel and Small Game 

The mackerel data considers 1562 mackerel and small game anglers and 104 species/site 
alternatives (Table 3-3). The model likelihood ratio statistics indicate that all parameters 
are jointly significantly different from zero in both the conditional and nested logit 
models. The nested logit specification that best fit the data includes four nests as 
described in Section 2 (Table 2-5). In the nested logit model the parameter estimate on 
the inclusive value is statistically different from zero but not statistically different from 

                                                 

6 We considered additional function forms for the catch variables. These are discarded for various reasons. 
The square root conditional logit model suggests that dolphin smaller than 20” are worth more than dolphin 
greater than 20”. The square root nested logit model contains a negative and statistically significant 
coefficient for big game catch. The quadratic conditional logit and nested logit models suggest negative 
values for big dolphin catch. Additional model results mentioned throughout the report and others can be 
found at http://econ.appstate.edu/marfin. 
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one which indicates that the model fit is statistically the same as the conditional logit 
model at the p=.01 level.  

In the logit models the likelihood that an angler would choose a county fishing site is 
negatively related to the trip cost and positively related to the king mackerel and small 
game catch rate. In all models, Spanish mackerel catch has a negative effect on choice. 
Recall that since many king mackerel target anglers have Spanish mackerel as a 
secondary target we include the historic catch rate for both species as independent 
variables for both types of trips. This result suggests that sites with a high ratio of 
Spanish mackerel to king mackerel are avoided. The log of the number of interview sites 
is positively related to the site choice.  

The trip cost coefficients in the conditional logit model is not statistically different from 
the trip cost coefficient in the nested logit models. The coefficient on king mackerel catch 
is 35% larger in the nested logit model relative to the conditional logit. This effect will 
increase the welfare measures of catch obtained from the nested logit model relative to 
the conditional logit model. In Table 3-4 we present the willingness-to-pay for one 
additional fish caught and kept per trip. These values are similar with only 8% and 31% 
differences for small game and king mackerel catch. 

In the conditional logit model, the willingness-to-pay for small game and king mackerel 
are not significantly different. However, there are significant differences in the nested 
logit model. This suggests that there are empirical gains to pursuing a single-species 
mackerel and small game model relative to including king mackerel in the small game 
aggregate.   

Red Drum and Seatrout 

The red drum data considers 4353 red drum and spotted seatrout target anglers and 110 
species/site alternatives (Table 3-5). The model likelihood ratio statistics indicate that all 
parameters are jointly significantly different from zero in all logit models. The nested 
logit structure that fit the data includes 2 species nests (red drum and spotted seatrout) as 
described in Section 2 (Table 2-6). In the nested logit model the parameter estimate on 
the inclusive value is statistically different from zero and one which indicates that the 
nested model is more appropriate than the conditional logit.  

The likelihood that an angler would choose a county fishing site is negatively related to 
the trip cost and positively related to the targeted catch rates. The log of the number of 
interview sites is positively related to the site choice. The trip cost coefficients in both 
models are not statistically different. The catch coefficients are not statistically different.  

In Table 3-6 we present the willingness-to-pay for one additional fish caught and kept per 
trip. These values are similar with only 2% and 12% differences for red drum and spotted 
seatrout catch. The 95% confidence intervals from each model overlap which suggests 
there is little reason, in terms of willingness-to-pay estimation, to disaggregate red drum 
and spotted seatrout catch.  
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Snapper-Grouper 

There are 1086 snapper-grouper anglers and 71 choices (Table 3-7). The model 
likelihood ratio statistic indicates that all parameters are jointly significantly different 
from zero in each of the four models. In each of the models the likelihood that an angler 
would choose a county fishing site is negatively related to the trip cost and positively 
related to the catch rate. The log of the number of interview sites is positively related to 
the site choice.  

The nested logit specification that fit the data best includes 2 mode nests as described in 
Section 2. This indicates that each of the species-site choice alternatives are good 
substitutes. In the mode-species/sites nested logit model the parameter estimate on the 
inclusive value is statistically different from zero and one which indicates that the nested 
model is more appropriate than the conditional logit. The inclusive values are closer to 0 
relative to 1 which indicates that the alternatives outside the mode nests are not good 
substitutes for the alternatives within the mode nests.  In other words, party/charter boat 
trips and not good substitutes for private/rental boat trips (and vice versa) in the snapper-
grouper recreational fishery.  

The trip cost coefficients in the conditional logit models are 40% lower in absolute value 
relative to the trip cost coefficients in the nested logit models. This indicates that the 
effect of trip costs is attenuated when the mode choice is modeled as the first stage of 
decision-making. This effect will reduce the welfare measures obtained from the nested 
logit model relative to the conditional logit model.7 

In Table 3-8 we present the willingness-to-pay for one additional fish caught and kept per 
trip. These values differ across model. As expected, accounting for the additional 
substitution patterns in the nested logit model drives the nested logit welfare values 
significantly below the conditional logit welfare values. Red snapper and the grouper 
aggregate is a valuable catch. In the conditional logit model, red snapper willingness-to-
pay is significantly greater than grouper willingness-to-pay which is significantly greater 
than snapper willingness-to-pay. Accounting for the nested substitution pattern reduces 
the value of catch by 65%, 66% and 68% for grouper, snapper and red snapper. In the 
nested logit model an additional grouper is worth $32 and an additional red snapper is 
worth $39. These estimates are not statistically different. An additional snapper is worth 
significantly less, only $9. The snapper-grouper model results suggest that pursuing 
single species demand models is worthwhile.  

                                                 
7 We also investigate the potential for diminishing marginal returns to catch with alternative functional 
forms. In addition to the linear catch models we also attempted models that include the square root of catch 
rates and quadratic catch rates. The square root model represents a statistical improvement over the linear 
model with a larger likelihood ratio statistic. The quadratic model is statistically inferior. 
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Table 3-1. Conditional and Nested Logit Models: Dolphin and Big 
Game 
 Conditional Logit Nested Logit 
Variable Coeff. t-stat Coeff. t-stat 
Travcost -0.040 -26.85 -0.057 -22.68 
Pr_big 4.91 11.21 5.83 10.18 
Pr_small  0.66 12.28 0.62 7.64 
Big Game 2.36 2.02 4.68 2.62 
Ln(Sites) -0.050 -1.13 -0.059 -1.19 
Inclusive value   0.40 10.51 
Choices 34 34 
Cases 823 823 
Log-Likelihood -1811 -1748 
Likelihood Ratio 2182 2309 

  

Table 3-2. Willingness-to-Pay for One Additional Fish Caught and Kept: Dolphin 
and Big Game 
 Conditional Logit 
 Pr_big (Dolphin > 20”) Pr_small (Dolphin < 

20”) 
Big Game 

Lower 95% 99.70 14.35 1.77 
Mean 123.18 16.57 40.46 
Upper 95% 146.96 18.72 115.30 
 Nested Logit 
 Pr_big (Dolphin > 20”) Pr_small (Dolphin < 

20”) 
Big Game 

Lower 95% 81.34 8.20 17.66 
Mean 102.63 10.98 81.39 
Upper 95% 125.87 13.80 142.44 
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Table 3-3. Conditional and Nested Logit Models: Mackerel and Small Game 
 Conditional Logit Nested Logit 
Variable Coeff. t-stat Coeff. t-stat 
Travcost -0.04 -37.93 -0.04 -32.53 
Small game 0.12 4.36 0.14 4.46 
King mackerel 0.78 2.47 1.05 2.97 
Spanish mackerel -0.40 -4.57 -0.34 -3.67 
Ln(Sites) 0.66 14.65 0.66 14.66 
Inclusive value   0.89 17.27 
Choices 104 104 
Cases 1562 1562 
Log-Likelihood -4062 -4060 
Likelihood Ratio 6052 6055 

  

Table 3-4. Willingness-to-Pay for One Additional Fish Caught and Kept: Mackerel 
and Small Game 
 Conditional Logit 
 Small Game King Mackerel Spanish Mackerel 
Lower 95% 1.71 2.68 -14.20 
Mean 3.08 19.12 -9.87 
Upper 95% 4.44 34.52 -5.54 
 Nested Logit 
 Small Game King Mackerel Spanish Mackerel 
Lower 95% 1.83 9.21 -13.15 
Mean 3.32 25.37 -8.29 
Upper 95% 4.80 41.09 -3.62 
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 Table 3-5. Conditional and Nested Logit Models: Red Drum and Seatrout 
 Conditional Logit Nested Logit 
Variable Coeff. t-stat Coeff. t-stat 
Travcost -0.04 -67.63 -0.04 -67.48 
Red drum 0.45 6.94 0.45 6.16 
Seatrout 0.28 13.66 0.32 12.85 
Ln(Sites) 0.55 19.75 0.55 19.63 
Inclusive value   0.57 6.10 
Choices 110 110 
Cases 4353 4353 
Log-Likelihood -12,468 -12,460 
Likelihood Ratio  15,986 16,002 

  

Table 3-6. Willingness-to-Pay for One Additional Fish Caught 
and Kept: Red Drum and Seatrout 
 Conditional Logit 
 Red Drum Spotted Seatrout 
Lower 95% 8.95 6.74 
Mean 12.60 7.90 
Upper 95% 16.36 9.04 
 Nested Logit 
 Red Drum Spotted Seatrout 
Lower 95% 8.51 7.38 
Mean 12.43 8.84 
Upper 95% 16.18 10.28 
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Table 3-7. Conditional and Nested Logit Models: Snapper-Grouper 
 Conditional Logit Nested Logit 
 Coeff. t-stat Coeff. t-stat 
Travcost -0.04 -29.91 -0.10 -26.91 
Snapper 0.89 10.21 0.83 8.71 
Grouper 3.27 27.41 3.11 15.83 
Red snapper 4.43 21.76 3.82 13.93 
Ln(Sites) 0.98 17.02 0.72 11.76 
Inclusive value   0.14 14.79 
Choices 71 71 
Cases 1086 1086 
Log-Likelihood -2377 -2028 
Likelihood Ratio 4568 5203 

 

Table 3-8. Willingness-to-Pay for One Additional Fish Caught and Kept: Snapper-
Grouper 
 Conditional Logit 
 Snapper Grouper Red Snapper 
Lower 95% 19.91 84.82 112.94 
Mean 24.68 90.67 123.14 
Upper 95% 29.55 96.28 133.99 
 Nested Logit 
 Snapper Grouper  Red Snapper 
Lower 95% 6.52 27.89 33.16 
Mean 8.53 31.91 39.18 
Upper 95% 10.60 35.95 45.25 
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4. Mixed Logit Models 

The conditional logit model of chapter 3 imposes potentially restrictive assumptions on 
the substitution pattern between fishing sites in the form of the well-known Independence 
from Irrelevant Alternatives assumption (IIA).  Intuitively, imposing IIA on the choice 
patterns means that the researcher thinks that the relative probability of an angler 
choosing site A over site B is independent of the attributes of all other sites.  While not 
entirely unrealistic in the case of unrelated sites, many times some sites can be thought of 
as closely related groups.  This is often one motivation for the use of the nested logit 
model wherein sets of ‘similar’ sites are grouped into nests. Within each nest, IIA still 
holds, but across nests, the strict substitution patterns implied by IIA are relaxed, thereby 
reducing one potential source of researcher induced bias. 

While encouraging, the nested logit model still requires the researcher to specify the 
nesting structure of the choices.  It is the researcher’s responsibility to specify mutually 
exclusive groups of sites for each nest.  At times this is intuitive.  For example, distinct 
geographic division may make the nests obvious.  But at other times, the nesting structure 
of the sites is not as straight forward.  Mis-specified nests can lead to biased parameter 
estimates and biased welfare measures. 

Further, both the conditional and nested logit models assume that angler preferences are 
homogeneous.  That is, the marginal utility of a one unit change in any of the site 
attributes is the same for all individuals sampled.  The additional utility gained from a $1 
decrease in travel cost to a site is the same regardless of the other characteristics of the 
angler.  A wealthy angler and a poor angler both benefit equally from a one fish increase 
in the targeted catch rate.  A well-specified model will allow for preference heterogeneity 
across anglers and for flexible substitution patterns between sites. 

As it turns out, a relatively new addition to the applied economics toolbox addresses both 
concerns with the conditional logit.  The mixed logit (also called the random parameter 
logit) allows for more flexibility in the substitution pattern between alternatives and 
allows for preference heterogeneity across individuals. In what follows, we apply some of 
the simpler forms of the mixed logit to the four species (group) choice models described 
in previous chapters.   

We focus on the simpler forms of the models for one primary reason: They are the most 
common and readily available models in existing statistical software packages.  
Understanding the impacts of making generalizations in these simpler models will inform 
later research using more computationally difficult techniques.  With that said, we should 
not mistake availability in existing packages with computational simplicity.  Advances in 
computing power over the last decade have made computationally intense models 
estimable without specific programming skills.  Nevertheless, the models described in 
this chapter require significant computing power and time—for example, the simplest of 
the RPL models reported below takes over 10 minutes to estimate using a high powered 
desktop computer, with some taking close to an hour.  Comparing that to the 3-4 seconds 
of CPU time it takes the same computer to estimate the conditional logit models in 
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chapter 3 gives an idea of the computational intensity of these readily available 
techniques. 

The Basic Mixed Logit Model 

We will use equations (3-1), (3-2) and (3-3) as the point of departure for the mixed logit.  
Recall that in the standard conditional logit model, the individual indirect utility function 
for site i is expressed as the sum of a deterministic indirect utility component and a 
random error term:   

(4-1) iiiii qcyvu ε+−= ),(  

where u is the individual indirect utility function, v is the nonstochastic portion of the 
utility function, y is the per-trip recreation budget, c is the trip cost, q is a vector of site 
qualities, ε is the error term, and i is a member of s recreation sites, s = 1, … , i , … J. 
The random utility model assumes that the individual chooses the site that gives the 
highest utility 

(4-2) )   Pr( isvv ssiii ≠∀+>+= εεπ  

where π is the probability that site i is chosen. If the error terms are independent and 
identically distributed extreme value variates then the conditional logit site selection 
model results 
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Typically, the deterministic indirect utility component for individual j and site i is 
assumed to be linear in a vector of individual and alternative specific variables: 

(4-4)  βihi xv =  

Where the vector ihx  may contain variables that vary by alternative only (e.g. catch rates) 
or vary by alternative and individual (e.g. travel cost), but does not contain variables that 
vary only by individual.  Algebraically, individual specific variables drop out of equation 
(4-3) unless they are interacted with alternative specific dummy variables—a level of 
complication we have chosen to avoid for the purposes of this report.   

For the conditional (and nested) logit models, the parameter vector β  is assumed to be 
constant across individuals.  However, as noted in the introduction to this chapter, 
assuming a constant parameter vector implies that we as researchers believe that all 
individuals receive the same change in utility as a result of a change in one of the 
independent variables.  However, it is plausible that people are different with regard to 
their preferences for travel costs and catch rates.  Imposing preference homogeneity may 
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result in a misspecified utility function and inaccurate estimates of the value of changes 
in the independent variables.  At the very least, it is an attractive option to be able to 
allow for preference heterogeneity in the estimation of the model and then statistically 
test for preference homogeneity.   

To allow for preference heterogeneity, we will assume that individual angler preferences 
randomly vary according to a prespecified population distribution such that: 

(4-5) ihih ηββ +=
~

 

where 
~
β  is an unknown, but constant locational parameter for preferences, and η  is an 

individual and alternative specific random error component for preferences that is 
independently and (not necessarily identically) distributed across alternatives and 
identically (but not necessarily independently) distributed across individuals.  

Substituting 4-5 and 4-4 into 4-3 gives a new conditional expression for the choice 
probability for a specific individual: 

(4-6) 
jh

ih

e

e
J
s

ikih
ηβ

ηβ

ηπ
+

=

+

∑
= ~

~

1

 

The choice probability in 4-6 is conditional on a specific value or realization of the 
preference error term, ikη .  However, to the researcher, the most we can know, or 
assume, is the form of the distribution for ikη  up to an unknown parameter vector γ .  
Assuming that density function is ( )γηf , the probability in (4-6) must be integrated over 
all possible values of ikη  to eliminate the conditioning: 
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Ideally, the integration problem in (4-7) would be such that the probability has a closed 
form expression as a function of the unknown parameters β and γ.  Unfortunately this is 
not the case.  Closed form expressions for equation (4-7) do not exist for common 
distributions (normal, uniform, log normal) and as such, estimation of the parameters in 
(4-7) requires simulation of the integral.   

Without going into excruciating detail, and referring the reader to Train (2003) for 
details, the most common way to simulate the probability in equation (4-7) is to  
repeatedly draw from the multivariate distribution of ikη , calculating the integrand in (4-
7) at each draw and then averaging over the draws to find an estimate of ihπ  conditional 
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on β and γ.  Using maximum likelihood algorithms to search over the possible space of β 
and γ  (and simulating the probability vector for each possible value of β and γ) will yield 
simulated maximum likelihood estimates of the utility function and the preference 
heterogeneity parameters. 

Estimation Results 

In this section, we describe the results of two models on each species group. The two new 
models are mixed logits with a normally distributed travel cost parameter and with a 
uniformly distributed travel cost parameter.  

In the appendix to this chapter, we also report parameter estimates for mixed logit models 
with random travel cost and catch rate variables.  Because these fully mixed models 
proved difficult to estimate—convergence was difficult to achieve using standard 
software packages—and those that were estimated produced implausible results for 
several cases, it is our judgment that these models are not suitable for analysis. The 
results are presented in the appendix for completeness. Models were also attempted with 
log-normally distributed parameters but the fat upper tail of the log-normal distribution 
resulted in models for several species groups that would not converge. As a result we do 
not report the log-normal results here.8  

Table 4-1 provides the estimation results for the two mixed logit models plus the 
conditional logit on the Dolphin data. It is apparent that mixing is appropriate in 
comparison to the conditional logit estimates. The statistical significance of the standard 
deviation parameter in the normal mixing model (s) and the scale parameter in the 
uniform mixing model (s) implies that either model would be preferred in a statistical test 
relative to the conditional logit.   

The parameter signs are as expected with the travel cost parameter having a negative 
mean and catch rates having a positive effect on site choice probabilities. For the model 
with a normally distributed travel cost parameter, the mean of the travel cost parameter is 
-0.097 with a standard deviation of 0.137. The 2.5th and 97.5th percentiles are -0.209 and 
0.0069.   For the uniform model, the range of the distribution of the travel cost parameter 
is (-0.27, 0.004) with a mean of -0.133.   

Table 4-2 reports the parameter estimates for the mixed logits for the mackerel and small 
game model. The travel cost only mixing models provide estimates that coincide with 
expectations.  Higher travel costs negatively influence site choice and higher catch rates 
positively affect site choice—except for Spanish mackerel.  In contrast to the conditional 
logit, king mackerel catch rates are statistically insignificant in the random parameter 
models. Again, the model with catch rates randomized provided puzzling results.  Small 
game and king mackerel catch rates are insignificant, and the spanish mackerel mean 
parameter jumps by an order of magnitude.  The king mackerel catch rate becomes 
statistically significant in the uniformly mixed model, but the spread of the distribution is 
implausibly large. 
                                                 
8 Other parameter distributions could prove to be more successful. 
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The red drum and seatrout model parameter estimates tell a different story (Table 4-3).  
The travel cost only random parameter models are statistically different from the 
conditional logit, but the full mixed model (Appendix) is statistically indistinguishable 
from the travel cost only model indicating that mixing of the catch rate parameters is 
unwarranted. 

The red snapper returns to the pattern of the Mackerel and Dolphin groups with the travel 
cost only model providing plausible parameter estimates and statistically different results 
from the conditional logit (Table 4-4).  The fully mixed model (Appendix) again provides 
implausible parameter estimates. 

Willingness-to-Pay 
 
Tables 4-4 through 4-8 provide estimates of willingness-to-pay for one additional fish for 
each group.  Due to the uncertain nature of the results from the fully mixed model, we 
focus only on the results from the mixed logit model with only the travel cost parameter 
randomized.   
 
We report the confidence intervals around mean willingness-to-pay for all conditional 
logit models.  For the mixed logits, we report the willingness-to-pay for the mean TC 
parameter, as well as the willingness-to-pay for the individual who falls at the 5th and 95th 
percentile of the travel cost distribution. For these models, confidence intervals are 
reported only for the median of the distribution of WTP.   
 
With the dolphin data, willingness-to-pay estimates from the mixed logit models are 
significantly lower than the conditional logit model. Confidence intervals for all species 
are significantly different as well. With the king mackerel data, willingness-to-pay 
estimates from the mixed logit models are not significantly different, in general, from the 
conditional logit models or across species. This is likely due to the relative imprecision of 
the parameter estimates. With the red drum data we find results similar to those in the 
previous section of this report – no differences in willingness-to-pay. With the red 
snapper data, we find significant differences between the conditional logit and mixed 
logit models for groupers and red snapper (uniform distribution) and between the mixed 
logit models for each species. The normal distribution leads to greater willingness-to-pay 
values relative to the uniform mixing distribution.   
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Table 4-1. Mixed Logit Models: Dolphin and Big Game 
  Mixed Logit 
Variable   Normal Uniform 
Travel Cost B  -0.117* -0.155* 
   (0.007) (0.011) 
 s  0.075* -0.165* 
   (0.008) (0.013) 
Pr_big B  4.311* 4.524* 
   (0.504) (0.505) 
Pr_small B  0.428* 0.385* 
   (0.063) (0.061) 
Big game B  -0.051 0.142 
   (0.835) (0.834) 
Log(Sites)   -0.221* -0.230* 
   (0.057) (0.058) 
*Significant at 5% 
**Standard errors on parameter estimates in parentheses 
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Table 4-2. Mixed Logit Models: Mackerel and Small 
Game 
  Mixed Logit 
Variable   Normal Uniform 
Travel Cost B  -0.079* -0.106* 
   (0.003) (0.005) 
 s  -0.039* -0.105* 
   (0.003) (0.005) 
Small game B  0.072* 0.058* 
   (0.029) (0.029) 
King 
mackerel 

B  0.516 0.347 

   (0.338) (0.341) 
 s      
Spanish 
mackerel 

B  -0.469* -0.509* 

   (0.091) (0.091) 
Log(Sites)   0.629* 0.616* 
   (0.049) (0.051) 
*Significant at 5% 
**Standard errors on parameter estimates in parentheses 
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Table 4-3. Mixed Logit Models: Red Drum and Seatrout 
  Mixed Logit 
Variable   Normal Uniform 
Travel 
Cost 

B  -0.054* -0.067* 

   (0.001) (0.001) 
 s  0.026* 0.065* 
   (0.001) (0.002) 
Red drum B  0.647* 0.731* 
   (0.096) (0.098) 
Sea trout B  0.354* 0.382* 
   (0.031) (0.032) 
Log(Sites)    0.479*  0.445* 
   (0.030) (0.031) 

 
*Significant at 5% 
**Standard errors on parameter estimates in parentheses 
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Table 4-4. Mixed Logit Models: Snapper-Grouper 
 
   Mixed Logit 
Variable   Normal Uniform 
Travel Cost B  -0.040* -0.081* 
   (0.001) (0.004) 
 s  -0.010* 0.077* 
   (0.002) (0.007) 
Snapper B  0.881* 0.875* 
   (0.133) (0.145) 
Grouper B  3.017* 2.218* 
   (0.141) (0.183) 
Red Snapper B  4.594* 4.854* 
   (0.199) (0.199) 
Log(Sites)    0.914*  0.924* 
   (0.051) (0.053) 
*Significant at 5% 
**Standard errors on parameter estimates in parentheses
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Table 4-5. Willingness-to-Pay for one additional fish caught and kept: Dolphin and Big Game 
 
  Mixed Logit (Travel Cost Parameter Randomly Distributed) 
  Normal  Uniform  
  5th Percentile Mean 95th 

Percentile
5th 

Percentile 
Mean 95th 

Percentile 
Pr_big  $16.21 $36.86 $523.50 $12.28 $29.76 $471.04 
   (27, 47)   (22, 38)  
Pr_small  $10.35 $3.66 $339.91 -$4.77 $2.52 $187.72 
   (3, 5)   (2, 3)  
Big game  -$14.50 -$0.52 $329.50 -$7.62 $0.89 $217.31 
   (-15, 14)   (-10, 12)  
(95% Krinsky-Robb Confidence Intervals) 
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Table 4-6. Willingness-to-Pay for one additional fish caught and kept: Mackerel and Small 
Game 
 
  Mixed Logit (Travel Cost Parameter Randomly Distributed) 
  Normal  Uniform  
  5th 

Percentile 
Mean 95th 

Percentile
5th 

Percentile 
Mean 95th 

Percentile
Small game  $0.46 $0.92 $36.66 $0.29 $0.55 $5.03 
   (0, 2)   (-0, 1)  
King mackerel  $3.33 $6.57 $262.93 $1.74 $3.29 $30.31 
   (-2, 15)   (-3, 10)  
Spanish mackerel  -$3.02 -$5.96 -$238.54 -$2.55 -$4.83 -$44.47 
   (-89, -4)   (-7, -3)  
(95% Krinsky-Robb Confidence Intervals) 
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Table 4-7. Willingness-to-Pay for one additional fish caught and kept: Red Drum and Seatrout 
 
  Mixed Logit (Travel Cost Parameter Randomly Distributed) 
  Normal  Uniform  
  5th 

Percentile 
Mean 95th 

Percentile
5th 

Percentile 
Mean 95th 

Percentile
Red drum  $11.67 $11.95 $12.24 $5.83 $10.90 $84.13 
   (8, 16)   (8, 14)  

 $6.39 $6.54 $6.70 $3.04 $5.69 $43.92 Spotted 
Seatrout   (5, 8)   (5, 7)  
(95% Krinsky-Robb Confidence Intervals) 
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Table 4-8.  Willingness-to-Pay for one additional fish caught and kept: Snapper-Grouper 
  Mixed Logit (Travel Cost Parameter Randomly Distributed) 
  Normal  Uniform  
  5th Percentile Mean 95th 

Percentile 
5th 

Percentile 
Mean 95th 

Percentile 
  5th 50th 95th 5th 50th 95th 
Snapper $14.61 $21.96 $43.37 $5.79 $10.82 $74.51 
   (15, 29)   (7, 15)  
Grouper  $50.05 $74.95 $148.58 $14.68 $27.36 $188.94 
   (66, 85)   (22, 33)  
Red Snapper  $76.20 $114.28 $226.23 $32.13 $56.51 $413.46 
   (103, 127)   (50, 64)  

(95% Krinsky-Robb Confidence Intervals) 
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Appendix to Chapter 4 

The parameter estimates for the models with all travel cost and catch rate variables mixed 
are reported herein.  While the estimates for the travel cost parameter seem reasonable, 
the estimated distributions of the catch rate parameters are troubling.    

For example, in column 2 of table A4-1, the big game catch parameter is distributed 
normally with a mean of -15.342 and a standard deviation of 23.197.  The 2.5th and 97.5th 
percentiles are -60.79 and 30.11.  Using the mean travel cost parameter this would imply 
a 95% interval for willingness-to-pay for a one fish increase in catch of (-$533.24, $264).   

The problem is magnified if an individual in the tail of the TC distribution (small value) 
corresponds to either tail of the catch rate distribution.  Because the TC is in the 
denominator of the WTP expression, the 95% confidence interval will explode.  For 
example an individual in the travel cost distribution one standard deviation above the 
mean (TC parameter = -.052) would have a 95% WTP interval of (-$1,169.02, $578.94) 
for one additional fish.  This seems implausibly large.  The uniformly distributed results 
are similarly implausible.   

Although we will report parameter estimates for the models with random parameters for 
travel cost and catch rates here, it is our judgment that the results of these models should 
be viewed with caution.  As such, in the document, we focus our attention on the welfare 
estimates from the models that randomize the travel cost parameters only. 
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Table A4-1. Fully Mixed Model: Dolphin and Big Game

  Normal Uniform 
  B~N(B,s) B~U(B-s,B+s) 

Travel Cost B -0.114 -0.146 
  (0.009) (0.010) 
 s 0.062 -0.149 
  (0.005) (0.012) 
Pr_big B 4.226 5.580 
  (1.079) (1.186) 
 s 6.227 -12.507 
  (1.493) (2.330) 
Pr_small B 3.082 2.516 
  (0.314) (0.317) 
 s -2.418 -3.097 
  (0.604) (0.722) 
Big game B -15.342 -13.444 
  (4.754) (5.405) 
 s -23.187 -32.828 
  (3.684) (7.577) 
Log(Sites)  -0.025 -0.021 
  (0.060) (0.062) 
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Table A4-2. Fully Mixed Model: Mackerel and Small Game

  Normal Uniform 
  B~N(B,s) B~U(B-s,B+s) 

Travel Cost B -0.085 -0.110 
  (0.003) (0.005) 
 s -0.042 -0.109 
  (0.002) (0.005) 
Small game B 0.045 0.030 
  (0.034) (0.034) 
 s 0.031 0.013 
  (0.352) (1.270) 
King mackerel B -1.012 -1.632 
  (0.662) (0.794) 
 s 5.173 -10.261 
  (1.530) (2.680) 
Spanish mackerel B -3.029 -3.362 
  (0.419) (0.699) 
 s -3.683 -6.301 
  (0.408) (1.093) 
Log(Sites)  0.583 0.596 
  (0.051) (0.053) 
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Table A4-3. Fully Mixed Model: Red Drum and Seatrout 

  Normal Uniform 
  B~N(B,s) B~U(B-s,B+s) 

Travel Cost B -0.054 -0.067 
  (0.001) (0.001) 
 s 0.026 0.065 
  (0.012) (0.002) 
Red drum B 0.646 0.731 
  (0.098) (0.100) 
 s 0.037 0.025 
  (0.790) (3.029) 
Sea trout B 0.354 0.382 
  (0.032) (0.032) 
 s 0.000 -0.002 
  (0.367) (1.201) 
Log(Sites)  0.479 0.445 
 (0.030) (0.031) 
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Table A4-4. Fully Mixed Model: Snapper-Grouper 
 

  Normal Uniform 
  B~N(B,s) B~U(B-s,B+s) 

Travel Cost B -0.047 -0.092 
  (0.002) (0.005) 
 s -0.017 0.089 
  (0.003) (0.008) 
Snapper B 0.869 0.883 
  (0.136) (0.150) 
 s 0.001 0.000 
  (4.152) (6.719) 
Grouper B 2.844 2.189 
  (0.167) (0.183) 
 s -0.004 0.001 
  (1.257) (1.958) 
Red Snapper B 6.164 8.992 
  (0.684) (1.243) 
 s -2.962 -9.660 
  (0.694) (1.776) 
Log(Sites)  0.916 0.929 
  (0.053) (0.055) 
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5. Finite Mixture Model 
 
The finite mixture model allows the data to reveal the presence of angler heterogeneity.  
In much the same way that it is difficult to justify the assumption of parameter 
homogeneity, in these models heterogeneity is driven by the data and assumed to be 
related to socioeconomic factors that sort anglers into tiers.  However, this sorting is 
really a construct for motivating the model, since an angler with a set of socioeconomic 
characteristics will receive different probability weights for each tier than anglers with 
different characteristics.  Consequently, rather than assume completely random 
heterogeneity as in the Mixed Logit model, this model provides more structure to the 
form of heterogeneity. 
 
In the finite mixture site choice model, a vector of individual specific characteristics (Zi) 
is hypothesized to sort angler types into T tiers each having potentially different site 
choice preference as denoted by the preference parameters (βt) over site specific 
characteristics (Xk) where there are i ∈ I anglers, k ∈ K sites, and t ∈ T tiers. 
 
From the researchers’ perspective, neither tier membership nor site-specific indirect 
utility functions are fully observable.  Assuming that angler i is in tier t, the indirect 
utility of choosing site j is 
 
(5-1) V (Xij ,β

t | i ∈ t) = Xijβ
t + εijt         

 
Following standard practices in random utility models (assuming that εikt is distributed as 
i.i.d. GEV I), the probability of observing individual i choosing site j given membership 
in tier t can be written as 
 

(5-2) P( j | Xij ,β
t ,i ∈ t) = eX ijβ

t

e
Xikβ

t

k∈K
∑

.    

 
Tier membership is also unknown to the researcher. Consequently, we specify the 
probability of tier membership given a vector of socio-demographic information (Zi).  We 
construct this probability using common logit probabilities as in the site choice models 
above: 
 

(5-3) P(i ∈ s | Zi ,δ
s ) = eZiδ

s

e
Ziδ

t

t∈T
∑

 

 
Notice that in this specification, the socio-demographic variables (Zi) do not vary over 
tiers, but rather the tier parameters (γt ) varies by tier.  
 
Equations (5-2) and (5-3) can be constructed for every individual i, tier t to calculate the 
overall probability of an observed choice Yi as  
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(5-4) Pi( j) = P(i ∈ t | Zi,δ

t )
t∈T
∑ × P( j | Xij ,β

t ,i ∈ t) 

 
In effect, using the tier probabilities in (5-3) the estimator mixes the tier-specific site 
choice models to estimate an overall probability of visiting site j. 9    
 
Implementation Issues 
 
Although the number of tiers depicted in equation (5-4) is endogenous, in practice it is 
necessary to pre-specify T and then utilize selection criteria to determine the optimal 
number of tiers. To conduct this selection process we utilized the corrected Akaike and 
Bayesian Information Criteria, denoted crAIC and BIC respectively (MacLachlan and 
Peel 2000). The selection criteria begins by specifying T=1 (a standard  multinomial logit 
model) and then increasing T until the  selection criteria indicate that the number of tiers 
is over-fitting the data.  The test statistics used to facilitate model selection are illustrated 
in Table 5.1.   
 
Although the crAIC and BIC selection criteria indicated that our estimation algorithm for 
dolphin and big game, mackerel and small game and snapper-grouper should exceed two, 
we elected to stop at two because we were unable to obtain reliable welfare estimates 
when T exceeded two.  This was similarly true for the red drum and seatrout model when 
T exceeded three.  This said, the crAIC and BIC criteria do illustrate the largest marginal 
increases in our statistical fit result when T=2.  Therefore, although our test statistics do 
suggest that we should increase the number of tiers, our results are capturing a majority 
of the heterogeneity present within the data set.   
 
It is also important to note that our models do not guarantee that we have found a global 
maximum for the likelihood function because of the mixing property implied by the 
behavioral heterogeneity distributions. As the number of tiers increases this becomes 
even more problematic because it increases the number of mixing distributions.  This 
phenomenon could be driving our results when the tiers exceed two for the dolphin and 
big game, mackerel and small game and snapper-grouper models and three for the red 
drum and seatrout model.  Given the complexity of our empirical model and the number 
of observations within the data set using alternative solutions methods (e.g., simulated 
annealing, genetic algorithms, randomization, etc.) would be computationally 
cumbersome.  These combined factors make us more confident in our decision to be 
more cautious with our selection of tiers. 
 
Welfare Measurement 
 
Welfare measures in a finite mixture model follow closely the formulation found in 

                                                 
9 In our implementation of the finite mixture model, we normalize on the first tier and estimate T-1 sets of 
tier-specific parameters.  Consequently, all reported finite mixture results are interpreted relative to tier 1.  
For example, suppose a positive coefficient is found on income for tier j: as income increases the 
respondent is more likely to be of type j than type 1. 
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standard conditional logit models.  First, consider one of the T tiers estimated in the 
model.  Since the choice probability in each tier follows from the standard conditional 
logit, we can write the willingness-to-pay for a policy change conditional on membership 
in tier t as  
 

(5-5) t
tc
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where X and Y are the pre and post site specific amenities vectors.  The signing 
convention above corresponds to an improvement in site characteristics when moving 
from X to Y. 
 
To extend the welfare measure across tiers, the tier probabilities must be incorporated in 
order to find the unconditional CV for each individual as follows 
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which is found by weighting each tier-specific tier CV with the corresponding probability 
of being in that tier.  In this report when computing confidence intervals for finite mixture 
models, we take draws from the multinomial parameter distribution which includes each 
vector of β’s and δ’s for each tier. 
 
Results  
 
We discuss our results for each of the four species models considered in this report. All 
of the models we estimate follow a similar structure.  The site specific variables (the 
vector X) are comprised of travel cost and the natural logarithm of the number of sites 
within the aggregate site, and a vector of catch-quality variables relevant for each 
species-specific model.  The socio-demographic variables defining the finite mixture 
probabilities (the vector Z) are comprised of years fished, boat ownership, and the 
number of days fished within the past two months.   
 
Dolphin and Big Game  
 
The dolphin and big game model results are reported in Tables 5-2 through 5-4. The 
travel cost parameters are negative and significant across both tiers. Angler site choice in 
both tiers is not correlated with counties with a high number of interview sites.  
Furthermore, those decision agents in tier 2 are more responsive to travel costs than tier 
1.  However, if you weight the travel cost coefficients by the mean probability of tier 
participation (see Table 5-3) the travel cost coefficient is -0.056, which is similar to that 
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estimated in our conditional logit model.  This parameter is also within the distributional 
range of our mixed logit estimates.  
 
The catch coefficients are all positive and statistically significant for tier 1, whereas only 
the small dolphin catch coefficient is positive for the second tier, big dolphin and big 
game are both negative and statistically significant.  This illustrates that the finite mixture 
model is sorting anglers based on their preferred targeting strategies.  
 
The final set of coefficients uses the individual-specific data to sort anglers into tier 1 and 
tier 2 in a probabilistic sense.  Relative to tier 1, an individual is more likely to be in tier 2 
if they own their own boat and have fished more in the past two months than those in tier 
1.  However, more experienced anglers, as measured by the number of years spent 
fishing, are more likely to be in tier 1 and then tier 2.10  Furthermore, the model places 
much more weight on an angler being within tier 1 (77%). 
 
The marginal value of catch for each species (point estimate by tier is reported in Table 
5-3) generate results consistent with our parameter estimates.  Individuals in tier 1 place a 
much higher marginal value on big dolphin and big game fish than tier 2, whereas tier 2 
places a higher marginal value on small dolphin.  In fact the marginal value of the 
dolphin catch coefficients in tier 1 are significantly higher than in any other model 
presented in this entire report.11   
 
Comparing these results to the other models estimated, only our estimates of the marginal 
value for small dolphin is consistent with the mixed logit estimates, whereas the other 
marginal values are consistently greater than our other estimates.  This suggests that 
caution should be utilized when interpreting these results because the model may not be 
well suited for a relatively small number of cases (this is the model with the second 
smallest number of observations, n=823, in a single species setting).  
 
In Table 5-4 we present the tier probability weighted willingness-to-pay values and 95% 
confidence intervals. The confidence intervals for big dolphin and big game willingness-
to-pay values overlap while small dolphin willingness-to-pay is significantly lower.  
 
Mackerel and Small Game 
 
The mackerel and small game results are illustrated in Tables 5-5 through 5-7. In both 
tiers sites further away are avoided and anglers seek sites with higher catch rates with the 
exception of king mackerel that possesses a negative yet statistically insignificant 
coefficient for both tiers.   
 
Comparing the parameter estimates to the conditional and mixed logit results illustrates 
that the travel cost parameters are very similar to the mixed logit parameter estimates 
which are substantially larger than the conditional logit estimates.  In addition, the lack of 

                                                 
10 Fishing experience could also be serving as a proxy for age and/or income. 
11 Please note that restricting our model to only 1 tier exactly reproduces the results for the basic logit 
models presented elsewhere in this report. 
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statistical significance in both tiers for king mackerel is consistent with the broad 
parameter distribution within the mixed logit models.  The most notable difference 
between the three models is the large negative coefficient for spanish mackerel in both 
the conditional logit and mixed logit models, whereas it is positive and statistically 
significant for tier 1. This suggests that the finite mixture model is differentiating anglers 
based on their targeting preferences. 
 
Focusing on the probability of tier participation variables, it is evident that anglers with 
fewer years of fishing experience and an increase in days fished in the last two months 
are more likely to be within the second tier. Combining this information with the tier-
specific parameter estimates illustrates that more experienced anglers value small game 
and Spanish mackerel catch. More experienced angler site choice is also positively 
correlated with counties with a larger number of available interview sites. 
 
The results in Table 5-6 show that the marginal value of catch is highest in tier 1, with 
anglers valuing only small game and Spanish mackerel.  The second tier is particularly 
puzzling since none of the species are valued positively by anglers.  However, given that 
each individual possesses a continuous probability of being in each tier the “true” 
representation of each angler is a mixture of the two tiers. Weighting the mean values by 
the mean tier participations (0.65 and 0.35 for tiers 1 and 2 respectively) generates a 
marginal value of 18.92, -25.61, and 13.06 for small game, Spanish mackerel and king 
mackerel respectively, which are consistent with the welfare estimates illustrated in Table 
5-7.  
 
Comparing the welfare estimates in Table 5-7 with the conditional and mixed logit 
estimates illustrate a number of different asymmetries.  The willingness-to-pay for small 
game is greater in the finite mixture model than either the conditional logit or mixed logit 
models. It is roughly six times the conditional and mixed logit estimates.  The welfare 
measures for king mackerel are negative whereas they are positive in the conditional and 
mixed logit models.  Finally, the welfare measures for Spanish mackerel are positive 
when they are negative in the conditional and mixed logit models. Therefore, the finite 
mixture model results indicate that anglers prefer Spanish mackerel over king mackerel, 
whereas the conditional and mixed logit models indicate the opposite. This result does 
suggest that caution should be used when utilizing these results for policy 
recommendations. 
 
Red Drum and Seatrout 
 
The red drum and seatrout model is the only model for which we were able to reliably 
estimate the tier specific parameters and welfare estimates beyond two tiers (Table 5-8).  
This is most likely due to the large sample size for this model (n=4353) relative to the 
other models estimated. In all tiers, sites with higher costs are avoided on average by 
anglers.  
 
The catch coefficients for the two species illustrate that all three tiers value red drum 
catch and that tiers 1 and 3 value sea trout catch as well. Comparing the catch coefficients 
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within each tier illustrates that all three tiers prefer red drum catch over seatrout, but tier 
2 possesses the largest difference across species. Combining these results illustrates that 
tier 2 represents those individuals that solely value drum and tier 3 represents those 
anglers who fish for drum and seatrout but prefer to fish in counties with a lower number 
of sites. Therefore, once again, the finite mixture results appear to be sorting anglers 
based on their species catch preferences. 
 
Looking at the parameters that determine tier participation it is evident that anglers who 
have fished a lot in the last two months are more likely to be in tier 2. Less experienced 
anglers are more likely to be in tier 3 relative to tier 1. In addition, all three tiers have a 
relatively high probability mass within the angler population.  Tier 3 (41%) is ranked the 
highest with tier 1 (38%) ranking second and tier 2 (21%) ranking third.   
 
Table 5-9 illustrates the tier-specific marginal value for each species.  Tier 1, the more 
experienced anglers, possesses the highest marginal value for drum and sea trout.  Tier 2 
possesses a slightly lower marginal value for drum but have a negative value for sea 
trout.  Finally tier 3, the more inexperienced segment, possesses positive marginal values 
for both species, but the values are less than one-forth of those for tier 1.  Furthermore, 
the estimates for tier 3 are the closest to the marginal valuation estimates for the 
conditional and mixed logit models than the other two tiers.  Given that this tier possesses 
the highest distributional mass suggests that this group is driving the mean welfare 
estimates under the conditional and mixed logit models. 
 
Table 5-10 illustrates the predicted population welfare estimates which are all larger than 
those observed in the conditional and mixed logit models, but closer than those observed 
for the dolphin and mackerel fisheries.  The marginal valuations for drum are roughly 
72% greater than in the conditional logit model and between 80% and 100% greater than 
those within the mixed logit models.  However, the finite mixture estimates are within the 
range estimated under the uniform mixing distribution mixed logit model. Marginal value 
estimates for sea trout are roughly 48% greater than the conditional logit model estimates 
and between 79% and 105% greater than the mixed logit estimates, but again within the 
welfare distribution estimated under the uniform mixing distribution.  
 
Snapper-Grouper 
 
The results for the snapper-grouper model are illustrated in Tables 5-11 through 5-13.  
Both tiers illustrate that anglers chose closer, less costly sites.  The first tier anglers are 
more likely to fish in counties with more interview sites, whereas second tier anglers tend 
to fish in counties with fewer sites.  Whereas with the earlier results we were able to 
readily identify whether or not the segmentation was determined by the tier’s species 
preferences, this is not the case with the snapper-grouper model.  Both tiers possess 
positive and statistically significant coefficients for grouper, snapper and red snapper.  
Although, the coefficients for grouper and red snapper are larger in tier 2, the larger 
negative coefficient on travel costs does not allow us to readily interpret these 
coefficients.  We need to turn to the tier-specific marginal valuations, discussed shortly, 
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for the different species to determine whether or not the finite mixture model is sorting by 
targeting strategy.  
 
The tier participation probabilities illustrate that anglers who have fished a lot in the past 
two months and who own a boat are more likely to be in tier 2, whereas those with more 
experience are likely to be in tier 1. Table 5-12 illustrates the tier-specific marginal 
valuations for the different species.  These results illustrate that the tier 1 anglers possess 
much higher marginal value for all three species.  This is consistent with our earlier tier-
specific welfare estimates where the more experienced anglers have larger marginal 
valuation for the species than less experienced anglers.  Therefore, the finite mixture 
model is yet again sorting anglers according to their species valuation preferences 
because those anglers in tier 1 possess a higher marginal value for all three species. 
 
The tier-weighted species-specific welfare estimates indicate that the average marginal 
value for grouper is 97.59, 9.44 for snapper and 102.86 for red snapper. The estimated 
marginal values for grouper and red snapper are consistent with those observed in the 
conditional and mixed logit models, whereas the snapper estimates are over 50% lower 
than those observed in the conditional and mixed logit models.  Although the tier-specific 
estimates for tier 1 are lower than the conditional and mixed logit estimates for snapper, 
the largest decrease in value is driven by the low estimates for tier 2, combined with the 
high probability mass it possesses (40%).  
 
Discussion 
 
Because the estimated parameters are driven by the data, it is often difficult to provide 
intuitive explanations for differences across tiers (e.g. why one group is more travel cost 
sensitive than another) except to say that unlike simpler (and perhaps less realistic) 
models that do not allow for differences across anglers (e.g. the conditional logit model), 
this allows for different utility functions across anglers and does so in a way that is 
traceable back to socioeconomic factors. 
 
Using finite mixture models to allow for angler heterogeneity has been a useful exercise.  
To sum up our overall conclusions, we tend to find at least two tiers with one valuing 
catch more highly and more willing to incur higher travel costs to attain these higher 
quality sites.  This group, on average across models, tends to be more experienced and 
fish less avidly than other anglers.  In all of our models, the probability mass assigned to 
this group is always non-trivial.  The identification of this segment of anglers- and to see 
how the size of this segment varies over particular species- may be of great interest to 
fisheries managers.  The finite mixture model allows for this kind of identification and is 
the only such model presented in this report capable of doing so.   
 
We did encounter issues with our implementation of the finite mixture models.  In 
particular, we found that a large number of observations are required in order to identify 
meaningful models with more than 2 tiers (the red drum and seatrout model with 4353 
observations was the only model with more than two tiers).  Consequently, the use of 
finite mixture models for small numbers of observations may or may not be fruitful and 
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may vary on a case-by-case basis.  The dolphin and big game model seems to be missing 
the mark by a very wide margin, yet the snapper-grouper model with only a few more 
observations performs very well relative to the standard logit and mixed logit models.
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Table 5-1. Bayesian (BIC) and corrected Akaike Information Criteria (AIC) 
Models Dolphin Drum Grouper Mackerel 
Tiers BIC crAIC BIC crAIC BIC crAIC BIC crAIC 
T=1 -1795 -3613 -24902 -24926 -4719 -4744 -8087 -8114 
T=2 -1373 -2812 -23044 -23121 -3709 -3778 -7073 -7148 
T=3 -1318 -2744 -22883 -23011 -3614 -3728 -6889 -7012 
T=4 -1265 -2681 -22619 -22797 -3343 -3501 -6810 -6980 

 
Table 5-2. Finite Mixture Model: Dolphin and Big Game 
Tier Variable Coeff. Std. err. t-statistic p-value 
1 Travcost -.0110 .0016 -6.6844 0 
 Log(sites) -.2251 .1073 -2.099 .0361 
 Pr_big 5.938 .9593 6.190 0 
 Pr_small .2949 .0723 4.0782 0 
 Big game 2.9821 1.0135 2.9423 .0034 
2 Travcost -.2022 .0176 -11.4726 0 
 Log(sites) -.0668 .0775 -.8610 .3895 
 Pr_big -0.6886 .8947 -.7696 .4417 
 Pr_small 2.9917 .4834 6.1887 0 
 Big game -9.3887 2.3019 -4.0787 0 
tier=2 Constant .3609 .2457 -1.4687 .1423 
 Ffdays2 24.5601 3.8818 6.3269 0 
 Yearfish -1.7799 .8121 -2.1918 .0287 
 Boatown 1.0896 .2371 4.5966 0 
 Log Likelihood: -1308.13   

 
Table 5-3. Tier-Specific Willingness-to-Pay for one additional fish caught and kept: 
Dolphin and Big Game 
 Tier 1 Tier 2 
Pr_big 539.82 -3.41 
Pr_small 26.81 14.80 
Big game 271.10 -46.43 
Probability 0.7656 0.2344 

 
Table 5-4. Willingness-to-Pay for one additional fish caught and kept: Dolphin and 
Big Game  
 Pr_big Pr_small Big Game 
Lower 95% 272.08 13.36 55.22 
Mean 411.75 23.44 202.27 
Upper 95% 605.84 34.57 339.50 
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Table 5-5. Finite Mixture Model: Mackerel and Small Game 
Tiers Variable Coeff. std. error t-statistic p-value 
1 Travcost -.0161 .0010 -16.4607 0 
 Log(sites) 0.9700 0.0870 11.1440 0 
 Small game 0.4735 0.0676 7.0039 0 
 King 

mackerel -0.6093 0.7494 -0.8131 0.4163 
 Spanish 

mackerel 0.3960 0.1213 3.2657 0.0011 
2 Travcost -.1994 .0130 -15.3814 0 
 Log(sites) -0.0193 0.0892 -0.2163 0.8288 
 Small game -0.1779 .0559 -3.1798 .0015 
 King 

mackerel -0.4964 .5014 -.9900 .3223 
 Spanish 

mackerel -1.7410 .2450 -7.1065 0 
Tier=2 Constant .9496 .2052 4.6273 0 
 Ffdays2 2.6898 .8075 3.3310 .0009 
 Yearfish -1.8621 .5208 -3.5752 .0004 
 Boatown -.1532 .1864 -.8215 .4115 
 Log Likelihood: -3587.98  

 
Table 5-6. Tier-Specific Willingness-to-Pay for one additional fish caught and kept: 
Mackerel and Small Game 
 Tier 1 Tier 2 
Small game 29.41 -0.89 
King mackerel -37.84 -2.49 
Spanish mackerel 24.60 -8.73 
Probability 0.6539 0.3461 

 
Table 5-7. Willingness-to-Pay for one additional fish caught and kept: Mackerel and 
Small Game 
 Small game King mackerel Spanish mackerel 
Lower 95% 13.24 -83.00 3.50 
Mean 18.84 -22.68 13.38 
Upper 95% 24.57 40.67 24.03 
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Table 5-8. Finite Mixture Model: Red Drum and Seatrout 
Tier Variable Coeff. Std. Error t-statistic p-value 
1 Travcost -.0143 .0006 -25.7355 0 
 Log(sites) .3834 .0532 7.2074 0 
 Red drum .4609 .1007 4.5785 0 
 Seatrout .3598 .0286 12.5611 0 
2 Travcost -.0773 .0060 -12.9921 0 
 Log(sites) 1.5877 .1549 10.2467 0 
 Red drum 2.3884 .2493 9.5784 0 
 Seatrout -.3194 .2858 -1.1177 .2638 
3 Travcost -.2142 .0140 -15.3267 0 
 Log(sites) -.4404 .1085 -4.0590 .0001 
 Red drum 1.6619 .3530 4.7086 0 
 Seatrout 1.5383 .1223 12.5796 0 
Tier=2 Constant -.5938 .2172 -2.7336 .0063 
 Ffdays2 2.0561 .9991 2.0580 .0396 
 Yearfish -.9029 .5660 -1.5951 .1108 
 Boat own .0217 .1993 .1090 .9132 
Tier=3 Constant .0024 .1294 .0184 .9853 
 Ffdays2 1.7822 .5984 2.9781 .0029 
 Yearfish -.5295 .3079 -1.7194 .0856 
 Boatown .0540 .1198 .4511 .6519 
 Log Likelihood: -11525.53   

 
Table 5-9. Tier-Specific Willingness-to-Pay for one additional fish caught and kept: 
Red Drum and Seatrout 
 Tier 1 Tier 2 Tier 3 
Red drum 32.23 30.90 7.76 
Sea trout 25.16 -4.13 7.18 
Probability 0.3837 0.2068 0.4095 

 
Table 5-10. Willingness-to-Pay for one additional fish caught and kept: Red Drum 
and Seatrout 
 Red Drum Seatrout 
Lower 95% 16.45 9.51 
Mean 21.75 11.70 
Upper 95% 27.22 13.75 
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Table 5-11. Finite Mixture Model: Snapper-Grouper 
Tier Variable Coeff. Std. Error t-statistic p-value 
1 Travcost -0.0165 0.0011 -15.5681 0 
 Log(sites) 1.6535 0.1106 14.9553 0 
 Grouper 2.2465 0.1196 18.7784 0 
 Snapper  0.2236 0.0507 4.4132 0 
 Red snapper 2.7083 0.1850 14.6362 0 
2 Travcost -0.3421 .0302 -11.3290 0 
 Log(sites) -.2546 .1500 -1.6975 0.0899 
 Grouper 13.9047 1.0657 13.0479 0 
 Snapper .9543 .1610 5.9283 0 
 Red snapper  3.7111 .4903 7.5692 0 
Tier=2 Constant -.5392 0.1805 -2.9877 0.0029 
 Ffdays2 2.0512 1.1476 1.7875 0.0741 
 Boatown 1.3663 .1830 7.4645 0 
 Experience -0.2608 0.6028 -0.4326 0.6654 
 Log Likelihood: -1903.3998  

 
Table 5-12. Tier-Specific Willingness-to-Pay for one additional fish caught and kept: 
Snapper-Grouper 
 Tier 1 Tier 2 
Grouper 136.15 40.65 
Snapper 13.55 2.79 
Red Snapper 164.14 10.85 
Probability 0.5996 0.4004 

 
Table 5-13. Willingness-to-Pay for one additional fish caught and kept: Snapper-
Grouper 
 Grouper Snapper Red Snapper 
Lower 95% 88.14 5.82 87.43 
Mean 97.59 9.44 102.86 
Upper 95% 109.57 13.29 121.07 
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6. Conclusions 

This research estimates conditional, nested, mixed logit and finite mixture models and 
outlines the advantages of each model using the conditional logit as the consistent 
reference point using the MRFSS data. Mixed logit and finite mixture models are 
increasingly utilized in the environmental economics literature because they facilitate the 
investigation of the preference heterogeneity within the subject pool. To date, these 
methods are rarely compared to the other, however they are both usually compared to the 
standard conditional logit model that provides their foundation.  

Single-Species Modeling 

We determine that the MRFSS data will support only a few species-specific recreation 
demand models. We find sufficient evidence to suggest that single species target models 
are an important consideration when modeling marine recreational fishing demand. The 
95% confidence intervals for single species can be non-overlapping with related species 
aggregates. Including the catch of important recreational species in species aggregates 
can lead to biased estimates of willingness-to-pay for catch for these species.  

Willingness-to-pay Comparisons 

The results from preference heterogeneity models illustrate that welfare distributions can 
be highly heterogeneous and in some cases span across both the negative and positive 
realm, even when the conditional logit estimates generate a mean estimate that is firmly 
footed in the positive realm. This is due to the high degree of preference heterogeneity in 
the MRFSS data that may call into question the validity of the willingness-to-pay 
estimates from the traditional conditional and nested logit models. 

In order to summarize our results, the willingness-to-pay values for one additional fish 
from each of the four models are presented in Table 6-1. We present the midpoint 
estimate from the mixed logit and finite mixture models. One criterion for choosing 
appropriate welfare measures is convergent validity. Willingness-to-pay estimates are 
convergent valid if they are statistically equivalent. Convergent validity lends confidence 
to the use of the nonmarket valuation estimates in policy analysis.  

The willingness-to-pay values for big dolphin have a wide range with a low of $40 and a 
high of $412. Confidence intervals on willingness-to-pay from the conditional logit and 
nested logit models indicate that these estimates are convergent valid (i.e., confidence 
intervals overlap). Willingness-to-pay from the mixed logit model is significantly lower 
than willingness-to-pay from the conditional and nested logit models. On the other hand, 
willingness-to-pay from the finite mixture model is significantly higher than willingness-
to-pay from the conditional and nested logit models. A similar pattern of results is found 
for small dolphin and big game. The value of big game catch is not significantly different 
from zero in the mixed logit model. 
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The willingness-to-pay values for king mackerel have a much more narrow range relative 
to dolphin with all confidence intervals overlapping with each other. However, the 
preference heterogeneity models estimates are at the low end of the range and not 
significantly different from zero. The only estimate of the value of Spanish mackerel 
catch that is not negative and significantly different from zero is from the finite mixture 
model. The values of small game catch from the conditional logit, nested logit and mixed 
logit models are small and convergent valid. The value of small game catch from the 
finite mixture model is significantly larger than the others.  

In contrast to the preceding results, the willingness-to-pay values for red drum are very 
similar, ranging from $12 to $22, with overlapping confidence intervals. We conclude 
that each model is convergent valid and we have high confidence in the welfare measures 
generated from each. The seatrout results are similar with only the finite mixture model 
estimate having a non-overlapping confidence interval. 

Red snapper willingness-to-pay values range from $39 to $123 with the preference 
heterogeneity estimates within this range. Confidence intervals for the conditional logit, 
mixed logit and the finite mixture model all overlap. The willingness-to-pay for red 
snapper from the nested logit model is significantly lower than the others. The pattern of 
willingness-to-pay for grouper catch is similar to that of red snapper. Willingness-to-pay 
values for snappers converge for the (a) conditional logit and mixed logit model and (b) 
nested logit and finite mixture model. 

Overall Model Performance 

In Table 6-2 we present the root mean squared error (RMSE) of the predicted probability 
of site visitation across all sites for each of our models. The RMSE is a goodness of fit 
statistic, the lower the measure the better the predictive ability of the model.  

(6-1) K

SS
RMSE

K

i

a
i

p
i∑

=

−
= 1

2)(
 

 
where Si

p  is the predicted share averaged over the entire sample, Si
a  is the observed share 

of visits to site i, and K is the number of sites. 

Considering each species in turn, the preference heterogeneity models provide a much 
better fit for the dolphin data. In the mackerel and small game models the mixed logit 
model performs about as well as the conditional logit and nested logit models. The finite 
mixture model RMSE is about 7% lower than the others. Similar to the consistency of 
willingness-to-pay across red drum and seatrout models, the predictive ability of red 
drum and seatrout models is virtually indistinguishable. In the snapper-grouper models, 
the RMSE of the nested logit, mixed logit and the finite mixture models are 14%, 11% 
and 53% lower than that of the conditional logit models.  
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Discussion 

In 2 of our 4 models, our analysis does little to lead to definitive conclusions about 
preferred welfare estimates for policy analysis. Considering the dolphin and big game 
model, preference heterogeneity models generate (1) welfare estimates that differ by an 
order of magnitude and (2) improved predictive ability relative to traditional models. The 
finite mixture model is the best model for king mackerel in terms of predictive ability but 
generates a negative welfare measure. In the other 2 models our results provide evidence 
that leads to defensible conclusions. We determine that each of our red drum and seatrout 
models are convergent valid. In the case of red snapper, the finite mixture model 
outperforms the others and the willingness-to-pay for red snapper is convergent valid 
with that from the mixed logit and the conditional logit. In both cases we note, however, 
that the limitations of the conditional logit model do not seem to detract from its 
performance with these data. 

The finite mixture model exploits the preference heterogeneity to determine different 
types of anglers within the MRFSS data set. Although, the finite mixture model does not 
estimate parameter distributions in many models it was able to unravel some of the latent 
heterogeneity by partitioning anglers into types that depend on their species targeting 
preferences and their levels of experience within the fishery. Although this facilitates the 
type classification, it generated welfare estimates that are some times strikingly different 
than the conditional, nested and mixed logit models. This suggests that caution should be 
used when electing to use welfare estimates from finite mixture models to guide policy 
because different specifications may generate a substantially diverse profile of welfare 
measures. 

Combined, our results indicate that preference heterogeneity is significant within the 
MRFSS data and that the welfare estimates empirically generated are highly dependent 
on the model specification utilized.  Given that the nested logit, mixed logit and finite 
mixture model estimates are built on the foundation of the conditional logit model and are 
statistically superior, it may be necessary to combine the welfare estimates to determine 
the entire range of possible welfare estimates that may exist within this heterogeneous 
population. For example, consider the recreational vs. commercial fishing allocation issue 
for red snapper. The recreational value per catch should be conducted with the best 
estimate available, in the $102-$123 range. If the results indicate that more catch should 
be allocated to the recreational sector then the lower nested logit value, $39, could be 
used in sensitivity analysis.  

Future Research 

This research is the first to estimate the complete gamut of preference heterogeneity 
models utilizing the same data set within the marine recreational fishing literature. Our 
results are not sufficient to suggest that preference heterogeneity models are preferred to 
the more traditional conditional logit and nested logit models. Future research should 
continue with the MRFSS and other recreational fishing data to develop empirical 
methodologies so that more complete and reliable welfare profiles can be estimated.  
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Since there are a large number of policy simulations that can be run with the estimated 
models we focus our attention on estimating the marginal value of catch and keep rates. 
Each of the logit models that we present are capable of supporting a range of other policy 
analyses, for example, spatial and targeting changes in response to a situation where 
catch of the single species (i.e., dolphin, red snapper) is limited to zero or if fishing areas 
are closed.12  

Revealed preference models of recreation behavior rely on observable variation in real-
world conditions in order to quantify value for environmental amenities.  In a recreation 
demand context, spatial variation in site-specific amenities is exploited for uncovering 
these tradeoffs.  Unfortunately, there is very little to no spatial variation in management 
measures for the species considered here.  By design, managers typically apply blanket 
size, bag, and seasons across counties and states in order to avoid confusion among 
anglers and debates about fairness. 

Beyond the need for spatial variation in recreational management instruments, there are 
two additional issues that must be carefully considered in order to successfully capture 
regulation in recreation demand models of recreational fishing. The first issue concerns 
what fishermen value.  Do fishermen value management measures directly or only as it 
pertains to their expectation of the fish they might take home at the end of a days fishing?  
This important question has received too little attention.  While there are examples of 
stated preference studies that incorporate regulation directly into the indirect utility 
function, a more realistic approach is perhaps something along the lines of McConnell, 
Strand and Blake-Hedges (1995).  This approach relies on the ability to identify expected 
catch models for each species in question and is useful for an analysis of bag limit 
changes only. 

The second issue is the relative value of harvest versus release fishing.  One behavioral 
response to more stringent management is to simply continue fishing but release 
whatever is caught over the limit.  To capture preferences over both caught/kept and 
caught/released fish, the econometric model requires the ability to estimate the relative 
value of each of these types of fishing, and along with it, it is necessary to have spatial 
variation in catch versus catch and release rates.  This further stratifies the MRFSS data 
and is simply too nuanced to be captured for the models presented here. 

This research also raises questions about older recreation demand analyses with the 
MRFSS that are currently being used for policy analysis by the NMFS (Hicks, Steinbeck, 
Gautam and Thunberg, 1999; Haab, Whitehead and McConnell, 2001). Given the 
uncertainty of our conclusions, these older estimates must be considered policy relevant 
still. However, these models are dated. When they were developed, limited computing 
power constrained estimation to 2 stage limited information maximum likelihood nested 
logit models. With improved computing power, full information maximum likelihood 
nested logit models are possible, even with the large number of alternatives in the 
previous models. We recommend that full information maximum likelihood nested logit 
                                                 
12 These analyses can be conducted with modifications to the computer programs available at the project 
website at http://econ.appstate.edu/marfin. 
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models with choice structures more consistent with past analyses be estimated and 
compared to determine the accuracy of the 1999 and 2001 reports.  
 
All willingness-to-pay estimates are conditional on decisions made when developing the 
data. Expanding the data to include other fishing sites is likely to reduce willingness-to-
pay. Only targeted species are included in each model. Expanding the data to include 
trips that do not target species or trips that catch the species included here by anglers not 
targeting those species is likely to reduce willingness-to-pay. Future research should 
examine the sensitivity of our results to these data management decisions. 
 
Finally, our analysis is somewhat constrained by our choice of the 2000 MRFSS 
southeast add-on data. We chose the 2000 data over the 1997 add-on data due to its 
increased sample size and increased ability to support single-species models. However, 
even with the 2000 add-on we find that only four single-species models are supported. 
Future research should consider using the MRFSS data without the additional features of 
the add-on surveys to consider single-species models. MRFSS data without add-ons can 
support recreation demand analysis if simplifying assumptions are made about the 
opportunity cost of time and single-day trips. Zip code level income can be used instead 
of elicited income and reasonable single-day round-trip mileage cutoffs can be used 
instead of elicitations of single-day trips. These models can be compared to add-on data 
models to determine the tradeoff between the bias of simplifying assumptions and the 
efficiency of increased sample size.  
 
Preference heterogeneity models may be more successfully implemented with the 1997 
MRFSS add-on data that includes information on the number of mode and site-specific 
trips made by each angler in a two month wave (Haab, Whitehead and McConnell, 1997). 
Future research should use these data in preference heterogeneity models in comparison 
to the more traditional conditional logit and nested logit models. In this case the single-
species target constraint must be dropped in order to have sufficiently large samples for 
analysis.   
 
There are a large number of other issues that could be considered. We focused our 
analysis on the most basic specifications of utility functions. Extensions to the utility 
function that could be pursued are inclusion of alternative specific constants. Extensions 
that could be pursued that directly address preference heterogeneity besides the mixed 
logit and finite mixture models include interacting socioeconomic variables with 
alternative specific constants and choice attributes. We also adopt naïve choice sets based 
on convenience. It might be more appropriate to develop choice sets based on feasibile 
distance travelled or other criteria. Other results may be sensitive to any of these issues.  
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Table 6-1. Willingness-to-pay for One Additional Fish Caught and Kept 

 
Conditional 

Logit 
Nested  
Logit 

Mixed 
Logita 

Finite Mixture 
Modelb 

Dolphin (> 20”) 
$123 

(100, 147) 
$103 

(81, 126) 
$37 

(27, 48) 
$412 

(272, 606) 

Dolphin (< 20”) 
$17 

(14, 19) 
$11 

(8, 14) 
$4 

(3, 5) 
$23 

(13, 35) 

Big Game 
$40 

(2, 115) 
$81 

(18, 142) 
-0.50 

(-14, 13) 
$202 

(55, 340) 

King mackerel 
$19 

(3, 35) 
$25 

(9, 41) 
$6 

(-3, 15) 
-$23 

(-83, 41) 

Spanish Mackerel 
-$10 

(-14, -6) 
-$8 

(-13, -4) 
-$6 

(-8, -4) 
$13 

(4, 24) 

Small Game 
$3 

(2, 4) 
$3 

(2, 5) 
$1 

(0, 2) 
$19 

(13, 25) 

Red drum 
$13 

(9, 16) 
$12 

(9, 16) 
$12 

(8, 16) 
$22 

(16, 27) 

Seatrout 
$8 

(7, 9) 
$9 

(7, 10) 
$7 

(5, 8) 
$12 

(10, 14) 

Red snapper 
$123 

(113, 134) 
$39 

(33, 45) 
$114 

(103, 127) 
$102 

(87, 121) 

Grouper 
$91 

(85, 96) 
$32 

(28, 36) 
$75 

(66, 85) 
$98 

(88, 110) 

Snapper 
$25 

(20, 30) 
$9 

(7, 11) 
$22 

(15, 29) 
$9 

(6, 13) 
aNormal Distribution 
bMean WTP 
cPredicted catch longer than 20” 
Note: 95% confidence interval in parentheses. 

 

Table 6-2. Root Mean Square Error 

 
Conditional 

Logit 
Nested  
Logit 

Mixed 
Logita 

Finite Mixture 
Model 

Dolphin and Big Gamed 0.0537 0.0508 0.0233 0.0188 
Mackerel and Small Game 0.0106 0.0106 0.0105 0.0098 
Red Drum and Seatrout 0.0088 0.0088 0.0087 0.0088 
Snapper-Grouper 0.0187 0.0160 0.0176 0.0134 
aNormal Distribution 
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