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Abstract. The single binary choice (SBC) question format, commonly used in contingent 
valuation studies and modeled as a hypothetical referendum, is considered incentive compatible 
when paired with a coercive payment vehicle and a consequential survey. Despite its dominance 
in the field, the SBC format yields limited information, which can result in imprecise and 
unreliable estimates of willingness to pay (WTP). This chapter explores the limitations of SBC 
using a meta-analysis dataset originally compiled by Lewis, Richardson, and Whitehead (2024) 
for nonparametric WTP estimation. We extend their work by analyzing parametric WTP 
estimates and comparing them with nonparametric Turnbull and adjusted Kriström estimates. 
Our results show that parametric WTP can differ significantly from the Turnbull nonparametric 
estimate, and that confidence intervals derived from parametric models are often wider than 
those from non-paramteric WTP estimates. In a meta-regression, we find that the inefficiency of 
SBC decreases with data quality. We illustrate the importance of these issues with a replication 
of directional split-sample tests from the meta-data. Compared to parametric WTP estimates, 
tests using Turnbull and adjusted Kriström estimates are more likely to detect statistically 
significant differences in WTP, underscoring the importance of robustness tests with alternative 
WTP estimates. 
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Introduction 

The contingent valuation method (CVM) is a stated preference approach to the valuation 

of public goods for benefit-cost and other types of policy analyses (Carson 2012).  CVM began 

with attempts to directly elicit consumer surplus with open-ended statements of value (Brown 

and Hammock 1973). Following the introduction of the dichotomous choice response format by 

Bishop and Heberlein (1979), SBC (SBC) contingent valuation questions became the preferred 

question format. SBC questions present a survey respondents with a single cost and yes/no 

answer categories in the context of a purchase of a product, a quasi-public good (e.g., a 

recreation trip) or support of a policy. In the case of public goods, the question format evolved 

has evolved to a for/against vote in the context of a policy referendum.  

A number of influential publications have led to dominance of the SBC question format 

in the CVM literature. Hanemann (1984) developed the indirect utility theory to support the use 

of SBC data. Cameron and James (1987) and Cameron (1988) developed the expenditure 

difference approach (now called “estimation in willingness to pay space” in the discrete choice 

experiment literature). Mitchell and Carson (1989) describe the advantages of framing the 

dichotomous choice question as a referendum. McConnell (1990) compared the theoretical 

properties of the indirect utility and expenditure difference approaches and Loomis and Park 

(1992) compared them empirically. The NOAA Panel (Arrow et al. 1993) endorse the 

referendum format for national resource damage assessment.1 Carson and Groves (2007) provide 

a theoretical base to claim that a consequential referendum question with a coercive payment 

 
1 Page 24 of the mimeo: “The above considerations suggest that a CV study based on the referendum scenario can 
produce more reliably conservative estimates of willingness to pay, and hence of compensation required in the 
aftermath of environmental impairment, provided that a concerted effort is made to motivate the respondents to 
take the study seriously, to inform them about the context and special circumstances of the spill or other accident, 
and to minimize any bias toward high or low answers originating from social pressure within the interview.” 
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vehicle is incentive compatible. Carson, Groves and List (2017) conduct an experimental test of 

the incentive compatibility of the SBC question with consequentiality to bolster those claims. 

Finally, in an article on best practice recommendations for stated preference studies to support 

decision making, Johnston et al. (2017) recommend the use of the SBC question based on the 

established incentive properties and empirical evidence regarding the validity of responses 

derived using this format. This body of research has led to a consensus that the SBC question is 

the “gold standard” for value elicitation. And yet, the data that results from surveys that employ 

SBC questions are often problematic. 

Econometric approaches to estimation of willingness to pay (WTP) with SBC data has 

generated a large literature. Haab and McConnell (2003) spend approximately one-third of their 

econometrics of non-market valuation book (which includes travel cost methods and hedonic 

pricing) on dichotomous choice contingent valuation.2 Haab and McConnell emphasize that SBC 

valuation questions provide only a minimal amount of information with which to estimate WTP 

and its determinants. The researcher only learns if the respondent values the policy above or 

below the randomly assigned cost amount. Problems arising from SBC data include negative 

WTP estimates, non-monotonicities and fat/flat tails. Each of these empirical issues will decrease 

the accuracy and statistical efficiency of WTP estimates.   

Negative WTP estimates will result when the estimated probability of a yes/for response 

is less than 50% at the lowest cost amount and probit or logit models are used for estimation 

(Hanemann 1984, Haab and McConnell 1997). Hanemann (1989) provides a formula for 

estimating WTP that arbitrarily—and incorrectly in a statistical sense--eliminates this negative 

 
2 See also Hanemann and Kanninen (2001). 
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portion. Another common response to this problem has been to estimate the probability of a yes 

response with a log cost functional form. This model produces an estimate of median WTP but 

the mean WTP is often extremely sensitive to the assumed logged distribution, and can be 

undefined (Haab and McConnell 2002). The nonparametric Turnbull (Haab and McConnell 

1997) assumes a lower bound on WTP at zero and masses the upper portion of the distribution at 

the highest cost amount. While avoiding negative estimates of expected WTP by assumption, for 

reasons we will see below, the Turnbull in fact, cannot provide an estimate of expected WTP 

without imposing additional assumptions about the distribution of WTP between bids, and in the 

upper tail, above the highest bid. The Kriström nonparametric estimator extends the Turnbull by 

estimating the slope between cost amounts with linear interpolation and avoiding truncation at 

the highest bid by estimating a choke price (Kriström 1990). Linear probability models provide 

estimates of mean WTP by imposing the non-negativity assumption as well as distributional and 

upper tail assumptions. 

Non-monotonicity results when the probability of voting for the policy rises when the 

cost amount rises in pairwise cost comparisons. Haab and McConnell (2003) call this the 

“difficult data” situation. This aggregate violation of rational choice theory may simply be a 

result of sampling error due to small samples at each of the cost amounts. The Turnbull and 

Kriström nonparametric approaches handle this problem by pooling cost amounts and yes/for 

responses until the probability of the yes/for function is monotonically decreasing, or flat, as cost 

amounts increase. The logit, probit and linear probability models smooth the data by estimating a 

slope over the entire range of cost amounts. Beyond the problem of a lack of theoretical validity 

in pair-wise comparisons of cost amounts that exhibit non-monotonicities, this empirical issue 

will lead to increasing standard errors of WTP.  
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The fat tails problem exists when the probability of a yes response is relatively high, say 

20% or more, at the highest cost amount (Parsons and Myers 2016, Lewis et al. 2024). Fat tails 

leave the researcher uncertain about a potentially large portion of the WTP distribution. The 

Turnbull estimator deals with fat tails by ignoring the shape of the upper tail all together, 

resulting in the Turnbull failing to provide a point estimate of expected WTP and instead only 

providing a lower bound on expected WTP that is sensitive to the set of bids offered in the 

survey. These lower bound WTP estimates may be appropriate for natural resource damage 

assessment and sensitivity analysis in benefit-cost analysis but are less appropriate as estimates 

of the central tendency of WTP (Lewis, Richardson and Whitehead 2024). The Kriström and 

linear probability models deal with fat tails by trying to identify the cost amount that leads to a 

zero probability of support (i.e., choke price). The linear probability model estimates the choke 

price by forecasting beyond the range of costs. The use of probit and logit models can lead to 

WTP estimates that are greater than the highest cost when the data suffer from fat tails. Related, 

the flat tail problem exists when the probability of a yes response is relatively flat at two or more 

of the highest cost amounts (Lewis, Richardson and Whitehead 2024). Flat tails lead to less 

precise WTP estimates.  

In this chapter we investigate these problems with SBC data with a meta-analysis data set 

initially constructed by Lewis, Richardson and Whitehead (2024) for a comparison of 

nonparametric WTP estimates. We extend the analysis of these data to parametric estimates of 

WTP. We find that the parametric estimates of expected WTP differ substantially from the lower 

bounds on expected WTP produced by the Turnbull.3 We then calculate standard errors and 

show that the inefficiency of SBC data is increasing in the percentage of non-monotonicities over 

 
3 This result is not new (e.g., Bengochea-Morancho, Fuertes-Eugenio, and Saz-Salazar 2005). 
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the range of cost amounts, as well as with the fatness and flatness of the tail of the distribution. 

Smoothed Turnbull data tends to produce confidence intervals that are significantly tighter than 

parametric WTP estimates from the Delta Method and Krinsky-Robb confidence intervals. We 

demonstrate the problems created by these differences with 52 directional split-sample tests from 

16 studies in the meta-data. The smoothed nonparametric WTP estimates are more likely to lead 

to failure of rejection of null hypotheses of no effect relative to t-tests of differences in means 

with the Delta Method standard errors and Krinsky-Robb confidence intervals.4  

In the next section we first review the theory and estimation of SBC contingent valuation 

methods. We illustrate the various approaches to WTP estimation and show that WTP estimates 

are reliable over various estimation approaches with well-behaved textbook data. We then 

proceed as described above and, after discussing issues with double-bound contingent valuation 

questions, conclude with a possible direction forward.  

SBC Contingent Valuation 

Suppose a consumer has a willingness to pay for a change in the quality or quantity, 𝑞, of 

a private, public or quasi-public good, 𝑊𝑇𝑃(∆𝑞). A binary choice contingent valuation question 

would ask the respondent something like, “are you willing to pay $𝐴 for ∆𝑞?”, where $𝐴 is a 

randomly assigned cost amount. Since Carson and Groves (2007), the question is often posed as 

a referendum vote for public goods, and if respondents consider the survey to be consequential 

with a coercive payment vehicle (e.g., a tax), the responses to the question are considered to be 

incentive compatible. Another type of question is posed for goods that are private or quasi-

 
4 This is to be expected as the Turnbull is not providing a point estimate of expected WTP, but rather providing an 
estimate of the lower bound on expected WTP, a point that is often confused in the literature. 



 

6 
 

public, such as a recreation trip: “would you still take the trip if it cost an additional $𝐴?” (e.g., 

Cameron 1988). The theory and estimation methods are the same as in the referendum question 

and the questions are incentive compatible since there is no reason to behave strategically when a 

government or private business firm is not involved. These questions can be extended to trips 

with a quality change (e.g., Neher et al. 2017). Note that Carson et al. (1996) find that estimates 

from this type of CVM question are convergent valid with estimates from the travel cost method, 

while Carson and Groves (2017) do not address this type of CVM question.  

A number of WTP estimates have been developed Czajkowski et al. (2024). In this 

chapter we compare two nonparametric measures and four parametric measures of WTP. A 

summary of these WTP estimators is presented in Table 1.  

The consumer will answer yes/for to the valuation question if their willingness to pay is 

greater than or equal to the cost amount: 𝑃𝑟(𝑦𝑒𝑠) 	= 	𝑃𝑟(𝑊𝑇𝑃 ≥ 𝐴). The Turnbull non-

parametric estimator (Haab and McConnell 1997) produces a lower bound on expected WTP by 

assuming non-negative WTP: 𝑊𝑇𝑃0 = ∑ 𝐴!! × 4Pr7𝑦𝑒𝑠!8 − Pr	7𝑦𝑒𝑠!"#8:, where Pr7𝑦𝑒𝑠!$#8 =

0 at the lowest cost amount. Essentially, the Turnbull calculates the sample proportion of 

respondents falling between cost amounts and assigns every between bid proportion a WTP 

equal to the lower bound on that bid range. This means that any ‘yes’ response to the highest bid 

is assumed to have a WTP no greater than the highest bid, and any ‘no’ response to the lowest 

bid is assigned a WTP of zero.  

The Kriström (1990) nonparametric estimator uses linear interpolation to estimate the 

choke price and assumes a yes response of 100% when 𝐴 = 0: 	

𝑊𝑇𝑃1 = ∑ #
%
7𝐴! + 𝐴!"#8! × 4Pr7𝑦𝑒𝑠!8 − Pr	7𝑦𝑒𝑠!"#8:. Lewis, Richardson and Whitehead 
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(2024) find that the Kriström WTP estimates are susceptible to the fat tails problem and assess a 

correction proposed by Richardson and Lewis (2022), termed the adjusted Kriström. The choke 

price, 𝐴&  where Pr(𝑦𝑒𝑠&) = 0	|	𝐴& , is estimated by using the slope of the bid function from the 

linear probability model, 𝜑 < 0 below, and estimating the choke price from the highest cost 

amount, 𝐴', 𝐴& = 𝐴' − 𝜑 × Pr(𝑦𝑒𝑠'). 

Hanemann (1984) provided theoretical justification for SBC contingent valuation. 

Beginning with a linear utility function, Hanemann shows that the logit (and probit) model relies 

on the notion that median willingness to pay is equal to the cost amount that makes respondents 

indifferent between voting for or against the policy (i.e., 𝑃𝑟(𝑦𝑒𝑠) 	= 	0.50). If the logistic 

regression model includes only the cost amount as a determinant, Pr(𝑦𝑒𝑠) =

1 (1 + exp	(−(𝛼 + 𝛽𝐴))⁄ , then the willingness to pay estimate is 𝑊𝑇𝑃3 = −𝛼 𝛽⁄ . This is 

sometimes referred to as “mean” WTP.  

The logit model can also produce a section of negative WTP if the estimated logistic 

regression curve intersects the probability of a yes response axis below 100%. If the intersection 

is below 50% (𝛼 < 0) then 𝑊𝑇𝑃3 < 0. Hanemann (1989) proposed a widely used correction 

that truncates the negative portion of the WTP distribution: 𝑊𝑇𝑃4 = (−1 𝛽⁄ ) × ln	71 +

exp	(𝛼)8. This is sometimes referred to as the “truncated mean” WTP estimate. However, as 

Haab and McConnell (2002) note, the Hanemann procedure does not produce a statistically valid 

WTP estimate as the arbitrary truncation results in a WTP distribution that does not integrate to 

one. A logged cost amount model, Pr(𝑦𝑒𝑠) = 1 (1 + exp	(−(𝛾 + 𝛿𝑙𝑛𝐴))⁄  has also been used to 

solve the “negative WTP” problem. The resulting WTP estimate is, 𝑊𝑇𝑃5 = 𝑒𝑥𝑝7−(𝛾 𝛿⁄ )8. 

This is also sometimes referred to as “median WTP.”  
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Finally, willingness to pay can also be estimated from a linear probability model: 

Pr(𝑦𝑒𝑠) = 𝜃 + 𝜑𝐴, although, to our knowledge, this has not appeared in the peer-reviewed 

literature (Loomis 1988). Intuitively, WTP is the triangle under the regression line: 𝑊𝑇𝑃6 =

0.5 × 𝜃 × (−𝜃 𝜑⁄ ). The area of this WTP triangle is the parametric version of the nonparametric 

adjusted Kriström WTP estimate. 

To illustrate the WTP estimation methods we consider some textbook CVM data. We 

construct a data set from question number 3 from Boardman et al.’s (2015) chapter on the 

contingent valuation method (p. 398). Students are told to “consider a project that would involve 

purchasing marginal farmland that would then be allowed to return to wetlands capable of 

supporting migrant birds. Researchers designed a survey to implement the dichotomous choice 

method. They reported the following data.” In the data table there are ten costs that range from 

$5 to $50 and the percentage of those who are willing to pay each cost falls from 91% to 2%. 

Students are asked “What is the mean WTP for the sampled population?”  

We create the data with 100 observations at each of the 10 cost amounts. The Turnbull 

and adjusted Kriström WTP estimates are estimated in MS Excel. The logit and OLS regression 

models of cost on the yes/no responses are Pr(𝑦𝑒𝑠) = 1 (1 + exp7−(2.80 − 0.14 × 𝐴))8⁄  and 

Pr(𝑦𝑒𝑠) = 0.95 − 0.021 × 𝐴, respectively. The willingness to pay estimates (with standard 

errors in parentheses) are $18 (0.57), 21 (0.40), $20 (0.64), $21 (0.59), $18 (0.61) and $21 (0.55) 

from the Turnbull (𝑊𝑇𝑃1), adjusted Kristrom (𝑊𝑇𝑃2), Hanemann logit (𝑊𝑇𝑃3-𝑊𝑇𝑃5) and 

linear probability (𝑊𝑇𝑃6) models, respectively. The willingness to pay estimates are not 

statistically different across valuation method. We consider these data “reliable” since they 

produce the same WTP amount regardless of estimation method. Unfortunately, as we will see, 
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real world SBC data sets are not so well-behaved as textbook data and do not produce reliable 

WTP estimates. 

Meta-Data 

Parsons and Myers (2016) reviewed eight journals from 1990 to 2015 and found 86 

articles that reported the percentage of yes responses at the highest cost amount. Forty-six of 

these articles provide the information necessary to reconstruct the data needed to estimate WTP 

(Lewis, Richardson and Whitehead 2024). In addition to these studies, Lewis, Richardson and 

Whitehead (2024) searched the same set of journals for articles published through 2023 and 

found five additional articles that contain the necessary information to reconstruct the relevant 

data.  

The data summary by study is presented in Table 2. The articles were published between 

1990 and 2022 with all but three between 1995 and 2018. Sixty-one percent (31) of the studies 

are U.S. based with 5 studies based in Sweden, 3 in Spain, 2 in England and 1 each in Australia, 

Austria, China, Ireland, Kuwait, Mexico, the Philippines, Taiwan, Uruguay, and Vietnam. 

Twenty-two percent of the articles use a donation or voluntary contributions payment vehicle. 

There are five survey modes represented in the sample with the percentages adding up to more 

than one due to mixed modes being used in three studies. Forty-seven percent of the studies used 

a mail survey contact mode, 25% used an in-person contact mode, 14% are laboratory 

experimental modes (with student samples), 14% are telephone survey modes and 6% are online 

surveys. Seventy-one percent of the studies are valuing public goods. Fifty-three percent have 

one-time payment schedules. The average number of years in each payment schedule is 8 with a 
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range of 1 (for one-time payments) to 30, where in perpetuity payment schedules are coded as 

30.  

Of these 51 articles, 21 have only one data set and the remainder have between 2 and 9 

data sets. Twelve articles have 2 data sets, 10 articles have 3 data sets, 4 articles have 4 data sets, 

2 articles have 6 data sets, 1 article has 8 data sets and another has 9 data sets. In total, there are 

120 data sets available for analysis. In those articles that present multiple data sets the source 

could be an experimental treatment or samples of different populations. The mean sample size is 

433 with a range of 47 to 4361 (Table 3). The average number of cost amounts presented to 

respondents is 7 with a range of 3 to 21. The mean of the sample size per cost amount is 71 with 

a range of 7 to 396. Twenty-two percent of the pairwise comparisons of yes responses to cost 

amounts exhibit non-monotonicities over the 120 data sets.   

The cost amounts are left in the home country currency and not adjusted for inflation 

when estimating WTP. In order to make the cost amounts comparable across studies as 

independent variables, for each individual study we divide each cost amount by the maximum 

cost amount so that the standardized cost amounts can range from zero to one. The mean of the 

standardized minimum cost amount is 0.10 (i.e., 10% of the highest cost amount). The two bids 

that form the slope for the tail of the distribution are the two highest bids inclusive of bids pooled 

for non-monotonicity. Forty-four percent of the data sets have pooled cost amounts for one of the 

cost amounts used to calculate this slope. The mean of the standardized low cost amount in the 

slope (Sbid1) is 0.56 and the mean of the standardized high cost amount in the slope (Sbid2) is 

0.88. The average percentage yes response at Sbid1 (Pctyes1) is 35% and the average percentage 
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yes response at Sbid2 (Pctyes2) is 23%. The absolute value of the slope with the standardized 

costs is 0.48 with a range of 0.01 to 4.02.  

WTP Estimates 

We construct the Turnbull 𝑊𝑇𝑃1 and adjusted Kristr𝑜m 𝑊𝑇𝑃2 estimates in MS Excel 

and the Hanemann mean 𝑊𝑇𝑃3, truncated mean 𝑊𝑇𝑃4, median 𝑊𝑇𝑃5 and linear probability 

𝑊𝑇𝑃5 estimates from logit and linear probability models for each of the 120 data sets (Table 4). 

One of the median 𝑊𝑇𝑃5 estimates approached infinity so it is dropped from the data summary. 

As expected, the Turnbull lower bound 𝑊𝑇𝑃0 is 332, lower than all of the other WTP estimates 

except mean 𝑊𝑇𝑃3 for which 18% of the values are negative. The third lowest estimate is the 

Hamemann median (𝑊𝑇𝑃5	 = 	465) followed by the adjusted Kristrom (𝑊𝑇𝑃2 = 533). The 

means of the remaining WTP estimates are greater than 1000. The truncated mean 𝑊𝑇𝑃4 and 

linear 𝑊𝑇𝑃6 estimates are, not surprisingly, very similar since both estimates disregard the 

negative portion of the WTP distribution and are sensitive to the tail of the distribution. We next 

delete the WTP estimates for which the Mean 𝑊𝑇𝑃3 estimate is negative. Of the remaining 99 

samples, the WTP estimates are much closer in magnitude with mean WTP estimates ranging 

from 332 (𝑊𝑇𝑃1) to 617 (𝑊𝑇𝑃4). Much of the variability in WTP estimates is due to data sets 

that produce negative 𝑊𝑇𝑃3 estimates. We conclude that the WTP estimates from many of these 

data sets suffer from unreliability. 

Confidence Intervals 

We estimate the standard errors of the Turnbull 𝑊𝑇𝑃1 estimates with the formula found 

in Haab and McConnell (p. 75, 2002) and the adjusted Kriström 𝑊𝑇𝑃2 standard errors are 

estimated following Boman, Bostedt and Kriström (1999). Standard errors of the parametric 
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WTP estimates are calculated using the Delta Method, a first-order Taylor Series expansion from 

the variance-covariance matrix (Cameron 1991). 

The t-statistics, 𝑡 = 𝑊𝑇𝑃 𝑆𝐸⁄ , are significantly higher for the Turnbull 𝑊𝑇𝑃1 and 

adjusted Kriström estimates relative to the parametric estimates (Table 5). This is due to the 

difference in methods used to construct standard errors (see the differences in the standard errors 

from the textbook data), as well as the facts that the nonparametric survival functions are 

smoothed when non-monotonicities are encountered and do not have a fat or flat tails. Non-

monotonicities and fat/flat tails will increase the standard errors of the slope coefficient in 

regression models. This coefficient is in the denominator of WTP estimates so the standard error 

of WTP estimates will increase as well.  

We test for positive and statistically significant WTP estimates for each of the estimation 

methods. The significance level is 90% in a one-tailed test and the critical value is 𝑡 = 1.282. 

All of the Turnbull 𝑊𝑇𝑃1 and Kriström 𝑊𝑇𝑃2 estimates are statistically significant. In contrast, 

13% (n=13) of the non-negative Hanemann mean 𝑊𝑇𝑃3 estimates are not statistically different 

from zero. Combined with the negative 𝑊𝑇𝑃1 estimates, 28% of the 𝑊𝑇𝑃1 estimates are not 

useable for policy analysis. Ten percent of the median 𝑊𝑇𝑃5 estimates are not statistically 

different from zero and 2.5% of the truncated mean 𝑊𝑇𝑃4 and 𝑊𝑇𝑃6 estimates are not 

statistically different from zero.  

The distribution of a ratio of parameters (such as WTP) is not necessarily symmetric. The 

asymmetry gets more severe when the parameter in the denominator is imprecisely estimated. 

Another approach to estimating confidence intervals that is common in the CVM literature and 

captures this asymmetry is the Krinsky-Robb approach (Park, Loomis and Creel 1991). The 
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Krinsky-Robb confidence interval is based on a simulation from the variance-covariance matrix 

of the estimated parameters and does not impose symmetry. Hole (2007) compares the Delta 

Method and Krinsky-Robb approaches and finds little difference for well-behaved (simulated 

and real) data. However, Hole (2007) points out that WTP must be normally distributed for the 

Delta Method confidence interval to be accurate. 

To estimate the Krinsky-Robb 95% confidence intervals for the Hanemann mean 𝑊𝑇𝑃3 

and 𝑊𝑇𝑃4 estimates, we simulate one million WTP estimates and trim the lowest and highest 

2.5% values. Krinsky-Robb confidence intervals are significantly wider than Delta Method 

confidence intervals (Table 6). Of 𝑛 = 99 estimates where mean WTP3 is greater than 0, one of 

the ratios of the Krinsky-Robb confidence interval to the Delta Method confidence interval is 

less than 1 and one ratio is greater than 64. Trimming these 2 ratios, the mean ratio is 1.41 with a 

range of 1.01 to 5.51. Similarly trimming one ratio less than 1 and one ratio greater than 64, the 

mean of the ratio of Krinsky-Robb to Delta Method 95% confidence interval for 𝑊𝑇𝑃4 is 1.65 

with a range of 1 to 6.32. 

We test for positive and statistically significant WTP estimates for mean 𝑊𝑇𝑃1 and 

mean 𝑊𝑇𝑃2 by determining if the Krinsky-Robb confidence interval includes zero. Forty-four 

percent of the mean 𝑊𝑇𝑃3 Krinsky-Robb confidence intervals include zero. In contrast, only 

18% of the Delta Method non-negative mean 𝑊𝑇𝑃3 confidence intervals include zero. Ten 

percent of the mean 𝑊𝑇𝑃4 Krinsky-Robb confidence intervals include zero. Only 3% of the 

Delta Method non-negative mean 𝑊𝑇𝑃4 confidence intervals include zero. 

Data problems may also lead to asymmetries in the Krinsky-Robb confidence intervals. 

For those confidence intervals that do not include zero we measure asymmetry by 
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𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = (𝑈95 −𝑊𝑇𝑃) (𝑊𝑇𝑃 − 𝐿95)⁄ , where 𝑈95 is the upper 95% Krinsky-Robb 

bound and 𝐿95 is the lower 95% Krinsky-Robb bound. The Krinsky-Robb asymmetry ratio for 

mean 𝑊𝑇𝑃3 is 1.50 with a range of 0.49 to 6.94 (Table 7). The Krinsky-Robb asymmetry ratio 

for mean 𝑊𝑇𝑃4 is 2.66 with a range of 1.19 to 8.41.  

Meta-regressions 

In order to test our contention that non-monotonicities and fat/flat tails contribute to 

statistical inefficiencies, we estimate linear regression models with the WTP t-statistics as the 

dependent variables (Table 8). The independent variables are the percentage of the number of 

pooled bids (non-monotonicities), the height (fat tail) and slope of the tail (flat tail), and study 

sample size. The standard errors are clustered at the study level.5 Each of the regression models 

are statistically significant at the 𝑝 < 0.01 level and the R2 values suggest that between 24% and 

61% of the variation in the t-statistics is explained by the independent variables.  

All of the coefficient estimates are statistically significant except for the coefficient on 

the percentage of pooled cost amounts in the model with the Turnbull WTP t-statistic as the 

dependent variable, the fat tail slope in the Turnbull and adjusted Kristrom models, and the 

height of the tail in the Hanemann 𝑊𝑇𝑃5 model. The lack of statistical significance in the 

Turnbull WTP t-statistic model is expected since pooling smooths the dependent variable and 

flat tails do not inflate WTP standard errors. Note that we do not include the fat tail variable 

(pctyes2) in the Turnbull model. In a model that includes the fat tail, as the height of the tail 

increases by each 0.10 units the Turnbull t-statistic increases by 2.4.  A flat Turnbull function 

would have a t-statistic above 24. This also perversely causes the percentage of pooled cost 

 
5 We have 53 clusters instead of 51 since Alberini et al. (1997) uses data from 3 different studies. 
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amounts to have a negative and statistically significant (𝑝 < 0.10) effect on the Turnbull WTP t-

statistic. We find a similar fat tail result in the adjusted Kristrom model at the p=0.11 level. But, 

dropping this variable does not significantly affect the results. The height of the tail does not 

matter in the 𝑊𝑇𝑃3 model because the WTP estimate is the cost amount where the probability of 

a yes response is 50% which is not sensitive to the tail.   

As the percentage of pooled bids in each of the other models increases the t-statistics 

decrease. If pooling doubles from its mean of 21.6%, then the Kristrom 𝑊𝑇𝑃2, Hanemann mean 

𝑊𝑇𝑃3, mean 𝑊𝑇𝑃4, median 𝑊𝑇𝑃5 and linear 𝑊𝑇𝑃6 t-statistics will fall by 1.61, 1.20, 1.52, 

1.27 and 1.75, respectively. As the height of the tail doubles from its mean of 23.3% then the 

mean 𝑊𝑇𝑃4, median 𝑊𝑇𝑃5 and linear 𝑊𝑇𝑃6 t-statistics will fall by 1.56, 1.03 and 2.00, 

respectively.  

As the absolute value of the slope of the tail increases (i.e., gets steeper) the t-statistics 

increase. If the slope doubles from its mean of 0.48, then the adjusted Kriström 𝑊𝑇𝑃2, 

Hanemann mean 𝑊𝑇𝑃3, mean 𝑊𝑇𝑃4, median 𝑊𝑇𝑃5 and linear 𝑊𝑇𝑃6 t-statistics will increase 

by 1.25, 0.86, 0.81, 0.78 and 0.94, respectively. In each of the models an increase in the sample 

size increases the t-statistic. If the sample size doubles from its mean of 433 the t-statistics will 

increase by 2.60, 4.32, 3.48, 2.49, 1.23 and 3.00 for the Turnbull 𝑊𝑇𝑃0, adjusted Kriström, 

Hanemann mean 𝑊𝑇𝑃1, mean 𝑊𝑇𝑃2, median 𝑊𝑇𝑃3 and linear 𝑊𝑇𝑃4 t-statistics, respectively.  

We next consider the effects of non-monotonicities, fat/flat tails and sample size on the 

ratio of the width of the Krinsky-Robb confidence interval to the width of the Delta Method 

confidence interval for the 𝑊𝑇𝑃3 and 𝑊𝑇𝑃4 estimates (Table 9). In the 𝑊𝑇𝑃3 model, the ratio 

of the Krinsky-Robb to Delta Method interval increases with the height of the fat tail and 
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decreases with sample size. The ratio increases by 55% if the height of the tail doubles from the 

average and decreases by 21% if the sample size doubles from the average. The sample size that 

equates the width of the 𝑊𝑇𝑃3 confidence intervals is 𝑛 = 1100. In the 𝑊𝑇𝑃4 model, the ratio 

increases with the height of the tail of the distribution and decreases with the slope of the tail and 

sample size. The ratio increases by 37% if the height of the tail doubles from the average, 

decreases by 12% if the slope steepens by twice the mean and decreases by 19% if the sample 

size doubles from the average. The sample size that equates the width of the 𝑊𝑇𝑃2 confidence 

intervals is 𝑛 = 1900.  In summary, fat and flat tails cause the Krinsky-Robb confidence interval 

to widen relative to the Delta Method confidence interval and increases in the sample size cause 

them to converge.  

Finally, we estimate the effects of non-monotonicities, fat/flat tails and sample size on the 

asymmetry of the Krinsky-Robb confidence interval for the Hanemann 𝑊𝑇𝑃3 and 𝑊𝑇𝑃4 

estimates (Table 10). In the 𝑊𝑇𝑃3 model, the ratio of the upper tail to the lower tail increases 

with the height of the fat tail. The ratio increases by 129% if the height of the tail doubles from 

the average. In the 𝑊𝑇𝑃4 model, the ratio increases with the number of non-monotonicities and 

the height of the tail of the distribution and decreases with the sample size. The ratio increases by 

48% if the percentage of non-monotonicities doubles from the average, increases by 100% if the 

height of the tail doubles from the average, and decreases by 32% if the sample size doubles 

from the average. In summary, fat tails cause asymmetries in the Krinsky-Robb confidence 

interval and increases in the sample size causes them to converge.  
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Replication of Split-Sample Hypothesis Tests 

Twenty-five of the 51 studies contain data sets that support split-sample WTP 

comparison tests and 16 of these studies allow for directional hypotheses tests. Six of the 16 

studies allow for 1 test each, 2 studies support 2 tests each, 4 studies support 3 tests, 3 studies 

support 6 tests and 1 study supports 12 tests. In total there are 52 possible directional hypothesis 

tests. Seventeen of the tests, including 12 from a single study, are for differences in individual 

health risk, 9 are for the scope of the policy, 15 are for hypothetical bias, and 9 are for payment 

schedules.  

The test for differences in individual health risk is 𝜕𝑊𝑇𝑃 𝜕𝑟⁄ > 0, where 𝑟 is the risk 

that would be avoided by purchase of a treatment or payment for a policy. A scope test is similar 

with 𝜕𝑊𝑇𝑃 𝜕𝑞⁄ > 0, where 𝑞 is an environmental good. A test for hypothetical bias concerns 

comparing actual, 𝐴, and hypothetical, 𝐻, payments for a good or service, with an expectation of 

𝑊𝑇𝑃( > 𝑊𝑇𝑃). A test for payment schedules involves differences in the amount of time, 𝑡, a 

fixed payment would be made, 𝜕𝑊𝑇𝑃 𝜕𝑡⁄ < 0. Each of these tests is directional and one-sided t-

tests for differences in means are appropriate (Cho et al. 2013). We conduct t-tests for 

differences in WTP estimates across treatments with each of the WTP estimates: 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =

*+,!$*+,"

-./!
#"./"

#
, where 𝑋 and 𝑌 are different treatments. Our focus here is on statistically significant 

differences in the WTP estimates and not economic significance.  

The results of the hypotheses tests are presented in Table 11. The average p-value of all 

of the texts except for the adjusted Kriström 𝑊𝑇𝑃2 estimates indicates that, on the whole, the 

SBC data does not lead to statistically significant differences. Forty-two percent of the 

differences in Turnbull 𝑊𝑇𝑃1 estimates are statistically different at the 99% confidence level, 
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52% at the 95% level, and 60% at the 90% level. Fifty-seven percent of the differences in 

adjusted Kriström 𝑊𝑇𝑃2 estimates are statistically different at the 99% confidence level, 65% at 

the 95% level, and 73% at the 90% level. These passing rates are significantly higher than the 

passing rates for the parametric WTP hypothesis tests. Researchers should strongly reconsider 

each nonparametric estimators continued use in isolation.  

Only three percent of the differences in the Hanemann mean 𝑊𝑇𝑃3 estimates are 

statistically different at the 99% confidence level, 21% at the 95% level, and 26% at the 90% 

level. This standard estimator already precludes hypothesis tests for 35% of the sample. 

Researchers should strongly reconsider its continued use in isolation 

Fifteen percent of the differences in Hanemann truncated mean 𝑊𝑇𝑃4 estimates are 

statistically different at the 99% confidence level, 29% at the 95% level, and 37% at the 90% 

level.6 Seventeen percent of the differences in median 𝑊𝑇𝑃5 estimates are statistically different 

at the 99% confidence level, 23% at the 95% level, and 35% at the 90% level. Seventeen percent 

 

6 We have also conducted the convolutions test with the Krinsky-Robb simulations (Poe, 

Severance‐Lossin, and Welsh 1994, Poe, Giraud, and Loomis 2005). The results are similar to 

the results from the Delta Method. Seventeen percent of the differences in Hanemann truncated 

mean 𝑊𝑇𝑃4 estimates are statistically different at the 99% confidence level, 27% at the 95% 

level, and 38% at the 90% level. 
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of the differences in linear 𝑊𝑇𝑃6 estimates are statistically different at the 99% confidence 

level, 31% at the 95% level, and 38% at the 90% level.  

There are several other ways in which a parametric split-sample hypothesis test can be 

conducted. The first is to pool the samples and include a treatment dummy variable for the 

differences in treatments: Pr(𝑦𝑒𝑠) = 1 (1 + exp	(−(𝛼 + 𝛽𝐴 + 𝜔𝐷))⁄ , where 𝐷 is a dummy 

variable equal to 0 for a base case scenario and 1 for a treatment. One test is for differences in 

the probability of a yes response to the SBC question, 𝜔	><	0. This test may produce higher t-

statistics since the coefficient on the treatment dummy variable is not divided by the coefficient 

on the cost amount. Another test is for whether the willingness to pay estimates from a pooled 

logit model are statistically different. For the Hanemann mean 𝑊𝑇𝑃4 estimate this test is for 

differences in 𝑊𝑇𝑃(𝐷 = 0) = (−1 𝛽⁄ ) × 𝑙𝑛71 + 𝑒𝑥𝑝(𝛼)8 and 𝑊𝑇𝑃(𝐷 = 1) =

(−1 𝛽⁄ ) × 𝑙𝑛71 + 𝑒𝑥𝑝(𝛼 + 𝜔)8. These tests may produce higher t-statistics on the difference in 

willingness to pay because the marginal utility of income is constrained across samples. This 

constraint decreases the standard error of willingness to pay and, in some cases, increases the 

difference in willingness to pay.  

Thirty-three of 52 tests for mean 𝑊𝑇𝑃4 have 𝑝 > 0.10 and are candidates for less 

onerous tests with the Delta Method. These tests are from 11 articles. Fifteen of the tests are for 

differences in individual health risk, 7 are for hypothetical bias, 6 are for different payment 

schedules, and 5 are scope tests. We find a statistically significant treatment dummy coefficient 

estimate in 17 of the 33 tests. We find statistically significant differences in mean 𝑊𝑇𝑃4 in 15 of 

the 33 tests. Five of the tests are statistically significant at the 90% level, 2 are statistically 

significant at the 95% level, and 8 are statistically significant at the 99% level. For 9 of the 15 
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tests, the constraint that the base and treatment slope coefficients are statistically equal is 

rejected. There is no theoretical reason for different slope coefficients since the marginal utility 

of income should be constant. But, behaviorally, it may be logical for survey respondents to be 

less responsive to the cost amount for larger health risks, larger scope levels, longer payment 

schedules and hypothetical, relative to real, scenarios. 

Conclusions 

In this chapter we have replicated nonparametric and parametric willingness to pay 

estimates from 120 SBC data sets in 51 CVM studies. We find that willingness to pay estimates 

can vary significantly depending on the estimation approach. This variation is by design in the 

case of the Turnbull, which is a lower bound estimate most appropriate for applications such as 

natural resource damage assessment (Carson et al. 2003) and sensitivity analysis in benefit-cost 

analysis. Considering parametric willingness to pay estimates, we focus our attention on three 

often-used measures from Hanemann (1984, 1989) and the linear probability model. A 

significant portion of the mean WTP estimates that allow for negative willingness to pay in the 

logistic function are negative overall and many others are not statistically different from zero. 

The WTP estimates from the approach that truncates the logistic distribution at zero are four 

times larger than the more conservative mean WTP estimates. This difference makes it unclear 

which willingness to pay measure should be used in benefit-cost analysis.  

We estimate standard errors and t-statistics for these WTP estimates and find that the 

Turnbull WTP estimates are measured much more precisely then the parametric WTP estimates. 

The Turnbull WTP average t-statistic is 56% higher than the truncated mean WTP t-statistic. We 

find that the number of non-monotonicities in the cost amounts and fat tails contribute to 
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lowering t-statistics in the parametric WTP estimates. Small sample size also contributes to low 

t-statistics.  

We identify and conduct 52 split-sample tests of directional hypotheses in the 120 data 

sets. With relatively small standard errors, the Turnbull and adjusted Kriström WTP estimates 

are more likely to lead to a researcher failing to reject the null hypothesis relative to tests 

conducted with the parametric WTP estimates. Sixty-percent and 73% of tests conducted with 

the Turnbull and the adjusted Kristrom WTP estimates find statistically different WTP estimates 

compared to 37% for the truncated mean WTP, 35% for the median WTP and 38% for the linear 

WTP estimates.  

The results of these tests should not be taken as a meta-analysis on the validity of the 

contingent valuation method (Boyle and Bishop 2019). Lower p-values may be achieved with 

each of these data sets with appropriate statistical models or by inclusion of covariates. Our 

primary goal is to determine if there are any differences in the directional hypothesis tests across 

WTP estimation approaches. We find that there are and caution researchers who may be tempted 

to rely on a single WTP estimation approach without robustness checks. In particular, statistical 

tests based solely on the nonparametric WTP estimates may be particularly misleading.  

These results lead to the conclusion that efforts should be made to better estimate WTP 

and its standard errors in parametric models with the SBC question. Our meta-analysis finds that 

these problems are lessened and may disappear with larger sample sizes. While there is an 

already large literature on bid design and empirical approaches to modelling the preponderance 

of zero WTP values (Kristrom 1997), additional research could focus on methods to avoid 

negative WTP and reduce the fat tails and flat tails problems.   
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Two approaches have emerged in the literature to collect additional information from 

survey respondents and improve the estimation of willingness to pay. In the first approach, 

follow-up dichotomous choice questions have been used to increase statistical efficiency 

(Hanemann, Loomis and Kanninen 1991). Doubled-bounded referendum questions present a 

follow-up question where respondents who vote for a policy at a tax amount are asked the same 

question at a higher tax amount. Respondents who vote against the policy are asked the same 

question with a lower tax amount. The amount of willingness to pay information provided by the 

respondent is increased. For respondents who change their vote (e.g., for-against and against-for) 

willingness to pay is bounded between the two cost amounts. For respondents who vote against 

the policy in the first and follow-up question, the range of willingness to pay above zero is 

narrower. For respondents who vote yes to the first and follow-up questions, the lower bound of 

willingness to pay is higher and the lower bound and income/infinity bound narrows. While a 

number of studies continue to use the double-bounded approach, this approach has been found to 

be prone to starting point bias and incentive incompatibility (Whitehead 2002, 2004). Use of 

double-bounded questions must be conducted with the knowledge that increased efficiency is 

obtained at the risk of bias.  

In the second, more recent, approach, follow-up discrete choice questions have been used 

to increase statistical efficiency but the cost amounts that follow the first question are not 

anchored to the first question and other attributes vary as in discrete choice experiments. Vossler, 

Doyon, and Rondeau (2012) develop theory to show that a sequence of binary choice questions 

format is incentive-compatible if respondents treat each scenario as independent. Giguere, Moore 

and Whitehead (2020) find that while SBC questions produce WTP estimates that do not pass 

scope tests, the increased efficiency of the WTP estimates in a sequence of binary choice 
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questions leads to WTP estimates that do exhibit sensitivity to scope. Thus, this type of study 

design, which blurs the distinction between contingent valuation and discrete choice experiments 

(Haab, Lewis and Whitehead, 2022) can be used as a reliable and useful alternative to contingent 

valuation surveys that employ a single binary choice question. 

More research is needed to determine if these types of CVM data improve the reliability 

of WTP across estimation methods, decrease WTP standard errors, equate Delta Method and 

Krinsky-Robb confidence intervals and lead to WTP estimates that are more likely to pass 

validity tests.  
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Table 1. Willingness to pay estimates 

Estimator 

Turnbull 𝑊𝑇𝑃1 =i 𝐴!
!

× 4Pr7𝑦𝑒𝑠!8 − Pr	7𝑦𝑒𝑠!"#8: 

Adjusted Kriström 

𝑊𝑇𝑃2 =i (1 2⁄ ) × 7𝐴! + 𝐴!"#8
!

× 4Pr7𝑦𝑒𝑠!8 − Pr7𝑦𝑒𝑠!"#8:,	 

Pr(𝑦𝑒𝑠) = 1	|	𝐴 = 0, 𝐴& = 𝐴' − 𝛽 × Pr(𝑦𝑒𝑠') 

Hanemann (1984) “mean” 𝑊𝑇𝑃3 = −𝛼 𝛽⁄  

Hanemann (1989) “truncated 

mean” 
𝑊𝑇𝑃4 = (−1 𝛽⁄ ) × ln	71 + exp	(𝛼)8 

Hanemann (1984) “median” 𝑊𝑇𝑃5 = exp	(−𝛾 𝛿⁄ ) 

Linear probability model 𝑊𝑇𝑃6 = (1 2⁄ ) × 𝜃 × (−𝜃 𝜑⁄ ) 

Notes:  
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Table 2. Data Summary by Study (n=52) 

Data Summary by Study 

Variable Label Mean Std Dev Minimum Maximum 

Year publication year 2005.12 7.65 1990 2022 

US 1 if USA data 0.61 0.49 0 1 

Donation 1 if donation payment vehicle 0.22 0.42 0 1 

Mail 1 if mail/mailback survey 0.47 0.5 0 1 

Inperson 1 if in-person contact survey 0.25 0.44 0 1 

Lab 1 if lab survey 0.14 0.35 0 1 

Phone 1 if phone contact/survey 0.14 0.35 0 1 

Online 1 if online contact/survey 0.06 0.24 0 1 

Students 1 if student sample 0.14 0.35 0 1 

Public 1 if public good 0.71 0.46 0 1 

Costs number of cost amounts 7.51 3.65 3 21 

Onetime one-time payment 0.53 0.5 0 1 

Years payment years 7.94 11.47 1 30 

MinCost minimum cost 23.14 42.35 0.5 200 

MaxCost maximum cost 1032.65 3526.01 2.5 24000 
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Table 3. Data summary by data set (n=120) 

Variable Label Mean Std Dev Minimum Maximum 

Sample sample size (n) 433.31 529.58 47 4361 

Costs number of cost amounts 6.72 3.4 3 21 

n/costs sample size per cost amount 70.53 74.4 7 396 

Pctpool percent non-monotonicities 0.22 0.20 0 0.67 

Sminbid standardized minimum bid 0.10 0.12 0.00 0.67 

Sbid1 standardized bid1 0.56 0.18 0.06 0.88 

Sbid2 standardized bid2 0.88 0.20 0.25 1 

Pctyes1 percent yes at Sbid1 0.35 0.16 0.03 0.82 

Pctyes2 percent yes at Sbid2 (Fat tail) 0.23 0.16 0 0.74 

Flat tail standardized Kriström |slope| 0.48 0.52 0.01 4.02 

 

  



 

27 
 

 

Table 4. Willingness to Pay Estimates 

 
Full Sample Negative WTP3 deleted 

Variable Mean SD Cases Mean SD Cases 

Turnbull (WTP1) 331.50 764.30 120 331.66 730.32 99 

Adjusted Kriström (WTP2) 532.77 1207.03 120 539.93 1167.51 99 

Hanemann (1984) “mean” 
(WTP3) 

233.70 1362.39 120 409.36 935.13 99 

Hanemann (1989) “truncated 
mean” (WTP4) 

1099.73 6137.59 120 617.21 1438.25 99 

Hanemann (1984) “median” 
(WTP5) 

464.85 2473.38 119 547.49 2718.09 98 

Linear probability model 
(WTP6) 

1087.76 6293.45 120 585.81 1404.57 99 
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Table 5. WTP t-statistics (Delta Method) 

 
t-statistic SD Sample 

Turnbull (WTP1) 11.94 6.55 120 

Adjusted Kriström (WTP2) 14.83 7.40 120 

Hanemann (1984) “mean” (WTP3) 7.68 4.96 120 

Hanemann (1989) “truncated mean” (WTP4) 5.29 3.81 119 

Hanemann (1984) “median” (WTP5) 8.72 5.84 120 

Linear probability model (WTP6) 6.14 4.89 99 
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Table 6. Krinsky-Robb to Delta Method Ratios of Confidence Intervals 

 
Mean Min Max Sample 

Hanemann (1984) “mean” (WTP3) 1.41 1.01 5.51 97 

Hanemann (1989) “truncated mean” (WTP4) 1.65 1.00 6.32 118 
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Table 7. Krinsky-Robb Confidence Interval Asymmetries 

 
Mean Min Max Sample 

Hanemann (1984) “mean” (WTP3) 1.50 0.49 6.94 67 

Hanemann (1989) “truncated mean” (WTP4) 2.66 1.19 8.41 108 
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Table 8. Determinants of t-statistics for WTP estimates 

 t-statistic 

 
WTP1 WTP2 WTP3 WTP4 WTP5 WTP6 

 
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Coeff. t-

stat 

Constant 9.65 6.44 9.61 7.23 7.45 7.21 5.56 6.65 8.52 7.57 3.56 3.32 

Non-monotonicities (Pctpool) 
0.32 0.09 

-7.50 -2.51 

-7.05 -4.48 -5.91 -3.51 -8.13 -4.70 -5.56 

-

2.99 

Fat tail (Pctyes2)   

5.46 1.60 

-6.67 -3.56 -4.43 -3.11 -8.60 -4.18 -0.94 

-

0.51 

Flat tail -0.79 -1.02 2.60 2.26 1.69 3.48 1.62 2.96 1.97 3.65 1.81 3.49 

Study sample size 0.006 3.32 0.010 5.70 0.006 4.36 0.003 3.15 0.007 4.09 0.008 8.01 

Sample size 120 120 120 119 120 99 

R2 0.24 0.57 0.58 0.34 0.61 0.47 

F-statistic (df) 12.52 (3) 37.43 (4) 38.91 (4) 14.61 (4) 44.24 (4) 20.84 (4) 
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Note: Turnbull (WTP1), Adjusted Kriström (WTP2), Hanemann (1984) “mean” (WTP3), Hanemann (1989) “truncated mean” 

(WTP4), Hanemann (1984) “median” (WTP5), Linear probability model (WTP6) 
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Table 9. Determinants of Krinsky-Robb to Delta Method Ratios 

 Ratio 

 
WTP3 WTP4 

 
Coeff. t-stat Coeff. t-stat 

Constant 0.99 5.39 1.40 5.65 

Non-monotonicities (Pctpool) 0.05 0.13 0.98 1.61 

Fat tail (Pctyes2) 2.37 2.91 1.59 1.78 

Flat tail 0.00002 0.00 -0.26 -1.79 

Study sample size -0.00049 -2.74 -0.00045 -2.34 

Sample size 97 118 

R2 0.27 0.47 

F-statistic (df) 8.64 (4) 20.84 (4) 

 

 

 

  



 

34 
 

Table 10. Determinants of Krinsky-Robb Asymmetries 

 Asymmetry 

 
WTP3 WTP4 

 
Coeff. t-stat Coeff. t-stat 

Constant -0.90 -0.25 1.87 6.36 

Non-monotonicities (Pctpool) 0.12 0.17 2.21 2.56 

Fat tail (Pctyes2) 5.54 4.78 4.29 4.00 

Flat tail 0.34 0.00 -0.41 -1.53 

Study sample size -0.00022 -1.14 -0.00074 -2.66 

Sample size 67 118 

R2 0.55 0.34 

F-statistic (df) 18.58 (4) 13.12 (4) 
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Table 11. Average p-values and proportion of tests with t-statistics above the critical t-value in 

a one-tailed test 

 
Significance Level 

 

Number of 

tests 

Mean p-

values 99% 95% 90% 

Turnbull (WTP1) 52 0.120 42% 52% 60% 

Adjusted Kriström (WTP2) 34 0.211 3% 21% 26% 

Hanemann (1984) “mean” 
(WTP3) 

52 0.195 15% 29% 37% 

Hanemann (1989) “truncated 
mean” (WTP4) 

51 0.226 17% 23% 35% 

Hanemann (1984) “median” 
(WTP5) 

52 0.192 17% 31% 38% 

Linear probability model 
(WTP6) 

52 0.080 57% 65% 73% 
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