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Abstract. The single binary choice (SBC) question format, commonly used in contingent
valuation studies and modeled as a hypothetical referendum, is considered incentive compatible
when paired with a coercive payment vehicle and a consequential survey. Despite its dominance
in the field, the SBC format yields limited information, which can result in imprecise and
unreliable estimates of willingness to pay (WTP). This chapter explores the limitations of SBC
using a meta-analysis dataset originally compiled by Lewis, Richardson, and Whitehead (2024)
for nonparametric WTP estimation. We extend their work by analyzing parametric WTP
estimates and comparing them with nonparametric Turnbull and adjusted Kristrom estimates.
Our results show that parametric WTP can differ significantly from the Turnbull nonparametric
estimate, and that confidence intervals derived from parametric models are often wider than
those from non-paramteric WTP estimates. In a meta-regression, we find that the inefficiency of
SBC decreases with data quality. We illustrate the importance of these issues with a replication
of directional split-sample tests from the meta-data. Compared to parametric WTP estimates,
tests using Turnbull and adjusted Kristrom estimates are more likely to detect statistically
significant differences in WTP, underscoring the importance of robustness tests with alternative
WTP estimates.
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Introduction

The contingent valuation method (CVM) is a stated preference approach to the valuation
of public goods for benefit-cost and other types of policy analyses (Carson 2012). CVM began
with attempts to directly elicit consumer surplus with open-ended statements of value (Brown
and Hammock 1973). Following the introduction of the dichotomous choice response format by
Bishop and Heberlein (1979), SBC (SBC) contingent valuation questions became the preferred
question format. SBC questions present a survey respondents with a single cost and yes/no
answer categories in the context of a purchase of a product, a quasi-public good (e.g., a
recreation trip) or support of a policy. In the case of public goods, the question format evolved

has evolved to a for/against vote in the context of a policy referendum.

A number of influential publications have led to dominance of the SBC question format
in the CVM literature. Hanemann (1984) developed the indirect utility theory to support the use
of SBC data. Cameron and James (1987) and Cameron (1988) developed the expenditure
difference approach (now called “estimation in willingness to pay space” in the discrete choice
experiment literature). Mitchell and Carson (1989) describe the advantages of framing the
dichotomous choice question as a referendum. McConnell (1990) compared the theoretical
properties of the indirect utility and expenditure difference approaches and Loomis and Park
(1992) compared them empirically. The NOAA Panel (Arrow et al. 1993) endorse the
referendum format for national resource damage assessment.! Carson and Groves (2007) provide

a theoretical base to claim that a consequential referendum question with a coercive payment

1 page 24 of the mimeo: “The above considerations suggest that a CV study based on the referendum scenario can
produce more reliably conservative estimates of willingness to pay, and hence of compensation required in the
aftermath of environmental impairment, provided that a concerted effort is made to motivate the respondents to
take the study seriously, to inform them about the context and special circumstances of the spill or other accident,
and to minimize any bias toward high or low answers originating from social pressure within the interview.”
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vehicle is incentive compatible. Carson, Groves and List (2017) conduct an experimental test of
the incentive compatibility of the SBC question with consequentiality to bolster those claims.
Finally, in an article on best practice recommendations for stated preference studies to support
decision making, Johnston et al. (2017) recommend the use of the SBC question based on the
established incentive properties and empirical evidence regarding the validity of responses
derived using this format. This body of research has led to a consensus that the SBC question is
the “gold standard” for value elicitation. And yet, the data that results from surveys that employ

SBC questions are often problematic.

Econometric approaches to estimation of willingness to pay (WTP) with SBC data has
generated a large literature. Haab and McConnell (2003) spend approximately one-third of their
econometrics of non-market valuation book (which includes travel cost methods and hedonic
pricing) on dichotomous choice contingent valuation.? Haab and McConnell emphasize that SBC
valuation questions provide only a minimal amount of information with which to estimate WTP
and its determinants. The researcher only learns if the respondent values the policy above or
below the randomly assigned cost amount. Problems arising from SBC data include negative
WTP estimates, non-monotonicities and fat/flat tails. Each of these empirical issues will decrease

the accuracy and statistical efficiency of WTP estimates.

Negative WTP estimates will result when the estimated probability of a yes/for response
is less than 50% at the lowest cost amount and probit or logit models are used for estimation
(Hanemann 1984, Haab and McConnell 1997). Hanemann (1989) provides a formula for

estimating WTP that arbitrarily—and incorrectly in a statistical sense--eliminates this negative

2 See also Hanemann and Kanninen (2001).



portion. Another common response to this problem has been to estimate the probability of a yes
response with a log cost functional form. This model produces an estimate of median WTP but
the mean WTP is often extremely sensitive to the assumed logged distribution, and can be
undefined (Haab and McConnell 2002). The nonparametric Turnbull (Haab and McConnell
1997) assumes a lower bound on WTP at zero and masses the upper portion of the distribution at
the highest cost amount. While avoiding negative estimates of expected WTP by assumption, for
reasons we will see below, the Turnbull in fact, cannot provide an estimate of expected WTP
without imposing additional assumptions about the distribution of WTP between bids, and in the
upper tail, above the highest bid. The Kristrém nonparametric estimator extends the Turnbull by
estimating the slope between cost amounts with linear interpolation and avoiding truncation at
the highest bid by estimating a choke price (Kristrdm 1990). Linear probability models provide
estimates of mean WTP by imposing the non-negativity assumption as well as distributional and

upper tail assumptions.

Non-monotonicity results when the probability of voting for the policy rises when the
cost amount rises in pairwise cost comparisons. Haab and McConnell (2003) call this the
“difficult data” situation. This aggregate violation of rational choice theory may simply be a
result of sampling error due to small samples at each of the cost amounts. The Turnbull and
Kristrdm nonparametric approaches handle this problem by pooling cost amounts and yes/for
responses until the probability of the yes/for function is monotonically decreasing, or flat, as cost
amounts increase. The logit, probit and linear probability models smooth the data by estimating a
slope over the entire range of cost amounts. Beyond the problem of a lack of theoretical validity
in pair-wise comparisons of cost amounts that exhibit non-monotonicities, this empirical issue

will lead to increasing standard errors of WTP.



The fat tails problem exists when the probability of a yes response is relatively high, say
20% or more, at the highest cost amount (Parsons and Myers 2016, Lewis et al. 2024). Fat tails
leave the researcher uncertain about a potentially large portion of the WTP distribution. The
Turnbull estimator deals with fat tails by ignoring the shape of the upper tail all together,
resulting in the Turnbull failing to provide a point estimate of expected WTP and instead only
providing a lower bound on expected WTP that is sensitive to the set of bids offered in the
survey. These lower bound WTP estimates may be appropriate for natural resource damage
assessment and sensitivity analysis in benefit-cost analysis but are less appropriate as estimates
of the central tendency of WTP (Lewis, Richardson and Whitehead 2024). The Kristrom and
linear probability models deal with fat tails by trying to identify the cost amount that leads to a
zero probability of support (i.e., choke price). The linear probability model estimates the choke
price by forecasting beyond the range of costs. The use of probit and logit models can lead to
WTP estimates that are greater than the highest cost when the data suffer from fat tails. Related,
the flat tail problem exists when the probability of a yes response is relatively flat at two or more
of the highest cost amounts (Lewis, Richardson and Whitehead 2024). Flat tails lead to less

precise WTP estimates.

In this chapter we investigate these problems with SBC data with a meta-analysis data set
initially constructed by Lewis, Richardson and Whitehead (2024) for a comparison of
nonparametric WTP estimates. We extend the analysis of these data to parametric estimates of
WTP. We find that the parametric estimates of expected WTP differ substantially from the lower
bounds on expected WTP produced by the Turnbull.> We then calculate standard errors and

show that the inefficiency of SBC data is increasing in the percentage of non-monotonicities over

3 This result is not new (e.g., Bengochea-Morancho, Fuertes-Eugenio, and Saz-Salazar 2005).
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the range of cost amounts, as well as with the fatness and flatness of the tail of the distribution.
Smoothed Turnbull data tends to produce confidence intervals that are significantly tighter than
parametric WTP estimates from the Delta Method and Krinsky-Robb confidence intervals. We
demonstrate the problems created by these differences with 52 directional split-sample tests from
16 studies in the meta-data. The smoothed nonparametric WTP estimates are more likely to lead
to failure of rejection of null hypotheses of no effect relative to t-tests of differences in means

with the Delta Method standard errors and Krinsky-Robb confidence intervals.*

In the next section we first review the theory and estimation of SBC contingent valuation
methods. We illustrate the various approaches to WTP estimation and show that WTP estimates
are reliable over various estimation approaches with well-behaved textbook data. We then
proceed as described above and, after discussing issues with double-bound contingent valuation

questions, conclude with a possible direction forward.

SBC Contingent Valuation

Suppose a consumer has a willingness to pay for a change in the quality or quantity, q, of
a private, public or quasi-public good, WTP(Aq). A binary choice contingent valuation question
would ask the respondent something like, “are you willing to pay $A4 for Aq?”, where $4 is a
randomly assigned cost amount. Since Carson and Groves (2007), the question is often posed as
a referendum vote for public goods, and if respondents consider the survey to be consequential
with a coercive payment vehicle (e.g., a tax), the responses to the question are considered to be

incentive compatible. Another type of question is posed for goods that are private or quasi-

4 This is to be expected as the Turnbull is not providing a point estimate of expected WTP, but rather providing an
estimate of the lower bound on expected WTP, a point that is often confused in the literature.
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public, such as a recreation trip: “would you still take the trip if it cost an additional $4?” (e.g.,
Cameron 1988). The theory and estimation methods are the same as in the referendum question
and the questions are incentive compatible since there is no reason to behave strategically when a
government or private business firm is not involved. These questions can be extended to trips
with a quality change (e.g., Neher et al. 2017). Note that Carson et al. (1996) find that estimates
from this type of CVM question are convergent valid with estimates from the travel cost method,

while Carson and Groves (2017) do not address this type of CVM question.

A number of WTP estimates have been developed Czajkowski et al. (2024). In this
chapter we compare two nonparametric measures and four parametric measures of WTP. A

summary of these WTP estimators is presented in Table 1.

The consumer will answer yes/for to the valuation question if their willingness to pay is
greater than or equal to the cost amount: Pr(yes) = Pr(WTP = A). The Turnbull non-
parametric estimator (Haab and McConnell 1997) produces a lower bound on expected WTP by
assuming non-negative WTP: WTP0O = }; A; X [Pr(yesj) —Pr (yesj+1)], where Pr(yesj_l) =
0 at the lowest cost amount. Essentially, the Turnbull calculates the sample proportion of
respondents falling between cost amounts and assigns every between bid proportion a WTP
equal to the lower bound on that bid range. This means that any ‘yes’ response to the highest bid
is assumed to have a WTP no greater than the highest bid, and any ‘no’ response to the lowest

bid is assigned a WTP of zero.

The Kristrom (1990) nonparametric estimator uses linear interpolation to estimate the
choke price and assumes a yes response of 100% when A = 0:

WTP1 = Zj%(Aj + Aj+1) X [Pr(yesj) —Pr (yesj+1)]. Lewis, Richardson and Whitehead
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(2024) find that the Kristrom WTP estimates are susceptible to the fat tails problem and assess a
correction proposed by Richardson and Lewis (2022), termed the adjusted Kristrom. The choke
price, A where Pr(yes;) = 0| Ac, is estimated by using the slope of the bid function from the
linear probability model, ¢ < 0 below, and estimating the choke price from the highest cost

amount, Ay, Ac = Ay — @ X Pr(yesy).

Hanemann (1984) provided theoretical justification for SBC contingent valuation.
Beginning with a linear utility function, Hanemann shows that the logit (and probit) model relies
on the notion that median willingness to pay is equal to the cost amount that makes respondents
indifferent between voting for or against the policy (i.e., Pr(yes) = 0.50). If the logistic
regression model includes only the cost amount as a determinant, Pr(yes) =
1/(1 + exp (—(a + BA)), then the willingness to pay estimate is WTP3 = —a/f. This is

sometimes referred to as “mean” WTP.

The logit model can also produce a section of negative WTP if the estimated logistic
regression curve intersects the probability of a yes response axis below 100%. If the intersection
is below 50% (a < 0) then WTP3 < 0. Hanemann (1989) proposed a widely used correction

that truncates the negative portion of the WTP distribution: WTP4 = (—1/8) x In (1 +

exp (a)). This is sometimes referred to as the “truncated mean” WTP estimate. However, as
Haab and McConnell (2002) note, the Hanemann procedure does not produce a statistically valid
WTP estimate as the arbitrary truncation results in a WTP distribution that does not integrate to
one. A logged cost amount model, Pr(yes) = 1/(1 + exp (—(y + 6IlnA)) has also been used to
solve the “negative WTP” problem. The resulting WTP estimate is, WTP5 = exp(—(y/§)).

This is also sometimes referred to as “median WTP.”



Finally, willingness to pay can also be estimated from a linear probability model:
Pr(yes) = 8 + @A, although, to our knowledge, this has not appeared in the peer-reviewed
literature (Loomis 1988). Intuitively, WTP is the triangle under the regression line: WTP6 =
0.5 X 8 X (—6/¢). The area of this WTP triangle is the parametric version of the nonparametric

adjusted Kristrom WTP estimate.

To illustrate the WTP estimation methods we consider some textbook CVM data. We
construct a data set from question number 3 from Boardman et al.’s (2015) chapter on the
contingent valuation method (p. 398). Students are told to “consider a project that would involve
purchasing marginal farmland that would then be allowed to return to wetlands capable of
supporting migrant birds. Researchers designed a survey to implement the dichotomous choice
method. They reported the following data.” In the data table there are ten costs that range from
$5 to $50 and the percentage of those who are willing to pay each cost falls from 91% to 2%.

Students are asked “What is the mean WTP for the sampled population?”

We create the data with 100 observations at each of the 10 cost amounts. The Turnbull
and adjusted Kristrom WTP estimates are estimated in MS Excel. The logit and OLS regression
models of cost on the yes/no responses are Pr(yes) = 1/(1 + exp(—(2.80 —0.14 % A))) and
Pr(yes) = 0.95 — 0.021 X A, respectively. The willingness to pay estimates (with standard
errors in parentheses) are $18 (0.57), 21 (0.40), $20 (0.64), $21 (0.59), $18 (0.61) and $21 (0.55)
from the Turnbull (WTP1), adjusted Kristrom (WTP2), Hanemann logit (WTP3-WTP5) and
linear probability (WTP6) models, respectively. The willingness to pay estimates are not
statistically different across valuation method. We consider these data “reliable” since they

produce the same WTP amount regardless of estimation method. Unfortunately, as we will see,



real world SBC data sets are not so well-behaved as textbook data and do not produce reliable

WTP estimates.

Meta-Data

Parsons and Myers (2016) reviewed eight journals from 1990 to 2015 and found 86
articles that reported the percentage of yes responses at the highest cost amount. Forty-six of
these articles provide the information necessary to reconstruct the data needed to estimate WTP
(Lewis, Richardson and Whitehead 2024). In addition to these studies, Lewis, Richardson and
Whitehead (2024) searched the same set of journals for articles published through 2023 and
found five additional articles that contain the necessary information to reconstruct the relevant

data.

The data summary by study is presented in Table 2. The articles were published between
1990 and 2022 with all but three between 1995 and 2018. Sixty-one percent (31) of the studies
are U.S. based with 5 studies based in Sweden, 3 in Spain, 2 in England and 1 each in Australia,
Austria, China, Ireland, Kuwait, Mexico, the Philippines, Taiwan, Uruguay, and Vietnam.
Twenty-two percent of the articles use a donation or voluntary contributions payment vehicle.
There are five survey modes represented in the sample with the percentages adding up to more
than one due to mixed modes being used in three studies. Forty-seven percent of the studies used
a mail survey contact mode, 25% used an in-person contact mode, 14% are laboratory
experimental modes (with student samples), 14% are telephone survey modes and 6% are online
surveys. Seventy-one percent of the studies are valuing public goods. Fifty-three percent have

one-time payment schedules. The average number of years in each payment schedule is 8 with a



range of 1 (for one-time payments) to 30, where in perpetuity payment schedules are coded as

30.

Of these 51 articles, 21 have only one data set and the remainder have between 2 and 9
data sets. Twelve articles have 2 data sets, 10 articles have 3 data sets, 4 articles have 4 data sets,
2 articles have 6 data sets, 1 article has 8 data sets and another has 9 data sets. In total, there are
120 data sets available for analysis. In those articles that present multiple data sets the source
could be an experimental treatment or samples of different populations. The mean sample size is
433 with a range of 47 to 4361 (Table 3). The average number of cost amounts presented to
respondents is 7 with a range of 3 to 21. The mean of the sample size per cost amount is 71 with
a range of 7 to 396. Twenty-two percent of the pairwise comparisons of yes responses to cost

amounts exhibit non-monotonicities over the 120 data sets.

The cost amounts are left in the home country currency and not adjusted for inflation
when estimating WTP. In order to make the cost amounts comparable across studies as
independent variables, for each individual study we divide each cost amount by the maximum
cost amount so that the standardized cost amounts can range from zero to one. The mean of the
standardized minimum cost amount is 0.10 (i.e., 10% of the highest cost amount). The two bids
that form the slope for the tail of the distribution are the two highest bids inclusive of bids pooled
for non-monotonicity. Forty-four percent of the data sets have pooled cost amounts for one of the
cost amounts used to calculate this slope. The mean of the standardized low cost amount in the
slope (Sbidl) is 0.56 and the mean of the standardized high cost amount in the slope (Sbid2) is

0.88. The average percentage yes response at Sbid1 (Pctyesl) is 35% and the average percentage
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yes response at Sbid2 (Pctyes2) is 23%. The absolute value of the slope with the standardized

costs is 0.48 with a range of 0.01 to 4.02.

WTP Estimates

We construct the Turnbull WTP1 and adjusted Kristrom WTP2 estimates in MS Excel
and the Hanemann mean WTP3, truncated mean WT P4, median WTP5 and linear probability
WTPS5 estimates from logit and linear probability models for each of the 120 data sets (Table 4).
One of the median WTPS5 estimates approached infinity so it is dropped from the data summary.
As expected, the Turnbull lower bound WTPO is 332, lower than all of the other WTP estimates
except mean WTP3 for which 18% of the values are negative. The third lowest estimate is the
Hamemann median (WTP5 = 465) followed by the adjusted Kristrom (WTP2 = 533). The
means of the remaining WTP estimates are greater than 1000. The truncated mean WT P4 and
linear WTP6 estimates are, not surprisingly, very similar since both estimates disregard the
negative portion of the WTP distribution and are sensitive to the tail of the distribution. We next
delete the WTP estimates for which the Mean WTP3 estimate is negative. Of the remaining 99
samples, the WTP estimates are much closer in magnitude with mean WTP estimates ranging
from 332 (WTP1) to 617 (WTP4). Much of the variability in WTP estimates is due to data sets
that produce negative WTP3 estimates. We conclude that the WTP estimates from many of these

data sets suffer from unreliability.

Confidence Intervals

We estimate the standard errors of the Turnbull WTP1 estimates with the formula found
in Haab and McConnell (p. 75, 2002) and the adjusted Kristrom WTP2 standard errors are

estimated following Boman, Bostedt and Kristrom (1999). Standard errors of the parametric
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WTP estimates are calculated using the Delta Method, a first-order Taylor Series expansion from

the variance-covariance matrix (Cameron 1991).

The t-statistics, t = WTP /SE, are significantly higher for the Turnbull WTP1 and
adjusted Kristrom estimates relative to the parametric estimates (Table 5). This is due to the
difference in methods used to construct standard errors (see the differences in the standard errors
from the textbook data), as well as the facts that the nonparametric survival functions are
smoothed when non-monotonicities are encountered and do not have a fat or flat tails. Non-
monotonicities and fat/flat tails will increase the standard errors of the slope coefficient in
regression models. This coefficient is in the denominator of WTP estimates so the standard error

of WTP estimates will increase as well.

We test for positive and statistically significant WTP estimates for each of the estimation
methods. The significance level is 90% in a one-tailed test and the critical value is t = 1.282.
All of the Turnbull WTP1 and Kristrom WTP2 estimates are statistically significant. In contrast,
13% (n=13) of the non-negative Hanemann mean WTP3 estimates are not statistically different
from zero. Combined with the negative WTP1 estimates, 28% of the WTP1 estimates are not
useable for policy analysis. Ten percent of the median WTP5 estimates are not statistically
different from zero and 2.5% of the truncated mean WTP4 and WTP6 estimates are not

statistically different from zero.

The distribution of a ratio of parameters (such as WTP) is not necessarily symmetric. The
asymmetry gets more severe when the parameter in the denominator is imprecisely estimated.
Another approach to estimating confidence intervals that is common in the CVM literature and

captures this asymmetry is the Krinsky-Robb approach (Park, Loomis and Creel 1991). The
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Krinsky-Robb confidence interval is based on a simulation from the variance-covariance matrix
of the estimated parameters and does not impose symmetry. Hole (2007) compares the Delta
Method and Krinsky-Robb approaches and finds little difference for well-behaved (simulated
and real) data. However, Hole (2007) points out that WTP must be normally distributed for the

Delta Method confidence interval to be accurate.

To estimate the Krinsky-Robb 95% confidence intervals for the Hanemann mean WTP3
and WTP4 estimates, we simulate one million WTP estimates and trim the lowest and highest
2.5% values. Krinsky-Robb confidence intervals are significantly wider than Delta Method
confidence intervals (Table 6). Of n = 99 estimates where mean WTP3 is greater than 0, one of
the ratios of the Krinsky-Robb confidence interval to the Delta Method confidence interval is
less than 1 and one ratio is greater than 64. Trimming these 2 ratios, the mean ratio is 1.41 with a
range of 1.01 to 5.51. Similarly trimming one ratio less than 1 and one ratio greater than 64, the
mean of the ratio of Krinsky-Robb to Delta Method 95% confidence interval for WT P4 is 1.65

with a range of 1 to 6.32.

We test for positive and statistically significant WTP estimates for mean WTP1 and
mean WTP2 by determining if the Krinsky-Robb confidence interval includes zero. Forty-four
percent of the mean WTP3 Krinsky-Robb confidence intervals include zero. In contrast, only
18% of the Delta Method non-negative mean WTP3 confidence intervals include zero. Ten
percent of the mean WT P4 Krinsky-Robb confidence intervals include zero. Only 3% of the

Delta Method non-negative mean WT P4 confidence intervals include zero.

Data problems may also lead to asymmetries in the Krinsky-Robb confidence intervals.

For those confidence intervals that do not include zero we measure asymmetry by
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Asymmetry = (U95 — WTP)/(WTP — L95), where U95 is the upper 95% Krinsky-Robb
bound and L95 is the lower 95% Krinsky-Robb bound. The Krinsky-Robb asymmetry ratio for
mean WTP3 is 1.50 with a range of 0.49 to 6.94 (Table 7). The Krinsky-Robb asymmetry ratio

for mean WTP4 is 2.66 with a range of 1.19 to 8.41.

Meta-regressions

In order to test our contention that non-monotonicities and fat/flat tails contribute to
statistical inefficiencies, we estimate linear regression models with the WTP t-statistics as the
dependent variables (Table 8). The independent variables are the percentage of the number of
pooled bids (non-monotonicities), the height (fat tail) and slope of the tail (flat tail), and study
sample size. The standard errors are clustered at the study level.> Each of the regression models
are statistically significant at the p < 0.01 level and the R? values suggest that between 24% and

61% of the variation in the t-statistics is explained by the independent variables.

All of the coefficient estimates are statistically significant except for the coefficient on
the percentage of pooled cost amounts in the model with the Turnbull WTP t-statistic as the
dependent variable, the fat tail slope in the Turnbull and adjusted Kristrom models, and the
height of the tail in the Hanemann WTP5 model. The lack of statistical significance in the
Turnbull WTP t-statistic model is expected since pooling smooths the dependent variable and
flat tails do not inflate WTP standard errors. Note that we do not include the fat tail variable
(pctyes2) in the Turnbull model. In a model that includes the fat tail, as the height of the tail
increases by each 0.10 units the Turnbull t-statistic increases by 2.4. A flat Turnbull function

would have a t-statistic above 24. This also perversely causes the percentage of pooled cost

5 We have 53 clusters instead of 51 since Alberini et al. (1997) uses data from 3 different studies.
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amounts to have a negative and statistically significant (p < 0.10) effect on the Turnbull WTP t-
statistic. We find a similar fat tail result in the adjusted Kristrom model at the p=0.11 level. But,
dropping this variable does not significantly affect the results. The height of the tail does not
matter in the WTP3 model because the WTP estimate is the cost amount where the probability of

a yes response is 50% which is not sensitive to the tail.

As the percentage of pooled bids in each of the other models increases the t-statistics
decrease. If pooling doubles from its mean of 21.6%, then the Kristrom WTP2, Hanemann mean
WTP3, mean WTP4, median WTP5 and linear WTP6 t-statistics will fall by 1.61, 1.20, 1.52,
1.27 and 1.75, respectively. As the height of the tail doubles from its mean of 23.3% then the
mean WTP4, median WTP5 and linear WTP6 t-statistics will fall by 1.56, 1.03 and 2.00,

respectively.

As the absolute value of the slope of the tail increases (i.e., gets steeper) the t-statistics
increase. If the slope doubles from its mean of 0.48, then the adjusted Kristrom WTP2,
Hanemann mean WTP3, mean WTP4, median WTP5 and linear WTP6 t-statistics will increase
by 1.25, 0.86, 0.81, 0.78 and 0.94, respectively. In each of the models an increase in the sample
size increases the t-statistic. If the sample size doubles from its mean of 433 the t-statistics will
increase by 2.60, 4.32, 3.48, 2.49, 1.23 and 3.00 for the Turnbull WT PO, adjusted Kristrom,

Hanemann mean WTP1, mean WTP2, median WTP3 and linear WT P4 t-statistics, respectively.

We next consider the effects of non-monotonicities, fat/flat tails and sample size on the
ratio of the width of the Krinsky-Robb confidence interval to the width of the Delta Method
confidence interval for the WTP3 and WTP4 estimates (Table 9). In the WTP3 model, the ratio

of the Krinsky-Robb to Delta Method interval increases with the height of the fat tail and
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decreases with sample size. The ratio increases by 55% if the height of the tail doubles from the
average and decreases by 21% if the sample size doubles from the average. The sample size that
equates the width of the WTP3 confidence intervals is n = 1100. In the WT P4 model, the ratio
increases with the height of the tail of the distribution and decreases with the slope of the tail and
sample size. The ratio increases by 37% if the height of the tail doubles from the average,
decreases by 12% if the slope steepens by twice the mean and decreases by 19% if the sample
size doubles from the average. The sample size that equates the width of the WTP2 confidence
intervals is n = 1900. In summary, fat and flat tails cause the Krinsky-Robb confidence interval
to widen relative to the Delta Method confidence interval and increases in the sample size cause

them to converge.

Finally, we estimate the effects of non-monotonicities, fat/flat tails and sample size on the
asymmetry of the Krinsky-Robb confidence interval for the Hanemann WTP3 and WTP4
estimates (Table 10). In the WTP3 model, the ratio of the upper tail to the lower tail increases
with the height of the fat tail. The ratio increases by 129% if the height of the tail doubles from
the average. In the WT P4 model, the ratio increases with the number of non-monotonicities and
the height of the tail of the distribution and decreases with the sample size. The ratio increases by
48% if the percentage of non-monotonicities doubles from the average, increases by 100% if the
height of the tail doubles from the average, and decreases by 32% if the sample size doubles
from the average. In summary, fat tails cause asymmetries in the Krinsky-Robb confidence

interval and increases in the sample size causes them to converge.
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Replication of Split-Sample Hypothesis Tests

Twenty-five of the 51 studies contain data sets that support split-sample WTP
comparison tests and 16 of these studies allow for directional hypotheses tests. Six of the 16
studies allow for 1 test each, 2 studies support 2 tests each, 4 studies support 3 tests, 3 studies
support 6 tests and 1 study supports 12 tests. In total there are 52 possible directional hypothesis
tests. Seventeen of the tests, including 12 from a single study, are for differences in individual
health risk, 9 are for the scope of the policy, 15 are for hypothetical bias, and 9 are for payment

schedules.

The test for differences in individual health risk is OWTP /dr > 0, where r is the risk
that would be avoided by purchase of a treatment or payment for a policy. A scope test is similar
with OWTP /dq > 0, where q is an environmental good. A test for hypothetical bias concerns
comparing actual, A, and hypothetical, H, payments for a good or service, with an expectation of
WTPH > WTPA. A test for payment schedules involves differences in the amount of time, ¢, a
fixed payment would be made, OWTP /3t < 0. Each of these tests is directional and one-sided t-
tests for differences in means are appropriate (Cho et al. 2013). We conduct t-tests for

differences in WTP estimates across treatments with each of the WTP estimates: t — statistic =

WTPx—WTPy
se)z(+se}%

differences in the WTP estimates and not economic significance.

, where X and Y are different treatments. Our focus here is on statistically significant

The results of the hypotheses tests are presented in Table 11. The average p-value of all
of the texts except for the adjusted Kristrém WTP2 estimates indicates that, on the whole, the
SBC data does not lead to statistically significant differences. Forty-two percent of the

differences in Turnbull WTP1 estimates are statistically different at the 99% confidence level,
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52% at the 95% level, and 60% at the 90% level. Fifty-seven percent of the differences in
adjusted Kristrom WTP2 estimates are statistically different at the 99% confidence level, 65% at
the 95% level, and 73% at the 90% level. These passing rates are significantly higher than the
passing rates for the parametric WTP hypothesis tests. Researchers should strongly reconsider

each nonparametric estimators continued use in isolation.

Only three percent of the differences in the Hanemann mean WTP3 estimates are
statistically different at the 99% confidence level, 21% at the 95% level, and 26% at the 90%
level. This standard estimator already precludes hypothesis tests for 35% of the sample.

Researchers should strongly reconsider its continued use in isolation

Fifteen percent of the differences in Hanemann truncated mean WT P4 estimates are
statistically different at the 99% confidence level, 29% at the 95% level, and 37% at the 90%
level.® Seventeen percent of the differences in median WTP5 estimates are statistically different

at the 99% confidence level, 23% at the 95% level, and 35% at the 90% level. Seventeen percent

® We have also conducted the convolutions test with the Krinsky-Robb simulations (Poe,
Severance-Lossin, and Welsh 1994, Poe, Giraud, and Loomis 2005). The results are similar to
the results from the Delta Method. Seventeen percent of the differences in Hanemann truncated
mean WTP4 estimates are statistically different at the 99% confidence level, 27% at the 95%

level, and 38% at the 90% level.
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of the differences in linear WTP6 estimates are statistically different at the 99% confidence

level, 31% at the 95% level, and 38% at the 90% level.

There are several other ways in which a parametric split-sample hypothesis test can be
conducted. The first is to pool the samples and include a treatment dummy variable for the
differences in treatments: Pr(yes) = 1/(1 + exp (—(a + fA + wD)), where D is a dummy

variable equal to O for a base case scenario and 1 for a treatment. One test is for differences in
the probability of a yes response to the SBC question, w z 0. This test may produce higher t-

statistics since the coefficient on the treatment dummy variable is not divided by the coefficient
on the cost amount. Another test is for whether the willingness to pay estimates from a pooled
logit model are statistically different. For the Hanemann mean WTP4 estimate this test is for
differences in WTP(D = 0) = (—1/B) x In(1 + exp(a)) and WTP(D = 1) =

(—1/B) x In(1 + exp(a + w)). These tests may produce higher t-statistics on the difference in
willingness to pay because the marginal utility of income is constrained across samples. This
constraint decreases the standard error of willingness to pay and, in some cases, increases the

difference in willingness to pay.

Thirty-three of 52 tests for mean WTP4 have p > 0.10 and are candidates for less
onerous tests with the Delta Method. These tests are from 11 articles. Fifteen of the tests are for
differences in individual health risk, 7 are for hypothetical bias, 6 are for different payment
schedules, and 5 are scope tests. We find a statistically significant treatment dummy coefficient
estimate in 17 of the 33 tests. We find statistically significant differences in mean WTP4 in 15 of
the 33 tests. Five of the tests are statistically significant at the 90% level, 2 are statistically

significant at the 95% level, and 8 are statistically significant at the 99% level. For 9 of the 15
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tests, the constraint that the base and treatment slope coefficients are statistically equal is
rejected. There is no theoretical reason for different slope coefficients since the marginal utility
of income should be constant. But, behaviorally, it may be logical for survey respondents to be
less responsive to the cost amount for larger health risks, larger scope levels, longer payment

schedules and hypothetical, relative to real, scenarios.

Conclusions

In this chapter we have replicated nonparametric and parametric willingness to pay
estimates from 120 SBC data sets in 51 CVM studies. We find that willingness to pay estimates
can vary significantly depending on the estimation approach. This variation is by design in the
case of the Turnbull, which is a lower bound estimate most appropriate for applications such as
natural resource damage assessment (Carson et al. 2003) and sensitivity analysis in benefit-cost
analysis. Considering parametric willingness to pay estimates, we focus our attention on three
often-used measures from Hanemann (1984, 1989) and the linear probability model. A
significant portion of the mean WTP estimates that allow for negative willingness to pay in the
logistic function are negative overall and many others are not statistically different from zero.
The WTP estimates from the approach that truncates the logistic distribution at zero are four
times larger than the more conservative mean WTP estimates. This difference makes it unclear

which willingness to pay measure should be used in benefit-cost analysis.

We estimate standard errors and t-statistics for these WTP estimates and find that the
Turnbull WTP estimates are measured much more precisely then the parametric WTP estimates.
The Turnbull WTP average t-statistic is 56% higher than the truncated mean WTP t-statistic. We

find that the number of non-monotonicities in the cost amounts and fat tails contribute to
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lowering t-statistics in the parametric WTP estimates. Small sample size also contributes to low

t-statistics.

We identify and conduct 52 split-sample tests of directional hypotheses in the 120 data
sets. With relatively small standard errors, the Turnbull and adjusted Kristrom WTP estimates
are more likely to lead to a researcher failing to reject the null hypothesis relative to tests
conducted with the parametric WTP estimates. Sixty-percent and 73% of tests conducted with
the Turnbull and the adjusted Kristrom WTP estimates find statistically different WTP estimates
compared to 37% for the truncated mean WTP, 35% for the median WTP and 38% for the linear

WTP estimates.

The results of these tests should not be taken as a meta-analysis on the validity of the
contingent valuation method (Boyle and Bishop 2019). Lower p-values may be achieved with
each of these data sets with appropriate statistical models or by inclusion of covariates. Our
primary goal is to determine if there are any differences in the directional hypothesis tests across
WTP estimation approaches. We find that there are and caution researchers who may be tempted
to rely on a single WTP estimation approach without robustness checks. In particular, statistical

tests based solely on the nonparametric WTP estimates may be particularly misleading.

These results lead to the conclusion that efforts should be made to better estimate WTP
and its standard errors in parametric models with the SBC question. Our meta-analysis finds that
these problems are lessened and may disappear with larger sample sizes. While there is an
already large literature on bid design and empirical approaches to modelling the preponderance
of zero WTP values (Kristrom 1997), additional research could focus on methods to avoid

negative WTP and reduce the fat tails and flat tails problems.
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Two approaches have emerged in the literature to collect additional information from
survey respondents and improve the estimation of willingness to pay. In the first approach,
follow-up dichotomous choice questions have been used to increase statistical efficiency
(Hanemann, Loomis and Kanninen 1991). Doubled-bounded referendum questions present a
follow-up question where respondents who vote for a policy at a tax amount are asked the same
question at a higher tax amount. Respondents who vote against the policy are asked the same
question with a lower tax amount. The amount of willingness to pay information provided by the
respondent is increased. For respondents who change their vote (e.g., for-against and against-for)
willingness to pay is bounded between the two cost amounts. For respondents who vote against
the policy in the first and follow-up question, the range of willingness to pay above zero is
narrower. For respondents who vote yes to the first and follow-up questions, the lower bound of
willingness to pay is higher and the lower bound and income/infinity bound narrows. While a
number of studies continue to use the double-bounded approach, this approach has been found to
be prone to starting point bias and incentive incompatibility (Whitehead 2002, 2004). Use of
double-bounded questions must be conducted with the knowledge that increased efficiency is

obtained at the risk of bias.

In the second, more recent, approach, follow-up discrete choice questions have been used
to increase statistical efficiency but the cost amounts that follow the first question are not
anchored to the first question and other attributes vary as in discrete choice experiments. Vossler,
Doyon, and Rondeau (2012) develop theory to show that a sequence of binary choice questions
format is incentive-compatible if respondents treat each scenario as independent. Giguere, Moore
and Whitehead (2020) find that while SBC questions produce WTP estimates that do not pass

scope tests, the increased efficiency of the WTP estimates in a sequence of binary choice
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questions leads to WTP estimates that do exhibit sensitivity to scope. Thus, this type of study
design, which blurs the distinction between contingent valuation and discrete choice experiments
(Haab, Lewis and Whitehead, 2022) can be used as a reliable and useful alternative to contingent

valuation surveys that employ a single binary choice question.

More research is needed to determine if these types of CVM data improve the reliability
of WTP across estimation methods, decrease WTP standard errors, equate Delta Method and
Krinsky-Robb confidence intervals and lead to WTP estimates that are more likely to pass

validity tests.

23



Table 1. Willingness to pay estimates

Estimator
Turnbull WTP1 = ZjAj x [Pr(yes;) — Pr (vesj;1)]
WTP2 = Zju/z) X (A + Aj41)
Adjusted Kristrom x [Pr(yes;) — Pr(yes;+1)],

Pr(yes) =1|A=0,A; = A, — B X Pr(yesy)

Hanemann (1984) “mean”

WTP3 = —a/B

Hanemann (1989) “truncated

mean”’

WTP4 = (—1/B) X In (1 + exp (a:))

Hanemann (1984) “median”

WTP5 = exp (—y/6)

Linear probability model

WTP6 = (1/2) x 8 X (=0 /)

Notes:
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Table 2. Data Summary by Study (n=52)

Data Summary by Study
Variable | Label Mean | Std Dev | Minimum | Maximum
Year publication year 2005.12 | 7.65 1990 2022
uUsS 1 if USA data 0.61 0.49 0 1
Donation | 1 if donation payment vehicle 0.22 0.42 0 1
Mail 1 if mail/mailback survey 0.47 0.5 0 1
Inperson | 1 if in-person contact survey 0.25 0.44 0 1
Lab 1 if lab survey 0.14 0.35 0 1
Phone 1 if phone contact/survey 0.14 0.35 0 1
Online 1 if online contact/survey 0.06 0.24 0 1
Students | 1 if student sample 0.14 0.35 0 1
Public 1 if public good 0.71 0.46 0 1
Costs number of cost amounts 7.51 3.65 3 21
Onetime | one-time payment 0.53 0.5 0 1
Years payment years 7.94 11.47 1 30
MinCost | minimum cost 23.14 42.35 0.5 200
MaxCost | maximum cost 1032.65 | 3526.01 2.5 24000
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Table 3. Data summary by data set (n=120)

Variable | Label Mean | Std Dev | Minimum | Maximum
Sample | sample size (n) 43331 | 529.58 47 4361
Costs number of cost amounts 6.72 34 3 21
n/costs sample size per cost amount 70.53 74.4 7 396
Pctpool | percent non-monotonicities 0.22 0.20 0 0.67
Sminbid | standardized minimum bid 0.10 0.12 0.00 0.67
Sbid1 standardized bid1 0.56 0.18 0.06 0.88
Sbid2 standardized bid2 0.88 0.20 0.25 1
Pctyesl | percent yes at Sbidl 0.35 0.16 0.03 0.82
Pctyes2 | percent yes at Sbid2 (Fat tail) 0.23 0.16 0 0.74
Flat tail | standardized Kristrom [slope| 0.48 0.52 0.01 4.02
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Table 4. Willingness to Pay Estimates

Full Sample

Negative WTP3 deleted

Variable Mean SD Cases | Mean SD Cases
Turnbull (WTP1) 331.50 764.30 120 331.66 730.32 99
Adjusted Kristrom (WTP2) 532.77 1207.03 120 539.93 1167.51 99
Hanemann (1984) “mean” 233.70 1362.39 120 409.36 935.13 99
(WTP3)

Hanemann (1989) “truncated 1099.73 6137.59 120 617.21 1438.25 99
mean” (WTP4)

Hanemann (1984) “median” 464.85 2473.38 119 547.49 2718.09 98
(WTP5)

Linear probability model 1087.76 6293.45 120 585.81 1404.57 99

(WTP6)
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Table 5. WTP t-statistics (Delta Method)

t-statistic | SD | Sample
Turnbull (WTP1) 11.94 |6.55| 120
Adjusted Kristrom (WTP2) 1483 | 7.40| 120
Hanemann (1984) “mean” (WTP3) 7.68 496 | 120
Hanemann (1989) “truncated mean” (WTP4) 5.29 3.81 119
Hanemann (1984) “median” (WTP5) 8.72 5.84 | 120
Linear probability model (WTP6) 6.14 4.89 99
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Table 6. Krinsky-Robb to Delta Method Ratios of Confidence Intervals

Mean | Min | Max | Sample
Hanemann (1984) “mean” (WTP3) 1.41 | 1.01 | 5.51 97
Hanemann (1989) “truncated mean” (WTP4) | 1.65 | 1.00 | 6.32 118
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Table 7. Krinsky-Robb Confidence Interval Asymmetries

Mean | Min | Max | Sample
Hanemann (1984) “mean” (WTP3) 1.50 | 0.49 | 6.94 67
Hanemann (1989) “truncated mean” (WTP4) | 2.66 | 1.19 | 8.41 108
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Table 8. Determinants of t-statistics for WTP estimates

t-statistic

WTP1 WTP2 WTP3 WTP4 WTPS WTP6
Coeff. | t-
Coeff. | t-stat | Coeff. | t-stat | Coeff. | t-stat | Coeff. | t-stat | Coeff. | t-stat stat
Constant 965 | 644 | 9.61 | 723 | 745 | 721 | 556 | 6.65 | 852 | 7.57 | 3.56 | 3.32
-7.50 | -2.51 -
032 | 0.09 -7.05 | 448 | -591 | -3.51 | -8.13 | -4.70 | -5.56 | 2.99
Non-monotonicities (Pctpool)
546 | 1.60 -
Fat tail (Pctyes2) -6.67 | -3.56 | -4.43 | -3.11 | -8.60 | -4.18 | -0.94 | 0.51
Flat tail -0.79 | -1.02 | 2.60 | 226 | 1.69 | 348 | 1.62 | 296 | 197 | 3.65 | 1.81 |3.49
Study sample size 0.006 | 3.32 | 0.010 | 5.70 | 0.006 | 4.36 | 0.003 | 3.15 | 0.007 | 4.09 | 0.008 | 8.01
Sample size 120 120 120 119 120 99
R? 0.24 0.57 0.58 0.34 0.61 0.47
F-statistic (df) 12.52 (3) 3743 (4) 38.91 (4) 14.61 (4) 44.24 (4) 20.84 (4)
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Note: Turnbull (WTP1), Adjusted Kristrém (WTP2), Hanemann (1984) “mean” (WTP3), Hanemann (1989) “truncated mean”

(WTP4), Hanemann (1984) “median” (WTPS5), Linear probability model (WTP6)
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Table 9. Determinants of Krinsky-Robb to Delta Method Ratios

Ratio
WTP3 WTP4

Coeft. | t-stat | Coeff. | t-stat
Constant 0.99 5.39 1.40 5.65
Non-monotonicities (Pctpool) 0.05 0.13 0.98 1.61
Fat tail (Pctyes2) 2.37 291 1.59 1.78
Flat tail 0.00002 | 0.00 | -0.26 |-1.79
Study sample size -0.00049 | -2.74 | -0.00045 | -2.34
Sample size 97 118
R? 0.27 0.47
F-statistic (df) 8.64 (4) 20.84 (4)
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Table 10. Determinants of Krinsky-Robb Asymmetries

Asymmetry

WTP3 WTP4

Coeff. | t-stat | Coeff. | t-stat

Constant -0.90 -0.25 1.87 6.36

Non-monotonicities (Pctpool) 0.12 0.17 2.21 2.56

Fat tail (Pctyes2) 5.54 4.78 4.29 4.00
Flat tail 0.34 0.00 | -041 |-1.53
Study sample size -0.00022 | -1.14 | -0.00074 | -2.66
Sample size 67 118

R? 0.55 0.34
F-statistic (df) 18.58 (4) 13.12 (4)
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Table 11. Average p-values and proportion of tests with t-statistics above the critical t-value in

a one-tailed test

Significance Level

Number of Mean p-
tests values 99% 95% 90%
o o 0
Turnbull (WTP1) 52 0.120 42% 52% 60%
0 o 0
Adjusted Kristrom (WTP2) 34 0.211 3% 21% 26%
Hanemann (1984) “mean” 52 0.195 15% 29% 37%
(WTP3)
Hanemann (1989) “truncated 51 0.226 17% 23% 35%
mean” (WTP4)
Hanemann (1984) “median” 52 0.192 17% 31% 38%
(WTPS)
Linear probability model 52 0.080 57% 65% 73%

(WTP6)
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