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The Effects of Hazardous Chemical Cleanups on Birth Qutcomes

Dennis Guignet, Kyle Vetter, Linda Bui, Heather Klemick, and Ron Shadbegian

Abstract: Focusing on hazardous chemical cleanups under the US Resource Conservation and
Recovery Act (RCRA), we employ a reverse difference-in-differences design to estimate the
effects of cleanup on birth outcomes. Data on the population of births in North Carolina from
1990-2019 are linked to cleanups at contaminated sites across the state. We find robust evidence
that for children born to mothers residing within 250 meters, cleanup leads to an almost one week
increase in gestational age, and a 6 to 8 percentage point reduction in the risk of preterm birth.
Cleanup may also lead to improvements in birthweight, but these results are not statistically
significant across all models. Assessments of the post-treatment trends and demographic sorting
support a causal interpretation of the results. We illustrate how these quantified improvements in
newborn health can be monetized to inform local land use and cleanup decisions, as well as future
regulations under RCRA.

JEL Codes: D62, 118, Q53

Keywords: birth, children’s health, cleanup, exposure, hazardous, health, RCRA

Acknowledgements: This research was supported by the US Environmental Protection Agency (EPA) Research
Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an
interagency agreement between the US Department of Energy (DOE) and the EPA. ORISE is managed by Oak Ridge
Associated Universities (ORAU) under DOE contract number DE-SC0014664. We are grateful for support from the
Cratis D. Williams School of Graduate Studies’ GRAM Program at Appalachian State University. We thank Ann
Wolverton, and participants at the Association for Environmental and Resource Economists’ and the Northeastern
Agricultural and Resource Economics Association’s 2022 and 2024 annual conferences, respectively, for helpful
comments. We thank the Children’s Environmental Health Initiative (CEHI) for providing access to the newborn
health data. The findings and conclusions in this study are those of the authors and do not necessarily represent the
views of the US EPA, ORISE, CEHI, or the North Carolina Department of Health and Human Services, Division of
Public Health.



I. INTRODUCTION

The Resource Conservation and Recovery Act (RCRA) requires facilities to investigate and clean
up releases of hazardous chemicals. Such activities are collectively referred to as Corrective
Actions. Releases of hazardous chemicals can potentially yield extensive adverse effects in the
United States, with over 31 million people (9% of the US population) living within one mile of a
RCRA Corrective Action (CA) site (EPA, 2023a). Despite RCRA being a cornerstone of US
environmental policy for nearly 50 years, benefit-cost analyses for most US Environmental
Protection Agency (EPA) regulations under the authority of RCRA do not quantify the benefits to
residents living near these facilities (Guignet and Nolte, 2024).

A critical step in the monetization of benefits is to first quantify the effects, and that is the objective
of our study. Focusing on RCRA facilities in North Carolina where a CA has occurred, we
implement a reverse difference-in-differences (RDID) design (Kim and Lee 2019; von Hinke and
Serensen 2023), where the treated and control groups are different prior to treatment, but then
become similar after treatment. Our approach is coupled with multivariate regression modelling
and exact covariate matching, to estimate the effects of hazardous chemical cleanups on birth
outcomes. We circumvent recent criticisms against conventional difference-in-differences (DID)
models in the face of staggered treatment events by utilizing a natural control group specific to
each site and treatment (i.e., cleanup) — children born to mothers who live in the same
neighborhood and around the same CA sites, but who live far enough away from the site so that
they are not exposed to the released chemicals, nor affected by the subsequent cleanup. The
appropriate distance threshold between the treated and control groups is determined based on
econometric examination of the conditional pre- and post-treatment distance gradients (Linden and
Rockoff2008; Muehlenbachs et al. 2015; Haninger et al. 2017; Guignet et al. 2023b). The presence
of a natural control group corresponding to each site and treatment event allows for a naturally
stacked DID approach. Stacked DID designs have been touted as one approach to circumvent the
“negative weighting” concerns associated with staggered treatment events and conventional DID
estimation via two-way fixed effects models (Goodman-Bacon 2021, Roth et al. 2023).

We set out to answer two main questions. First, do cleanups and exposure mitigating activities
associated with RCRA Corrective Actions lead to improvements in birth outcomes for children
whose mothers reside near the sites? Second, what is the spatial extent of any such health
improvements?

We find that cleanup leads to localized improvements in newborn health, extending only to
children born to mothers who lived within 250 meters of a CA site. The strongest evidence is in
terms of gestational age and preterm birth, suggesting that cleanup leads to a 0.8 to 0.9 week
increase in gestation, and a 6 to 8 percentage point decrease in the risk of preterm birth.
Supplemental diagnostics confirm that post-cleanup sorting of different demographic groups is
likely not driving the results, and that the evidence is overall consistent with a causal interpretation.
We also find consistent (but sometimes statistically insignificant) evidence regarding increases in
birthweight and reductions in the risk of low and very low birthweight. Such improvements in
birth outcomes can yield benefits in terms of longer-term health and increased human capital
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(Currie 2011). Both increases in gestational age (Crump et al. 2011; Boyle et al. 2012) and
birthweight ( Black et al., 2007; Belbasis et al. 2016; Xie et al. 2017; Baguet and Dumas 2019;
Ludvigsson et al. 2018; WHO 2022) are associated with later-in-life improvements in health,
education, and labor outcomes. Given the extremely localized nature of the estimated health effects
and minimal use of local groundwater around our study sites, we conjecture that re-suspension of
contaminated particles into the air, and mothers’ subsequent inhalation, ingestion, and/or dermal
contact with these particles is a plausible exposure pathway. Vapor intrusion into homes and
subsequent inhalation of hazardous vapors is also possible.

This study offers several policy-relevant contributions to the literature. First, we add to a growing
quasi-experimental literature that quantifies the effects of exposure to hazardous chemicals on
children’s health (e.g., Currie et al., 2011, 2015; Rau et al., 2015; Klemick et al. 2020; Bui et al.,
2022). Second, our quantified estimates of improvements in newborn health pave the way for
monetization of this critical endpoint. A review of economic analyses for recent EPA regulations
under the authority of RCRA finds that, in most cases, the only monetized benefits were avoided
cleanup costs experienced by the regulated facilities, and/or cost-savings to regulators. Benefits
accruing to residents living near hazardous chemical facilities are often discussed only
qualitatively (Guignet and Nolte 2024). Third, our study provides two methodological
contributions. To our knowledge, it is one of only a few applications demonstrating the RDID
design (Kim and Lee 2019; von Hinke and Serensen 2023). Additionally, we illustrate how
commonly applied spatial DID designs, where there is a natural control group corresponding to
each treatment event, allow researchers to circumvent potential biases when estimating the effects
of treatment events that are staggered over time (Goodman-Bacon 2021, Roth et al. 2023).

II. METHODOLOGY
1I.A. Reverse Difference-in-differences (RDID)

Difference-in-differences (DID) has emerged as one of the most prominent methodologies for
causal inference in the social sciences (Roth et al. 2023). Recently formalized by Kim and Lee
(2019), a much less studied variant of the DID approach is the reverse difference-in-differences
(RDID) design. In a conventional DID setting, the treated and control groups are as similar as
possible before the treatment event, but then post-treatment the two groups become different due
to the treatment. In a RDID setting, however, the treated and control groups are different prior to
treatment, but then become similar after treatment. To our knowledge there are only two published
applications of the RDID approach. Kim and Lee (2019) assess the impact of work-hour limits on
work hours and wages in South Korea. Initially work-hour limits were only in place for a subset
of firms. This control group was compared to a “treated” group of firms that did not initially face
work-hour limits, but where such limits were put in place one year later. von Hinke and Serensen
(2023) used the RDID approach to examine how exposure in utero and in infancy to an extreme
air pollution event — the 1952 London smog — affected cognitive ability and respiratory health later
in life. Their identification strategy compared those exposed to the London smog while in utero
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and infancy to those born in the same areas, but after the smog event. This difference was in turn
compared to a control group of individuals born during the same time period, but in areas
unaffected by the smog.

Similar to von Hinke and Serensen (2023), in our current context we have a treated group of
exposed individuals — i.e., children born to mothers living near a chemical facility and who are
thus potentially exposed to hazardous chemicals. This set of individuals is denoted as group A in
Figure 1. We have a control group of children born to mothers living in the same neighborhood,
and around the same chemical facility, but who live far enough away so that they are not exposed
to hazardous chemicals (denoted as group B). These two groups are different prior to treatment —
one is potentially exposed to hazardous chemicals, and the other is not.

We define treatment as the completion of cleanup and exposure mitigation activities. More
formally, we define treatment as a Corrective Action (CA) site receiving a Human Exposure Under
Control (HEUC) determination by regulators.! The HEUC determination is a formal milestone of
the RCRA Corrective Action (or cleanup) process, and it is assigned when the responsible party
sufficiently demonstrates that there is no longer a risk of human exposure. After the HEUC,
exposure to hazardous chemicals is eliminated and the treated and control groups are now
hypothesized to be similar; as depicted by groups A" and B’ in Figure 1.

Figure 1. Depiction of the Reverse Difference-in-differences (RDID) Design.

Pre-treatment: Post-treatment:
Potential Exposure to Hazardous Human Exposure Under Control
Chemicals (HEUC)

Bl

The identification strategy outlined in Figure 1 is similar to a typical DID setting. We are
estimating the change or difference in average outcomes among the treated group, before and after
treatment (A" — A). This first difference could also capture other trends that coincide with the
HEUC event, and so a second differencing subtracts out the average change over the same time

!'In North Carolina, the Department of Environmental Quality (NC DEQ) operates the CA program and makes such
determinations. Although the US EPA provides oversight and ensures that federal standards are met, 44 states are
authorized to operate their CA programs (EPA 2025).



period for children born to mothers in the same neighborhood and around the same chemical
facility, but who are far enough away that they are not exposed to hazardous chemicals (B’ — B).
As in a typical DID framework, our RDID estimator can be summarized as (A" — A) — (B’ — B).
The difference between the DID and RDID approaches primarily comes into play when we assess
parallel trends and the plausibility for causal inference, which we return to in Section IV.C.

1I.B. Empirical Model

We implement the RDID approach within a regression model framework, as shown by equation
(1). The birth outcomes of interest are denoted as Y;j;. In our primary models, the outcomes of
interest are continuous measures of gestational age (measured in weeks) and birthweight
(measured in grams). To examine the robustness of our results we also estimate linear probability
models, where Y;; represents binary indicators denoting preterm birth (PTB), low birth weight
(LBW), and very low birthweight (VLBW).?

The unit of observation is the birth of child i to a mother living near chemical facility j, and who
was conceived in period 2. We control for x;;;, which is a vector of individual-level characteristics

of the child (race or ethnicity, sex at birth, and the month of conception), and of the parents
(education, mother’s smoking and marital status, mother’s age, birth order, and proxies for income,
namely participation in Medicaid and in the US Department of Agriculture’s Special Supplemental
Nutrition Program for Women, Infants, and Children (WIC)).

(1)  Yije =B + ;HEUC;, + A1(d;; < D) + y{1(d;j < D) X HEUC;(} + ¢ + €1

The “treatment” event of interest is verification by regulators that human exposure is under control
(H EU C]t) at chemical facility j. This treatment event indicator equals one if the child was
conceived after the HEUC determination, and is zero otherwise. We also include a treated group
indicator ﬂ(di i< D), which equals one when child i is born to a mother who lives within a distance
D from chemical facility j, and is zero otherwise. This indicator denotes the treated group, both
pre- and post-treatment.

Critical to our identification strategy is the inclusion of site-by-conception year fixed effects (¢ ).
These fixed effects account for site-specific factors and temporal trends that could otherwise

2 For the binary outcomes, linear probability models are estimated instead of common nonlinear models (e.g., probit
or logit). This is primarily due to our inclusion of high-dimensional fixed effects to control for spatially and temporally
correlated confounders. These overlapping fixed effects cannot be simply differenced or conditioned out in nonlinear
models, leading to an incidental parameters problem (Lancaster 2000; Wooldridge 2010, page 612). In such cases, the
linear probability model provides a reasonable approximation when the objective is to estimate partial effects on the
probability of the outcome of interest (Wooldridge 2010, pp. 563), as is the case here. Linear probability models also
accommodate a mix of continuous and categorical variables and offer easily interpretable marginal effects (Angrist
and Pischke 2009).



confound our results. The inclusion of ¢, also allows us to circumvent criticisms of DID
applications when the treatment events are staggered over time (Goodman-Bacon 2021, Roth et
al. 2023), and therefore we do not need to implement models developed to address these criticisms
(e.g., Callaway and Sant’Anna 2021, Wooldridge Forthcoming). In our setting, we do have
staggered treatment events. We observe cleanup and HEUC determinations at different chemical
facilities, and that occur at different points in time. In this and other staggered DID settings,
analysts are effectively pooling numerous sub-experiments, and are estimating an overall average
treatment effect on the treated (ATT) that is a weighted average of the ATTs across the sub-
experiments. The crux of the staggered DID criticism is that the conventional two-way fixed
effects (TWFE) model compares treated observations to not-yet- and never-treated observations,
which act as control group observations. However, the TWFE model also implicitly makes
“forbidden” comparisons to already-treated observations, which can lead to negative weighting of
the ATTs from some sub-experiments. In cases where the ATT is varying over time this can bias
the overall average ATT estimate of interest (Goodman-Bacon 2021, Roth et al. 2023). We cannot
rule out the possibility of time varying treatment effects in our current setting. For example,
residual parental health effects and within-body chemical burden could remain after the HEUC
determination, but may continue to diminish over time.

In our current context, these “forbidden” comparisons would involve cross-site comparisons.
However, our estimation approach avoids such concerns because each chemical facility includes
a natural control group that is specific to the site and HEUC event — children born around the same
CA site, but who were too far away to be exposed to the hazardous chemicals. These individuals
“experience” a specific treatment event but are not exposed to the treatment. The typical TWFE
model does not contain control observations that are linked to a specific sub-experiment, as we
have here. The availability of site-specific control groups allows us to identify ¢ ;. in equation (1),
and thus absorb any cross-site variation over time, including variation based on “forbidden”
comparisons. Due to the inclusion of ¢, identification of the overall ATT in our analysis is based
solely on within-site and year variation. When considering only within-site, the treatment is not
staggered over time, and so there are no “forbidden” comparisons of treated observations to
already-treated observations.’

Our empirical framework is more akin to a stacked DID design (Cengiz et al. 2019; Deshpande
and Li 2019; Fadlon and Nielsen, 2021), where analysts construct a counterfactual group specific
to each sub-experiment and then stack the datasets to estimate a pooled model. We refer to our
setting as a naturally stacked DID design because we do not need to construct a counterfactual
group for each sub-experiment, one is inherently present by our comparison of children living
nearest to the CA sites to those living around the same sites but farther away. The stacked DID
method has been suggested as one approach to address concerns regarding staggered treatment

3 This feature is not unique to our study, and in fact such spatial DID approaches have been widely used, particularly
in the hedonic property value literature (e.g., Linden and Rockoff 2008, Muehlenbachs et al. 2015, Haninger et al.
2017, Guignet et al. 2023a, 2023b, Guignet and Nolte 2024, Cassidy et al. 2024). Basu et al. (2025) recently applied
this same identification strategy in their analysis of residential sorting and pollution exposure among older adults.



events (Goodman-Bacon 2021, Roth et al. 2023, Basu et al. 2025). To further align with the stacked
DID framework, in our most flexible models we interact the post-treatment indicator HEUCj; and

treated zone indicator ﬂ(di < D) with site-specific indicators (hence the j subscript on the a; and
A; coefficients in equation (1)). In theory, we could estimate a separate regression model for each
of the chemical facilities, but as demonstrated in Section III, the sample sizes (particularly for the
treated group) are quite small around some of the sites. Instead, we pool the data across sites and
estimate the average effect of cleanups on birth outcomes within the same regression model. Doing

so provides more power to statistically estimate the average effect of the HEUC events.

Of primary interest in equation (1) is the interaction term between the treated group and the post-
treatment event, Il(dl- i< D) X HEUC;;. The corresponding coefficient to be estimated, y, is the
weighted-average of the ATTs across the sites. All else constant, y captures the average
incremental effect of cleanup on gestational age or birthweight among children born to mothers
who live near the chemical facilities. Our primary hypothesis is y > 0, which would imply that
cleanup and the subsequent HEUC determination increase gestational age and birthweight. In our
linear probability models of PTB, LBW, and VLBW, the primary hypothesis is y < 0, which
would imply a reduction in the risk of these conditions.

The other parameters to be estimated include B, @;, 4;, and ¢ ;. The unobserved disturbance term
&;j¢ 1s allowed to be correlated for children within the same neighborhood (i.e., within the same
Census block group).

11.C. Pre-regression Matching

To further assess the robustness of our results, we also estimate a series of regression models using
a matched sample. An exact covariate matching algorithm is used to create a more comparable set
of treated and control units. Treated observations (births within close proximity to the chemical
facility, i.e., Il(dl- i< D) = 1) and control observations (births farther away from the same
chemical facility, i.e., ]l(di i< D) = 0) are matched if they simultaneously fulfill all three of the
following conditions: (i) they are nearest to the same chemical facility*, (ii) they are conceived in
the same year and month, and (iii) both are conceived either pre- or post-HEUC. The motivation
of our matching algorithm is to provide a more balanced sample over time and across sites, and
thus better control for any remaining unobserved confounders that may be correlated over space
and time.’

4 As discussed in Sections III and IV.A, in our application this means that the treated and control observation are both
within 1,000 meters of the same chemical facility.

5 We assessed the possibility of also matching based on sociodemographic characteristics (e.g., gender, race or
ethnicity, parental education, and mother’s age), but doing so even for one of these characteristics resulted in too few
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The sample is pruned and re-weighted so that the distributions of the treated and control groups
across these dimensions are the same. Each matched treated observation is given a weight of one
if it is matched to at least one control observation. A control observation can be given a weight
greater than one if it was matched to more than one treated observation, or could have a weight
less than one if there are many similar control observations matched to the same treated
observation. In essence, the matching algorithm constructs a counterfactual based on a weighted
average of control observations. Treated and control observations that were not matched
simultaneously based on these three dimensions are given a weight of zero and discarded from the
matched sample. Although we are performing exact matching, we employ this matching procedure
using a Coarsened Exact Matching (CEM) algorithm (Blackwell et a. 2009; Iacus et al. 2012).
Regression models based on equation (1) are then estimated using the weighted sample, controlling
for the same set of sociodemographic characteristics and other covariates.

III. DATA
111.A. Data Sources and Background

This research is conducted under an agreement with the Children’s Environmental Health Initiative
(CEHI) at the University of Illinois-Chicago and a protocol approved by the University of Illinois-
Chicago Institutional Review Board. The data are from the Vital Statistics Department of North
Carolina State Center for Health Statistics (NCSCHS), and are subsequently compiled and
maintained by CEHI. The data include individual-level observations for all live births in NC from
1990-2019 and contain information on the date of birth, birthweight, gestational age, race and
ethnicity, and parental characteristics. We use the mother’s place of residence and baby’s date of
conception to spatially and temporally link each individual birth record to chemical facilities
regulated under RCRA and the cleanup activities at these sites. We assume that a mother lives at
the same address throughout the pregnancy, but only observe the mother’s place of residence at
the time of the child’s birth.

Data on all 2,447 RCRA facilities in NC were obtained from RCRAInfo, EPA’s comprehensive
database of facilities handling hazardous chemicals. Geographic coordinates of the RCRA
facilities come from EPA’s Facility Registry Service. We first draw focus to the 34 RCRA facilities
in North Carolina where a CA investigation was opened, and where that investigation identified a
contamination release severe enough to require intervention to protect human health.®

matches and an estimating sample that was too small for statistical analysis. Nonetheless, we control for these key
sociodemographic characteristics by including them in x;;, when estimating equation (1).

¢ We define such sites as those where active remediation technologies, physical controls, and/or institutional controls
were deemed necessary. Such cases are identified in the RCRAInfo database based on the following event codes:
CAS550RC (remedy construction); CA770GW and CA770NG (groundwater and nongroundwater controls); and
CA772EP, CA772GC, CA772ID, and CA772PR (institutional controls).



Diagnostic analysis suggests that any effects on newborn health are extremely localized, and thus
the treated group zone extends only 250 meters from a site, on average (see Section IV.A for
details). To facilitate a clean quasi-experiment and thus more valid quantification of any health
improvements associated with cleanup, we further draw focus to the 12 CA sites where births were
observed within the treated group zone (i.e., 0-250 meters) both before and after the HEUC
determination. The location of the 12 CA sites analyzed are shown in Figure 2.

Figure 2. Map of 12 Corrective Action Sites in North Carolina.

| ( %

® Corrective Action Site (n=12)

Review of the case files from the North Carolina Department of Environmental Quality (NCDEQ)
confirm that in all 12 cases there was a chemical spill or release at the facility, and that physical
remediation of the pollutants was undertaken. Remediation methods included excavation of
contaminated soil, soil aeration and vapor extraction, groundwater treatment, and the installation
of physical barriers to minimize the migration of contaminants. Some barriers contained reactive
materials to chemically neutralize pollutants. Active monitoring of soil and groundwater and some
element of natural attenuation were included in the remediation activities at all sites.

According to the available North American Industry Classification System (NAICS) codes in
RCRAInfo, most of the 12 facilities are involved in manufacturing activities (8 facilities), followed
by transportation (6), waste management (5), general services (3), and construction (1). Half of the
sites are recorded as having more than one NAICS categorization. Based on the individual case
files from the NCDEQ), the most common contaminants released included heavy metals (e.g., lead,
nickel, chromium, cadmium), volatile organic compounds (e.g., benzene, toluene, and
ethylbenzene), and other toxic chemicals such as arsenic and sulfuric acid.’

When routine monitoring of soil, groundwater, and (when applicable) surface water consistently
suggest that migration of pollutants to human and environmental endpoints is no longer a concern,
then the regulators make a HEUC determination. Testing and related cleanup activities may
continue after the HEUC determination, but after this event the site is generally deemed safe to
surrounding populations.

7 The NCDEQ case files can be accessed at https://edocs.deq.nc.gov/WasteManagement/Browse.aspx.
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In an ideal quasi-experiment, the HEUC event would denote a discrete decrease in contamination
and human exposure, however that is not necessarily the situation. In most (if not all) cases,
cleanup entails the use of controls that substantially reduce contamination prior to the HEUC event,
and the reduction in chemical exposures could occur gradually. For example, remediation
technologies like pumping and treating groundwater, vapor extraction, and chemical neutralization
lead to gradual reductions in pollution. In some cases, continued monitoring after initial cleanup
activities may reveal additional contamination, and as a result additional remediation activities
may then be implemented. Such sequencing of cleanup activities can occur over many years.
Among the 12 chemical facilities in our study, the cleanup process took 6 to 15 years from the
opening of the CA to the time the facility received a HEUC determination. This makes it less than
ideal for a DID approach because children in our treated group may have experienced some of the
health improvements from cleanup during the pre-treatment period. In this situation, our RDID
design may underestimate the health improvements.

Nonetheless, the spatiotemporal variation across the 12 CA sites and HEUC determinations lend
support to our quasi-experimental design. These facilities are located across the State (see Figure
2), and the HEUC events occur at different times during our 1990-2019 study period, with the first
HEUC determination being made in 1998, and the last occurring in 2014 (see Figure Al in the
Appendix). Residual confounding factors that are specific to a particular site or year are minimized
by analyzing numerous sites and HEUC events.

III.B. Summary Statistics

Our RDID analysis focuses on the n=8,178 live births from 1990-2019 in North Carolina, where
the mother lived within 1,000 meters of one of the twelve CA facilities analyzed.® Summary
statistics are provided in Table 1. The average newborn weighs 3,126 grams at birth, and was in
utero for 38.4 weeks. About 12.7% and 2.5% of babies are designated as low birth weight (LBW)
or very low birth weight (VLBW), meaning that they were below 2500 or 1500 grams at birth,
respectively. About 12.5% of the newborns are designated as a preterm birth (PTB), meaning that
they were in utero for less than 37 weeks. Just over half of the children were male (51%). Most
children were a singleton birth, with only 3% of our sample corresponding to a plural birth (twins
or triplets). About 24% of the newborns in our sample did not have a race or ethnicity listed, but
among those who did, about 25% were White, 40% Black, 14% Hispanic, and 20% were noted as
another race or ethnicity. The relatively small percent of children who are White in this sample of
newborns living within 1,000 meters of a chemical facility, compared to the 49% White among

8 Although our dataset started with the population of births in North Carolina during this period, we restrict attention
to this subset for the main analysis (see Section IV.A for details).
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the broader population of live births in NC during this period, highlights the potential disparities
in terms of where these chemical facilities are located.’

Table 1. Descriptive Statistics.

Variable Obs Mean Std. dev. Min Max
Birthweight (grams) 8,173 3126 648 0 5982
Gestational Age (weeks) 8,178 38.42 2.73 15 47
Low Birth Weight 8,173 0.127 0.333 0 1
Very Low Birthweight 8,173 0.025 0.155 0 1
Preterm Birth 8,178 0.125 0.331 0 1
White 6,202 0.251 0.433 0 1
Black 6,202 0.409 0.492 0 1
Hispanic 6,202 0.136 0.343 0 1
Other race/ethnicity 6,202 0.204 0.403 0 1
Missing: Race/Ethnicity 8,178 0.242 0.428 0 1
Male 8,178 0.511 0.500 0 1
Plural birth 8,178 0.031 0.174 0 1
Parents no college 7,858 0.887 0.317 0 1
Missing: Parents no

college 8,178 0.039 0.194 0 1
Mom 15-24 years 8,117 0.519 0.500 0 1
Mom 35-44 years 8,117 0.080 0.271 0 1
Missing: Mom age 8,178 0.007 0.086 0 1
Smoked 7,875 0.157 0.364 0 1
Missing: Smoked 8,178 0.037 0.189 0 1
Second birth 8,178 0.300 0.458 0 1
Third birth 8,178 0.179 0.383 0 1
Fourth birth 8,178 0.082 0.275 0 1
> Fifth birth 8,178 0.055 0.228 0 1
Not married 8,177 0.635 0.481 0 1
Missing: Not married 8,178 0.000 0.011 0 1
WIC 2,481 0.602 0.490 0 1
Missing: WIC 8,178 0.697 0.460 0 1
Medicaid 2,479 0.641 0.480 0 1
Missing: Medicaid 8,178 0.697 0.460 0 1

Note: All variables are binary indicators, unless otherwise noted in parentheses.

When data on parental education is available, we see about 89% of the children near these facilities
were born to parents with no college education. About 52% of the mothers were between 15-24
years of age at the time of the child’s birth, followed by mothers between 25-34 years (the omitted

? See Brodin and Guignet (2024) for an in-depth, nationwide distributional analysis of the RCRA Corrective Action
program.
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category), and then mothers between 35-44 years. Just under 16% of the mothers reported smoking
during pregnancy, and 63% of mothers were not married at the time of the baby’s birth. Although
we do not directly observe income in the birth records data, for births in 2011 and after, we have
proxy information based on whether the mother participated in the USDA’s nutritional supplement
WIC program, and was enrolled in Medicaid, both of which indicate low income. Among the
observations where these data are available, we see participation rates of 60% and 64%,
respectively.

IV. RESULTS
1V.A. Determining the Spatial Extent of Newborn Health Effects

To determine the spatial cutoff between the treated and control groups we adopt a procedure often
used to examine the effects of local disamenities on house prices. It was first introduced by Linden
and Rockoff (2008), and subsequently refined by Muehlenbachs et al. (2015), Haninger et al.
(2017), Guignet and Nolte (2024), and others. A regression model similar to equation (1) is
estimated, which allows us to estimate the pre- and post-HEUC gradients with respect to distance
to the site, conditional on all observed characteristics. In theory, the conditional distance gradients
will be different closer to the site, but then converge at some distance D. This distance D is the
assumed cutoff between the treated and control groups. The regression model to be estimated is:

(2) Yl]t - xijtﬁl + PreHEUCitapre + POStHEUCithOSt + Tt + Uj + gijt

where PreHEUC;; is a vector of indicator variables denoting whether the mother of child 7 lived
in different distance bins from the nearest chemical facility j, and whether time ¢ (when the child
was conceived) was before the HEUC determination for facility j. The distance bins are measured
in 250-meter increments starting with 0-250m, 250-500m, and so on. The farthest distance bin is
omitted for identification. Similarly, PostHEUC, is a vector of indicators denoting proximity to
chemical facility j but indicates whether child i was conceived after the HEUC event. The vectors
to be estimated, 6, and 6,,,;, capture the conditional pre- and post-treatment distance gradients
in a flexible fashion. In this diagnostic exercise, we include separate site and conception year fixed
effects (v; and 7, respectively), rather than site-by-year fixed effects (d) jt), as done in the main
regression model shown in equation (1).

We estimate equation (2) using a broader sample of children born to mothers living within 5 km
of one of the original 34 CA sites in North Carolina.'® Estimates of 0,re and 0, are presented
in Figure 3, thus showing the pre- and post-HEUC conditional distance gradients for gestational
age and birthweight (Panels (a) and (b), respectively). Both graphs suggest that prior to the HEUC

10 Earlier analysis included births out to 10 km and produced the same result in terms of the estimated spatial extent
of the effects of cleanup on infant health.
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determination, children born to mothers living nearest the chemical sites (i.e., within 250 meters)
experienced a lower birthweight and gestational age, on average, but this negative association
dissipates farther from the CA sites, moving towards zero in the subsequent distance bins. The
post-HEUC gradients suggest that, on average, newborns nearest the site experience a greater
gestation period and birthweight. The post-HEUC gradient converges towards the pre-HEUC
gradient beyond 250 meters.

Wald tests confirm that the pre- and post-HEUC distance gradients corresponding to the 0-250 m
distance interval are statistically different (p = 0.001 for both the gestational age and birthweight
estimates). Therefore, we define the treated group as children born to mothers who lived within 0-
250 of a CA site. We assume a control group of infants born to mothers who lived between 250-
1000 meters from a site. These definitions were informed by the results in Figure 3, as well as
consideration of the tradeoffs between a larger sample size when extending the outer boundary of
the control group, versus the possibility of introducing additional spatially correlated confounders.
For the control group distance bins (250-500; 500-750; and 750-1,000 meters), we fail to reject
the null hypotheses that the pre- and post-HEUC estimates are statistically equivalent, supporting
the assumption that newborns in the broader 250-1,000 meter zone serve as a reasonable control
group. We arrive at the same conclusion when re-estimating equation (2) with binary health
outcome variables (see Figure A2 in the Appendix).

Given that any potential improvements in birth outcomes are very local in nature, the sample size,
particularly of the treated group, is relatively small. Focusing on the 12 (out of the original 34) CA
sites where there are observed births within the 0-250 meter treated zone, both before and after the
HEUC event, we see a total of just 344 observations (225 births pre-HEUC and 119 post-HEUC).
The number of control group births within 250-1000 meters of these same 12 sites is 7,834 (with
5,394 and 2,440, before and after the HEUC determination, respectively). When using our matched
sample to better balance our treated and control groups across sites and over time, the sample size
is reduced even further, resulting in just 66 treated and 6,804 control observations. The small
number of identifying observations in our analysis is an important caveat to keep in mind when
interpreting the results.
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Figure 3. Conditional Pre- and Post-HEUC Distance Gradients.
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1V.B. RDID Regression Results

Using the sample of births within 1,000 m of one of the 12 CA sites, we first estimate variants of
equation (1) where gestational age (measured in weeks) is the dependent variable. ATT estimates
(i.e., y in equation (1)) for the models of gestational age are presented in Table 2. The first model
includes the full suite of covariates, conception month and year fixed effects, and separate time-
invariant site fixed effects. The coefficient corresponding to 0-250m x post-HEUC is positive and
statistically significant, suggesting that children living within 0-250m of a site experienced an
average increase in gestation of about 0.89 weeks if they were conceived after cleanup and when
human exposure is determined to be under control at the chemical facility. Considering that the
average gestation period in our sample is 38.4 weeks, this corresponds to a 2.3% increase in the
time a child has to develop in utero.

14



Model 2 in Table 2 includes the site-by-year fixed effects, which as discussed in Section II.B are
important for our identification strategy and ability to circumvent criticisms regarding the
staggered treatment events over time. Model 2 suggests a similarly sized and statistically
significant 0.76 week increase in gestational age after the HEUC determination. Model 3
introduces additional interaction terms to allow the post-HEUC and 0-250 meter treated zone
associations to vary across the 12 CA sites. Model 3 yields a similar result, suggesting 0.91 week
increase. Although Model 3 is the most thorough in controlling for site-specific factors, we do
have some concerns related to the small number of just 344 treated observations (only 119 of which
occur post-HEUC). Dividing those identifying observations across the 12 sites when estimating
site-specific interaction effects with the 0-250 meter treated zone indicator and the post-HEUC
indicator (in addition to the inclusion of the site-by-year fixed effects) results in a loss of statistical
power. Nonetheless, the results from Model 3 are robust and of the greatest magnitude, at least in
terms of gestational age. Model 4 is the same as Model 1, but utilizes the matched sample discussed
in Section II.C. We employ a specification similar to Model 1 here because the matched sample is
notably smaller than the full sample included in Models 1-3. The results from Model 4 are similar
to the earlier models, suggesting an almost 0.80 week increase in gestational age after the HEUC
determination.

The full results including all covariates are provided in Table A1l of the Appendix, and generally
align with expectations. For example, a newborn who is Black or of another race/ethnicity tends
to have a shorter gestation period relative to a White newborn, all else constant. Plural births, as
well as children born to parents with no college education, or to a mother who reports smoking
during pregnancy, also experience a shorter gestation period.

Table 2. RDID Gestational Age Regression Model Results.

(@) 2) 3) 4
0-250 meters x post-HEUC 0.8890%** 0.7649%** 0.9085%** 0.7978**
(0.2490) (0.2591) (0.3283) (0.3775)
Additional covariates X X X X
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X
Observations 8178 8173 8173 1308
Adjusted R-squared 0.094 0.089 0.087 0.141
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Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level.
Dependent variable is gestational age (in weeks). See Table Al in the Appendix for the full results

We find similar results when estimating variants of these same four specifications, but where a
binary indicator of PTB is the dependent variable. As shown in Table 3, Model 1 suggests a 6.0
percentage point decrease in the risk of PTB following cleanup. Models 2 through 4 suggest
similar reductions in the risk of PTB, ranging from 5.9-7.8 percentage points.'! Considering that
the average risk of PTB in our sample is 12.5%, these results suggest that cleanup leads to a
staggering 47-63% reduction in the risk of PTB.

The full results for the PTB models are provided in Table A2 in the Appendix. The estimated
associations pertaining to the independent variables that are not of primary interest suggest a
similar story as in the models of gestational age.

Table 3. RDID Preterm Birth (PTB) Regression Model Results.

() @) (3) (4)
0-250 meters x post-HEUC -0.0599%** -0.0585** -0.0697** -0.0784*
(0.0291) (0.0287) (0.0314) (0.0412)
Additional covariates X X X X
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X

' Although we have concerns with nonlinear binary model specifications due to our inclusion of high-dimensional
spatial and temporal fixed effects, we do re-estimate Models 1 through 3 for PTB using Chamberlain’s (1980) Fixed
Effect Logit model. Fixed Effect Logit variants of Model 4 could not be estimated because the matching weights were
not constant across all observations pertaining to each site (i.e., were not the constant within the same fixed effect).
The PTB results are consistent in sign, but the relationship between PTB and the HEUC determination is only
significant for Model 1 (p = 0.081). The estimated relationship from Models 2 and 3 are marginally insignificant (p =
0.140 and p =0.150, respectively). It is important to note that only one dimension of the high-dimensional fixed effects
(in our case the site or site-by-year fixed effects, depending on the model) could be conditioned out using the Fixed
Effect Logit specification. The other fixed effects were accounted for by including a series of indicator variables. As
such, the statistically insignificant results could be at least partly driven by the incidental parameters problem
(Lancaster 2000; Wooldridge 2010, page 612); hence our preference for the linear probability models in the main
analysis.
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Observations 8178 8173 8173 1308

Adjusted R-squared 0.086 0.080 0.079 0.141
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level.
Dependent variable is a binary indicator, equal to one for children designated as a preterm birth (i.e., in utero
for less than 37 weeks), and zero otherwise. See Table A2 in the Appendix for the full results.

We next turn to the models focused on measures of birthweight. Table 4 shows the results of the
models of birthweight (measured in grams). The coefficient corresponding to 0-250m x post-
HEUC in Model 1 is positive and statistically significant, suggesting that children living within 0-
250m of a site experienced an average gain in birthweight of 164 grams if they were conceived
after cleanup and when human exposure was determined to be under control at the chemical
facility. Considering that the average newborn in our sample weighed 3,126 grams at birth, this
corresponds to a notable 5.3% increase in birthweight. Model 2 suggests a similarly sized and
marginally significant 125 gram increase in birthweight after the HEUC determination. Models 3
and 4 suggest results that are similar in magnitude, but are statistically insignificant. For both
Models 3 and 4, we have some concerns regarding the relatively small number of identifying
observations and low statistical power, which may be at least partly driving the statistically
insignificant results.

Table 4. RDID Birthweight Regression Model Results.
(1) 2) 3) “4)

0-250 meters x posttHEUC ~ 164.4512%**  125.0005* 110.3970 117.4240
(62.1264) (65.6349) (80.2677) (88.8404)

Additional covariates X X X X
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X
Observations 8173 8168 8168 1307
Adjusted R-squared 0.144 0.142 0.141 0.203

Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level.
Dependent variable is birthweight (in grams). See Table A3 in the Appendix for the full results.

Estimates from the linear probability models of the risk of LBW and VLBW are consistent in sign,
but the results are mixed in terms statistical significance. As shown in Table 5, Model 1 suggests
a marginally significant 4.4 percentage point reduction in the risk of LBW. Models 2 through 4
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suggest a reduction in risk that is similar in magnitude, but the estimates are statistically
insignificant. When re-estimating these models with VLBW as the dependent variable (Table 6),
we find evidence that cleanup and the HEUC event may lead to a 3-percentage point reduction in
the risk of VLBW, but this result is statistically significant only in Models 1 and 2. The point
estimates are similar in Models 3 and 4, but are statistically insignificant. Again, this statistically
insignificant result may, at least partly, be driven by a lack of statistical power. Model 3 could be
allowing for too many site-specific parameters given the small number of treated observations
around each individual site, and Model 4 is estimated using the much smaller, matched sample. '

The full results for the birthweight, LBW, and VLBW models are provided in Tables A3, A4 and
A5 in the Appendix. The estimated associations between the independent variables that are not of
primary interest and each birth outcome suggest a similar story as in the earlier models. For
example, birthweight tends to be lower for mothers who report smoking during pregnancy, and the
risk of LBW and VLBW are higher.

Table 5. RDID Low Birthweight (LBW) Regression Model Results.

() @) (3) (4)
0-250 meters x post-HEUC -0.0444* -0.0326 -0.0308 -0.0425
(0.0265) (0.0257) (0.0328) (0.0428)
Additional covariates X X X X
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X
Observations 8173 8168 8168 1307
Adjusted R-squared 0.109 0.104 0.103 0.170

Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level.
Dependent variable is a binary indicator, equal to one for children designated as low birthweight (i.e., less than
2500 grams), and zero otherwise. See Table A4 in the Appendix for the full results.

12 Again, we have concerns with nonlinear binary model specifications due to our inclusion of high-dimensional spatial
and temporal fixed effects, but for completeness we re-estimate the LBW and VLBW models using Chamberlain’s
(1980) Fixed Effects Logit specification. The results are consistent in sign, suggesting a negative average effect from
the HEUC event, but are statistically insignificant across all Logit model specifications.
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Table 6. RDID Very Low Birthweight (VLBW) Regression Model Results.

1) (2) 3) “4)
0-250 meters x post-HEUC -0.0335** -0.0312* -0.0282 -0.0368
(0.0157) (0.0165) (0.0192) (0.0225)
Additional covariates X X X X
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X
Observations 8173 8168 8168 1307
Adjusted R-squared 0.030 0.025 0.023 0.042

Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level.
Dependent variable is a binary indicator, equal to one for children designated as very low birthweight (i.e., less
than 1500 grams), and zero otherwise. See Table A5 in the Appendix for the full results

1V.C. Assessing a Causal Interpretation

Overall, the RDID regression results suggest that the cleanup of hazardous chemicals through
RCRA’s Corrective Action program is associated with improvements in birth outcomes,
particularly in terms of gestational age and reduced risk of preterm births. We take several steps
to control for possibly confounding factors and best identify a plausibly causal relationship. We
account for numerous individual-level characteristics, include high-dimensional spatiotemporal
fixed effects, implement a RDID identification strategy, and in some models employ exact
covariate matching. We next conduct three supplemental analyses to assess the appropriateness of
a causal interpretation of our findings. We first implement an event study and examine whether
the trends across the treated and control groups are parallel. We then compare the observed
characteristics across the treated and control groups to assess the degree to which the two are
similar, and hence that our assumed counterfactual group is reasonable. Finally, we estimate a
series of simple DID regression models to assess whether post-treatment sorting across
socioeconomic groups could be confounding our results.

In a conventional DID setup, having parallel pre-treatment trends is generally considered a
necessary (but not necessarily sufficient) condition for a causal interpretation of the treatment
effect estimates (Angrist and Pischke 2009, Roth 2022). Within a RDID framework, however, it
is the post-treatment trends that must be parallel for a plausibly causal interpretation (Kim and Lee
2019; von Hinke and Serensen 2023). At first, this may seem counterintuitive, but in a RDID
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setting the treated and control groups are dissimilar in terms of hazardous chemical exposures prior
to treatment, and so there is no reason to suspect the pre-treatment trends in the outcomes of interest
are similar across the two groups. The treatment — minimizing chemical exposure in our case —
then makes the treated and control groups similar. If the trends are parallel after treatment, it
suggests that the chemical exposure was the only factor deterring the pre-treatment trends from
being parallel, supporting a causal interpretation of the ATT estimates.

To assess whether the post-treatment trends are parallel, we conduct an event study where we
estimate a variant of equation (1) that includes 5-year incremental lead and lag indicator variables
for HEUC;; and ﬂ(di i< D) X HEUC;j;. Coefficients corresponding to the latter term capture the
incremental difference in the outcome of interest between the treated and control groups, and allow
for this association to vary over time relative to the HEUC event. The regression model is estimated
for each of the five birth outcomes. The results for each outcome are plotted in Figure 4. Panel (a)
of Figure 4, for example, focuses on gestational age and demonstrates that prior to the HEUC
determination the trends are not parallel. The estimated associations displayed in Figure 4 reflect
the incremental difference between the treated and control group, and so the point estimates being
statistically equal (i.e., a constant difference between the treated and control groups at each point
in time) would suggest a parallel trend. Based on an F-test we reject the null hypothesis that the
pre-treatment estimates are equal (p = 0.060), suggesting that the pre-treatment trends are not
parallel. In particular, we can clearly see a decrease in gestational age around 5 to 10 years before
the HEUC event. Anecdotally, this corresponds to the time in which the CA investigations were
opened at many sites. Recall that the time between a CA investigation opening and the HEUC
determination ranges from 6 to 15 years in our study. Although the contamination issues often date
back much further and are usually linked to historical activities, an additional release, migration
of chemicals, and/or new discovery of exposure often leads to an investigation being opened.
Exposure mitigation and cleanup activities are put in place shortly after an investigation is opened
and risks to human health and the environment are identified. The observed decrease in newborn
health 5 to 10 years before the HEUC determination is consistent with the general story around
many of these sites.

We observe much less fluctuation in the post-treatment trends for gestational age. The post-HEUC
point estimates in Panel (a) of Figure 4 are more similar in magnitude, and the 95% confidence
intervals largely overlap. We fail to reject the null hypothesis that the post-treatment estimates are
equal (p= 0.486), which is consistent with the post-treatment trends being parallel. We see similar
patterns when looking at the event study results for the other health outcomes, as shown in the
other panels in Figure 4. The pre-treatment trends often suggest a decrease in health around 5 to
10 years before the HEUC event. More importantly, a series of F-tests again suggest that the post-
treatment trends are parallel.'® Overall, the evidence is consistent with a causal interpretation of
the ATT estimates from the main analysis.

13 The corresponding p-values for each of these parallel post-treatment trends tests are p = 0.658 for PTB, 0.565 for
birthweight, p = 0.447 for LBW, and p = 0.217 for VLWB.
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Figure 4. Event study analysis of parallel trends.
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We next assess the comparability of our treated and control groups in terms of observed
characteristics. Our identification strategy relies on the assumption that infants born to mothers
residing within 0-250 meters of a chemical facility (the treated group) are similar to infants born
to mothers residing within 250-1,000 meters of the same chemical facilities in terms of
characteristics besides chemical exposure. Although we condition on numerous covariates in the
regression models, assessing the similarity between the two groups based on observed
characteristics can shed light on the plausibility that the two groups are also similar based on
unobserved characteristics. We conduct a series of two-sample t-tests to assess the comparability
of the two groups. As shown in Table A6 in the Appendix, the two groups are statistically similar,
on average, with respect to 13 out of the 16 observed characteristics. There is a marginally
significant difference in the percent of children born to parents with no college education, but the
magnitude of this difference is small — 88.8% versus 85.1%. There is also a marginally significant
difference in the percent of children who correspond to their mother’s third birth, but this statistical
difference seems sporadic because there are no clear patterns nor statistically significant
differences among the other birth order indicators. The only significant difference that could
confound our comparison is that the farther out control group has a greater proportion of Hispanics
(13.9%) compared to the treated group (7.8%). Otherwise, our treated and control groups are quite
similar in terms of observed characteristics, and we control for ethnicity in all the models.

For our final supplemental analysis to assess the appropriateness of a causal interpretation of the
main RDID results, we examine whether there is any systematic demographic sorting in response
to cleanup activities. Such sorting behavior has been observed in similar contexts (e.g., Gamper-
Rabindran and Timmins 2011), but in a nationwide analysis Cassidy et al. (2024) specifically
looked at RCRA CA sites and cleanups and found no evidence of such sorting. Focusing on North
Carolina, we are particularly concerned about whether gentrification could be driving our results.
If more educated, wealthier people move near these chemical facilities after chemical exposures
are eliminated, then that could be driving the estimated improvements in health, rather than the
changes in exposure. To assess whether any demographic sorting occurred in our data, we estimate
a series of regression models similar to equation (1), but where the outcomes of interest are racial
and ethnic indicators, whether the parents were college educated, and whether the household was
enrolled in Medicaid. The models only include HEUCjy, Il(dij < D), and Il(dl-]- < D) X HEUCj;
as independent variables. No other covariates are included because we are only interested in
statistical associations in this supplemental exercise, and not necessarily a causal interpretation.
More specifically, we simply want to assess whether there is any systematic sorting of certain types
of households after cleanup, and more specifically, whether those patterns differ across the
treatment and control groups.

We re-estimate variants of our preferred model specifications, Models 2 and 4. Due to missing
values for some of the demographic characteristics, we redo the matching algorithm prior to
estimating each variant of Model 4. As shown in Table A7 in the Appendix, the coefficients
corresponding to the 0-250 meters *x post-HEUC interaction term are largely insignificant,
suggesting that there is no systematic sorting that would confound our interpretation of the ATT
estimates from the main analysis. There are two exceptions to this conclusion, however, both based
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on variants of Model 2. First, the results suggest that there is a relative increase in newborns who
are Hispanic in the treated zone after the HEUC event. Given that being Hispanic in our analysis
is associated with negligible changes, or sometimes even worsened birth outcomes (see Tables Al
through A5 in the Appendix), this type of sorting would not suggest a gentrification story that
confounds the interpretation of our main findings. Another variant of Model 2 suggests that after
the HEUC event, there is a decrease in newborns within the 0-250 meter zone whose parents are
less educated. This finding is consistent with a gentrification story, suggesting that more educated
parents could be moving near the site after cleanup. Neither of these patterns emerge when pre-
regression matching procedures are utilized (variants of Model 4). And perhaps most importantly,
we see no evidence of sorting based on Medicaid participation, which is perhaps the most direct
proxy for income in the data. Overall, we conclude that demographic sorting is likely not a primary
driver of the estimated post-cleanup improvements in birth outcomes from our RDID analysis, but
this is an important caveat to keep in mind when interpreting the results.

V. DISCUSSION

The Resource Conservation and Recovery Act (RCRA) has been in place since 1976 and is a
cornerstone of environmental policy in the US; and yet benefit-cost analyses for most regulations
under the authority of RCRA do not quantify the benefits to the primary groups that they are
intended to protect — people living in the communities around these hazardous chemical facilities
(Guignet and Nolte, 2024). A critical step for benefit-cost analysis, and for welfare analysis more
broadly, is to first quantify the effects. We carry out this step, and find localized improvements in
birth outcomes for children whose mothers lived within 250 meters of a chemical facility.

Finding such localized health effects is not necessarily surprising in our context because the
consumption of contaminated groundwater is likely not an exposure pathway of concern, at least
not among the CA sites analyzed in our study. The vast majority of people living around the 12
CA sites in our study lived within a public water system (PWS) service area, and likely relied on
these public systems for their potable water.'* In contrast to private groundwater wells, public
water systems typically draw on water sources far away from one’s home and nearby CA sites,
and are likely not contaminated by hazardous chemicals from nearby sites. Only 1.24% of our
sample of newborns potentially relied on private groundwater wells for their potable water (i.e.,
lived outside the PWS service area), and none of the children living within 250 meters of a CA
site relied on private groundwater wells. Similar analyses of other CA sites where local populations
rely on private groundwater wells could find much farther-reaching health effects.

Given the extremely localized nature of the estimated health effects and minimal use of local
groundwater in our study area, we speculate that re-suspension of contaminated particles into the
air and mothers’ subsequent inhalation, ingestion, and/or dermal contact with these particles is a

14 PWS service area boundaries were obtained from the EPA (2023b). Using Geographic Information Systems (GIS),
we determined whether each mother’s place of residence was located within a PWS service area.
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plausible exposure pathway. Vapor intrusion into homes and subsequent inhalation of hazardous
fumes is also possible. The potential for soil vapor intrusion and/or the implementation of soil
vapor extraction systems were documented at 4 of the 12 CA sites. Detailed, site-specific
monitoring and exposure analysis would be needed to firmly identify the mechanisms by which
populations near RCRA sites came in contact with hazardous chemicals.

Nonetheless, we find that children born to mothers living within 250 meters of a CA site
experienced an average 110 to 164 gram improvement in birthweight after cleanup was completed,
as established by the official HEUC determination made by regulators. This corresponds to a 3-
5% increase in birthweight, although the results are not significant across all model specifications.
The results are also mixed when analyzing alternative binary measures of birthweight. Models of
the risk of a low birthweight (LBW) suggest a decrease in risk post-HEUC, but this result is only
statistically significant in the simplest of the four model specifications. Models of the risk of very
low birthweight (VLBW) suggest a marginally significant 3 percentage point decrease in risk, on
average; but again this result is statistically significant in only two of the four models.

We find stronger, and more robust evidence when examining the effects of cleanup on gestational
age. Across all model specifications, we find that after the HEUC determination, gestational age
increased by an average of almost a week (0.8 to 0.9 weeks). This corresponds to a roughly 2%
increase in the amount of time that a child has to develop in utero. Models of a binary preterm
birth (PTB) indicator reveal a statistically significant 6 to 8 percentage point average decrease in
risk after the HEUC event.

To illustrate the potential magnitude of the monetized newborn health benefits from hazardous
chemical cleanups, we apply unit value estimates for reductions in the risk of PTB and VLBW.
We focus on these two health outcomes because unit value estimates were available from recently
released studies that were sponsored by federal and international government organizations. The
first study was by Abt Associates (2022), and was conducted to aid the US EPA in benefit-cost
analyses. Abt Associates (2022) estimated the incremental cost-of-illness (COI) for the average
PTB."> The COI estimates include the expected costs for birth-related and subsequent inpatient
hospital visits during the first two years of a child’s life. Based on Abt Associates’ estimates, the
cost-savings for an avoided PTB case is $13,894 (2024$ USD).!® The expected avoided costs from
a reduction in the risk of PTB can be used as a proxy to estimate the monetized benefits,

15 Abt Associates (2022) also calculated COI estimates for changes in continuous birthweight and the risk of LBW.
We focus on PTB in this exercise because applying their COI estimates for continuous birthweight would be more
complicated. Although their COI estimates for changes in continuous birthweight could be applied, doing so requires
information of the baseline birthweight distribution, and this is beyond the scope of what we wanted to do for this
illustrative exercise. Furthermore, our estimated improvements in birthweight and the risk of LBW, were statistically
significant in half or less than half of the models, and so monetizing these mixed results may not be as interesting of
an example. Additionally, we have more theoretically valid willingness-to-pay estimates for reduced VLBW risks,
which we discuss next.

16 OQur COI estimate is calculated by multiplying Abt Associates’ (2022) annual inpatient costs by two (to account for
the first two years of life), and adding the birth-related hospital costs. We then convert their estimates to 2024$ USD
using the US Bureau of Labor Statistics’ (BLS) annual urban consumer price index (BLS 2025).
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particularly when more theoretically appropriate willingness to pay (WTP) estimates for ex ante
benefits analysis are not available (EPA 2014).

The Organisation for Economic Co-operation and Development (OECD) recently conducted a
series of international stated preference studies focused specifically on reduced morbidity risks
from reductions in hazardous chemical exposures. Under these broader efforts, S¢asny et al. (2023)
estimated prospective parents’ WTP for reduced risks of VLBW. Based on their results, the value
for (an avoided) statistical case (VSC) of VLBW is $1,488,832 (2024$ USD).!”

Whether based on COI or WTP, we can use the unit value estimates to illustrate the newborn health
benefits from remediating hazardous chemical releases at RCRA sites. We estimate the household-
level per child benefits of cleanup and the HEUC determination by taking the product of the unit
value estimate (M) and our estimated reduction in risk (AR), as shown:

3) HH Benefit = M X AR

HH Benefit is the benefit per child to the average household that lives within 250 meters of a CA
site and is planning to (or will) have one or more children.

We can also calculate aggregate benefits. For example, we can estimate the average annual benefit
from the cleanup and HEUC determination at the 12 CA sites analyzed by multiplying the
household per child benefit from equation (3) by the average number of conceived children within
250 meters of a site each year (N). More formally:

(4) Total Annual Benefit =M X AR X N

The monetized benefits are presented in Table 7, and are based on the estimated reductions in risk
from our preferred specifications, Models 2 and 4. First focusing on preterm birth, our results
suggested a reduction of about 5.9 or 7.8 percentage points in the risk of PTB, depending on the
model (see Table 6). Applying the COI estimate suggests that the average affected household
experiences a benefit from cleanup and the HEUC determination of $813 to $1089 per child.'®* We
emphasize that the affected households are those who live within 250 meters and who will have a
child. There are 11.34 children conceived each year, on average, whose mother lived within 250
meters of one of the 12 CA sites. Plugging this in for N in equation (4) yields a total annual benefit
from the HEUC event at these 12 CA sites of $9,217 to $12,352.

Turning to the estimated reductions in the risk of VLBW, and applying S¢asny et al.’s (2023) WTP
estimate, we find that the benefit of cleanup to the average affected household is $46,414 or
$54,783 per child, depending on the model. We emphasize that the latter result from the Model 4
specification is statistically insignificant. Again, these WTP estimates would only apply to

17 This estimate is based on S¢asny et al.’s (2023) US-specific VSC estimate of $1,389,000 (2022$ USD). We convert
this to 2024$ USD using the BLS’s annual urban consumer price index (BLS 2025).
18 All monetized values are presented in 2024$ USD.
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households living within 250 meters of a CA site and who plan to have a child. Aggregating the
estimated benefits from reduced VLBW risks across the 12 sites, as per equation (4), suggests an
average annual benefit of $526,334 to $621,243." The estimated benefits from reduced PTB and
VLBW risks should not be summed. Doing so would likely result in at least partial double
counting.

Table 7. Illustrative Monetized Benefits (20248 USD).

PTB VLBW
(2) “4) 2) “4)

Change in Risk* -0.0585%* -0.0784* -0.0312* -0.0368

[-0.1147 - -0.0023] [-0.1994 - 0.0024] [-0.0635 - 0.0011] [-0.0809 - 0.0073]
Household
Benefit $813** $1089* $46,414* $54,783

[32 -1,594] [-33-2,211] [-1,666 - 94,494] [-10,899 - 120,466]
Total Annual
Benefit $9,217%* $12,352* $526,334* $621,243
[359 - 18,074] [-371 - 25,075] [-18,891 - 1,071,558] [-123,597 - 1,366,083]

Note: *p<0.10, ** p<0.05, *** p<0.01. The 95% confidence intervals are in brackets. (a) Estimated benefits from reductions in the risk
of preterm birth (PTB) and very low birth weight (VLBW) are based on Models (2) and (4) in Tables 6 and 4, respectively.

Although the annual benefits across the 12 CA sites analyzed seem relatively small, especially
considering that the total remediation costs at just one RCRA CA site can often be a few to several
million dollars (see footnote 23 in Guignet and Nolte (2024)), we emphasize that these are annual
benefits and that this is only one set of health endpoints. There are numerous other benefit
endpoints to consider. In addition, the estimated health effects in our study are very localized, thus
affecting a small number of households. Our finding of such localized effects is at least partly
driven by the fact that residents do not use the groundwater near these facilities as their potable
water source. The potential health effects to surrounding communities could be much farther
reaching at other CA sites where consumption of contaminated groundwater is a viable exposure
pathway. In such cases, we would expect larger aggregate benefits from cleanup (i.e., the N in
equation (4) would be greater).

19 The WTP estimates from S¢asny et al.’s (2023) are based on a representative sample of the US population of adults
over 18 years of age, and who are of childbearing age, in a relationship, and plan to have a(nother) biological child
within the next five years. When applying Séasny et al.’s estimates we are assuming that our target population in North
Carolina holds a similar value. However, our target population may include unplanned pregnancies. For example, our
sample includes mothers under the age of 18 (almost 21% of mothers within 250 meters of a CA site were between
15 and 19 years of age). The preferences and income of households in our sample could be different from S¢asny et
al.’s nationally representative sample, but we do not think it is warranted to exclude these households from our
illustrative benefit calculations. Doing so would assume that these households place a value of $0 on avoiding the
adverse birth outcomes.
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VI. CONCLUSION

Our study set out to (i) estimate the effects of cleanups at RCRA-regulated chemical facilities on
newborn health, and (ii) determine the spatial extent of any newborn health effects. Focusing on
Corrective Action (CA) investigations at chemical facilities across North Carolina and using
individual-level birth certificate data over a 30-year study period (1990-2019), we employed a
Difference-in-differences (DID) methodology that features two methodologically novel features.
First, our empirical setting is better accommodated by a Reverse Difference-in-difference (RDID)
framework, which to our knowledge has only been applied in two published studies (Kim and Lee
2019; von Hinke and Serensen 2023) but may fit a variety of similar contexts in environmental
economics and beyond. Our study contributes to this nascent literature, and aids in furthering the
potentially widely viable RDID methodology. Second, our RDID design features a naturally
stacked DID setup, which allows us to circumvent recent concerns around staggered treatment
events over time (Goodman-Bacon 2021, Roth et al. 2023).

Our analysis reveals localized improvements in newborn health following cleanup and the official
Human Exposure Under Control (HEUC) determination. Children born to mothers living within
250 meters of a CA site experienced an average 110 to 164 gram improvement in birthweight, and
a 4 and 3 percentage point decrease in the risk of low birthweight and very low birth weight, but
these results were not statistically significant across all models. In contrast, we find robust
evidence of newborn health improvements in terms of gestational age, suggesting that cleanup and
the HEUC determination led to a 0.8 to 0.9 week increase in the gestation, and a significant 6 to 8
percentage point average decrease in the risk of preterm birth. Considering that the average risk of
a preterm birth in our sample is 12.5%, the latter is particularly notable because it suggests that
cleanup cuts the risk of preterm birth in half, on average.

Focusing on preterm birth and very low birth weight, we applied COI and WTP estimates from
the literature to illustrate how our quantified health improvements from cleanups can be used for
benefits analyses. Doing so suggested that the average affected household would benefit $813 to
$1089 per child from the reduced risk of a PTB due to cleanup and the HEUC determination. The
corresponding benefit for the reduced risk of VLBW is $46,414 to $54,783 per child, but only the
former estimate is statistically significant.

The estimated newborn health effects from reduced chemical exposure are important in their own
right, but also signal potential longer term, later-in-life benefits (Currie 2011) that we do not
capture here. Studies have linked increases in both birthweight (e.g., Black et al., 2007; Belbasis
et al. 2016; Xie et al. 2017; Ludvigsson et al. 2018; Baguet and Dumas 2019; WHO 2022) and
gestational age (e.g., Crump et al. 2011; Boyle et al. 2012) to later improvements in health,
education, and labor outcomes.

We went to great lengths in the empirical analysis to minimize the influence of potentially
confounding factors, and undertook several checks to assess the plausibility of a causal
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interpretation of our results. Our regression models included numerous, individual-level covariates
and spatiotemporal fixed effects, and a RDID identification strategy that utilized infants born to
mothers living in the same neighborhoods and around the same chemical facilities as a control
group. We investigated the robustness of the results across numerous alternative birth outcomes,
and in some models employed an exact covariate matching to yield more balanced and comparable
treated and control groups across sites and over time. In our supplemental diagnostic analyses, we
confirmed that post-treatment sorting is likely not driving the results, that the treated and control
groups are similar in terms of most observed characteristics, and that the post-treatment trends are
parallel. Although causality can never be unambiguously claimed in analyses of observational data
like ours, the evidence is overall consistent with a causal interpretation of the results.

There are several caveats to keep in mind. For example, to facilitate a clean quasi-experimental
comparison, we focused on just 12 RCRA CA sites in North Carolina, where we observed treated
births (i.e., within 0-250 meters of a CA site) both before and after the HEUC determination. There
is surely a high degree of heterogeneity across chemical facilities in terms of surrounding
residential development and populations; types of industrial activities; the types and volumes of
chemicals used and released; the direction, speed, and extent of exposure pathways; etc. Caution
is warranted when extrapolating our average estimates to other sites, both within North Carolina
and beyond. It is also important to keep in mind that although our data started with the population
of live births across the State from 1990-2019, the number of identifying observations is small.
We observe only 119 post-HEUC births within the 0-250 meter treated group bin. The small
number of identifying observations is due to the extremely localized nature of the estimated health
effects. We interpret our finding of statistically significant improvements in gestational age and
reduced risks of preterm birth, despite the small number of identifying observations, as evidence
of the strength of the responses in newborn health from cleanup. At the same time, our often
marginally significant or statistically insignificant estimates of the effects of cleanup on measures
of birthweight may be, at least partly, driven by the small sample size. The sign and magnitude of
those results are consistent with the overall finding that cleanup leads to localized improvements
in newborn health. An additional limitation is that our data only includes live births. If chemical
exposure and the resulting health effects lead to an increased risk of miscarriage or stillbirth, then
this would not be captured in our analysis. A final caveat is that cleanup at these sites often takes
years, and even decades. Our HEUC treatment event is not a discrete change in actual exposure,
but instead corresponds to the official determination on paper of when there is no longer a risk of
human exposure. Our estimated health improvements could be considered under-estimates, at least
to the extent that chemical exposure was being reduced and subsequent health benefits realized,
prior to the official HEUC determination.

Despite these caveats, our quantified health effects can inform local cleanup and land use
decisions, and create a path for expanding what benefits are quantified in benefit-cost analyses of
future regulations under RCRA and similar programs addressing chemical incidents and cleanups.
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APPENDIX

Figure Al. Human Exposure Under Control (HEUC) determinations at each Corrective Action
Site by Year.
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Figure A2. Conditional Distance Gradients: Binary Infant Health Outcomes.
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ﬂﬂﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁiﬁﬂ%q

AProb (LBW)
=

R A O, 2 @ @
TP Y R 0 % % % % Y

Meters

Panel (B): Very Low Birthweight

0.06
0.04

0.02

[=]

gRAtsiRddayysdddaa

AProb (VLBW)

-0.02

-0.04

Panel (C): Preterm Birth

0.1
0.08
0.06
0.04

K RS R .

-0.02
-0.04
-0.06
-0.08

-0.1

AProb (PTB)
(=]

s 7 7 Sy 2, 2, L. D P, P2
Jr f b2l W T2 S, SOL S YD e N i 5 T
0 "%y 0 " S Y Ny T S Y Ny T Ty T, N Ty

Meters
% Pre-HEUC e Post-HUEC

34



Table Al. RDID Gestational Age Full Regression Model Results.

@) 2 3) (C)]
0-250 meters -0.2558 -0.2768 -0.3008
(0.1889) (0.1974) (0.2036)
post-HEUC 0.1060 0.3419 0.0715
(0.1263) (0.3883) (0.4278)
0-250 meters x post-HEUC 0.8890%** 0.7649%** 0.9085%** 0.7978**
(0.2490) (0.2591) (0.3283) (0.3775)
Black -0.5018*** -0.4833%** -0.484 1 *** -1.1919%**
(0.1115) (0.1093) (0.1108) (0.3145)
Hispanic -0.1741 -0.1803 -0.1781 -0.7119**
(0.1076) (0.1172) (0.1167) (0.2967)
Other race/ethnicity -0.3905%** -0.4032%** -0.4050%** -1.1541%**
(0.1052) (0.1100) (0.1113) (0.4279)
Missing: Race/Ethnicity -0.5997*** -0.6101%** -0.6117%** -1.3396%**
(0.1160) (0.1173) (0.1186) (0.3828)
Male -0.0731 -0.0792 -0.0800 -0.1068
(0.0614) (0.0610) (0.0617) (0.1910)
Plural birth -4.1896%** -4.3130%** -4.3094%** -4.8311%**
(0.3254) (0.3255) (0.3254) (0.9617)
Parents no college -0.2764** -0.2812** -0.2836** -0.6437**
(0.1250) (0.1320) (0.1317) (0.2617)
Missing: Parents no college -0.5526 -0.5149 -0.5063 -0.3481
(1.1462) (1.0603) (1.0581) (0.9365)
Mom 15-24 years 0.1228 0.1318 0.1310 0.8528%**
(0.0823) (0.0861) (0.0869) (0.2766)
Mom 35-44 years -0.1021 -0.1209 -0.1231 -0.2943
(0.1270) (0.1314) (0.1312) (0.3440)
Missing: Mom age -0.1760 -0.1713 -0.1717 1.6704%*
(0.3390) (0.3366) (0.3377) (0.8196)
Smoked -0.3257%** -0.3089%** -0.3093%** -0.4764
(0.0942) (0.0973) (0.0973) (0.3519)
Missing: Smoked 0.6105 0.5473 0.5499 -0.3207
(1.1934) (1.1251) (1.1240) (1.0454)
Second birth -0.1916%** -0.1609%** -0.1638** -0.0804
(0.0690) (0.0740) (0.0741) (0.1788)
Third birth -0.2552%** -0.2421%** -0.2432%** 0.0453
(0.0768) (0.0799) (0.0806) (0.2565)
Fourth birth -0.3847%%* -0.3735%%* -0.3768%** 0.0269
(0.1160) (0.1176) (0.1177) (0.3252)
> Fifth birth -0.4082%* -0.3420%* -0.3433%* 0.6566*
(0.1603) (0.1696) (0.1690) (0.3882)
Not married -0.1247 -0.1069 -0.1113 -0.0847
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(0.0809) (0.0828) (0.0827) (0.2419)

Missing: Not married -0.4414* 1.1670 1.1588 0.0000
(0.2300) (0.8281) (0.8301) ()
WIC 0.3368** 0.3625%* 0.3632%* 0.9168*
(0.1471) (0.1464) (0.1466) (0.4711)
Missing: WIC -0.4070 -0.3778 -0.4161 0.2889
(0.6018) (0.6865) (0.6988) (1.0378)
Medicaid 0.1053 0.1608 0.1641 -0.4693
(0.1460) (0.1595) (0.1601) (0.4059)
Missing: Medicaid 0.4307 0.4822 0.4797 0.1707
(0.5984) (0.6768) (0.6839) (1.1312)
Constant 39.3032%** 39.1381%** 39.2664%** 39.4900%**
(0.3680) (0.3729) (0.3736) (0.7350)
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X
Observations 8178 8173 8173 1308
Adjusted R-squared 0.094 0.089 0.087 0.141

Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is
gestational age (in weeks). All independent variables are binary indicators.
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Table A2. RDID Preterm Birth (PTB) Full Regression Model Results.

@) 2 3) “)
0-250 meters 0.0119 0.0166 0.0334
(0.0199) (0.0208) (0.0227)
post-HEUC 0.0034 -0.0156 -0.0062
(0.0156) (0.0482) (0.0652)
0-250 meters x post-HEUC -0.0599%** -0.0585%* -0.0697** -0.0784*
(0.0291) (0.0287) (0.0314) (0.0412)
Black 0.0327%* 0.0333** 0.03327%* 0.0876**
(0.0128) (0.0129) (0.0131) (0.0350)
Hispanic 0.0166 0.0210 0.0211 0.0965%*
(0.0149) (0.0157) (0.0157) (0.0420)
Other race/ethnicity 0.0116 0.0155 0.0154 0.0776*
(0.0127) (0.0133) (0.0134) (0.0399)
Missing: Race/Ethnicity 0.0500%*** 0.0536%** 0.0535%** 0.1225%**
(0.0150) (0.0153) (0.0154) (0.0399)
Male 0.0091 0.0095 0.0092 0.0183
(0.0074) (0.0073) (0.0073) (0.0232)
Plural birth 0.5094*%** 0.5185%** 0.5173%** 0.5796%**
(0.0349) (0.0349) (0.0349) (0.0938)
Parents no college 0.0270%* 0.0265%* 0.0263* 0.0713**
(0.0151) (0.0157) (0.0158) (0.0306)
Missing: Parents no college 0.0823 0.0687 0.0669 0.3432%
(0.0894) (0.0967) (0.0968) (0.1849)
Mom 15-24 years -0.0067 -0.0059 -0.0054 -0.0623**
(0.0094) (0.0096) (0.0097) (0.0265)
Mom 35-44 years -0.0096 -0.0069 -0.0064 -0.0089
(0.0152) (0.0158) (0.0158) (0.0379)
Missing: Mom age 0.0588 0.0636 0.0636 -0.0594
(0.0480) (0.0496) (0.0497) (0.0670)
Smoked 0.0387%*** 0.0354 % 0.0353%** 0.0742%*
(0.0118) (0.0122) (0.0123) (0.0360)
Missing: Smoked -0.0388 -0.0222 -0.0213 -0.2076
(0.0980) (0.1065) (0.1067) (0.1890)
Second birth 0.0005 -0.0012 -0.0010 -0.0176
(0.0081) (0.0087) (0.0087) (0.0241)
Third birth 0.0040 0.0034 0.0038 -0.0312
(0.0105) (0.0110) (0.0110) (0.0304)
Fourth birth 0.0412%** 0.0413%** 0.0418%** -0.0114
(0.0149) (0.0150) (0.0150) (0.0376)
> Fifth birth 0.0435%* 0.0422* 0.0427* -0.0680
(0.0212) (0.0219) (0.0219) (0.0450)
Not married 0.0246** 0.0223%* 0.0226** 0.0114
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(0.0103) (0.0106) (0.0106) (0.0245)

Missing: Not married -0.0520%** -0.1591*** -0.1574%** 0.0000
(0.0241) (0.0481) (0.0485) ()
WIC -0.0392%%* -0.0403** -0.0404** -0.1182%%*
(0.0156) (0.0164) (0.0164) (0.0535)
Missing: WIC -0.0330 -0.0351 -0.0296 -0.2320%*
(0.0438) (0.0522) (0.0534) (0.0992)
Medicaid -0.0149 -0.0217 -0.0220 0.0456
(0.0191) (0.0197) (0.0197) (0.0414)
Missing: Medicaid -0.0452 -0.0537 -0.0523 -0.1284
(0.0338) (0.0423) (0.0433) (0.1154)
Constant 0.0933** 0.1078** 0.0988** 0.2458**
(0.0415) (0.0439) (0.0420) (0.1014)
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X
Observations 8178 8173 8173 1308
Adjusted R-squared 0.086 0.080 0.079 0.141

Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is a
binary indicator, equal to one for children designated as a preterm birth (i.e., in utero for less than 37 weeks), and zero otherwise. All
independent variables are binary indicators.
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Table A3. RDID Birthweight Full Regression Model Results.

@) 2 3) “)
0-250 meters -57.0938 -57.7150 -47.8427
(39.1015) (40.8152) (50.3419)
post-HEUC 30.7765 130.2504 154.1671
(29.3475) (87.9825) (110.4513)
0-250 meters x post-HEUC 164.4512%** 125.0005%* 110.3970 117.4240
(62.1264) (65.6349) (80.2677) (88.8404)
Black -280.2240%** -271.7354%%* -271.3556%** -427.2834%**
(24.7012) (24.8584) (25.0899) (74.7313)
Hispanic -83.6063*** -84.8407*** -82.6124*** -211.9060%**
(26.4104) (28.4458) (28.2976) (75.3924)
Other race/ethnicity -211.9341%%* -208.1100%** -207.7227%** -412.3379%**
(25.7615) (27.9025) (28.0416) (95.3206)
Missing: Race/Ethnicity -289.4577%** -281.4315%** -281.2579%** -486.6319%**
(25.9703) (27.2738) (27.4002) (85.7015)
Male 103.9291 *** 104.1050%** 104.2239%** 96.2285%*
(12.7829) (12.9722) (13.0350) (46.1184)
Plural birth -1025.0927*** -1043.8657*** -1044.6878*** -1102.6581***
(53.9279) (55.8800) (56.0546) (148.5574)
Parents no college -100.0102%*** -101.5395%** -102.6591*** -145.7058**
(27.7884) (29.1439) (29.2325) (72.3100)
Missing: Parents no college -186.7590 -167.2425 -168.0220 -112.3624
(194.9381) (187.6598) (188.0081) (259.2772)
Mom 15-24 years -16.0518 -18.3433 -18.4358 74.0224
(18.1334) (19.1499) (19.0895) (51.2844)
Mom 35-44 years -4.0750 -5.2402 -4.8649 -58.1222
(29.3726) (30.0840) (29.9964) (72.8817)
Missing: Mom age -142.5147*%* -151.7646%* -152.1213** 256.1181
(69.8619) (67.0090) (66.9069) (212.9595)
Smoked -212.7797%%* -205.5970%** -205.7531%** -238.6378%**
(20.4064) (20.8633) (20.9399) (67.9316)
Missing: Smoked 111.8521 90.6235 92.5746 -211.4604
(213.6967) (206.4856) (206.9778) (293.5349)
Second birth 65.6913*** 70.5244*** 69.4871%** 75.0071*
(16.5059) (17.2467) (17.2454) (42.8083)
Third birth 62.6198*** 67.4462%** 66.3186%** 113.6084**
(21.5606) (21.4307) (21.5753) (55.1763)
Fourth birth 57.8700%* 62.9846*** 61.7574%** 173.3839%**
(22.6607) (23.0042) (23.0852) (62.7089)
> Fifth birth 95.1407%*** 101.6716*** 101.7160%** 451.0519%**
(35.5182) (37.7004) (37.6518) (98.2166)
Not married -37.7024%* -33.0000* -34.4836%* -27.2159
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Missing: Not married
WIC

Missing: WIC
Medicaid

Missing: Medicaid

Constant

Spatiotemporal intercepts:

Month

Year

Site

Site x Year

Site x 0-250 meters

Site x post-HEUC
Matched sample
Observations
Adjusted R-squared

(18.5771)
-346.0038***
(56.5864)
61.5788%*
(28.2011)

-185.0651
(174.0992)
5.4855
(32.7404)
160.5469
(187.7460)
3411.7762%**
(88.1437)

X
X
X

8173
0.144

(18.8283)
-78.9715
(93.6628)
54.5717*
(29.0105)

-217.4368
(189.8621)
17.5059
(35.0223)
190.0834
(202.4730)
3373.0842%**
(91.0191)

XXX

8168
0.142

(18.7201)
-80.4339
(93.8913)
54.4600*
(29.1693)

-225.1606
(191.4368)
17.9297
(35.2825)
185.2244
(203.9231)
3422.3620%**
(87.5804)

TR T e

8168
0.141

(55.0883)
0.0000
)
252.0527%%*
(88.4588)

233.6796
(211.7911)
-131.9629*

(78.4166)
4.1328
(235.7041)

3274.0555% %%

(196.1728)

X
X
X
X

1307
0.203

Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is
birthweight (in grams). All independent variables are binary indicators.
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Table A4. RDID Low Birthweight (LBW) Full Regression Model Results.

@) 2 3) “)
0-250 meters 0.0183 0.0246 0.0350
(0.0191) (0.0204) (0.0271)
post-HEUC -0.0299* -0.1027** 0.0043
(0.0155) (0.0518) (0.0442)
0-250 meters x post-HEUC -0.0444* -0.0326 -0.0308 -0.0425
(0.0265) (0.0257) (0.0328) (0.0428)
Black 0.0569%** 0.0552%%* 0.0553#** 0.091 1 %%
(0.0115) (0.0118) (0.0119) (0.0316)
Hispanic 0.0123 0.0132 0.0131 0.0498
(0.0147) (0.0153) (0.0153) (0.0307)
Other race/ethnicity 0.0407%** 0.0406%** 0.0410%** 0.1008**
(0.0122) (0.0128) (0.0128) (0.0415)
Missing: Race/Ethnicity 0.0686*** 0.0681*** 0.0681%** 0.1327%***
(0.0131) (0.0138) (0.0139) (0.0339)
Male -0.0179** -0.0187*** -0.0188*** -0.0026
(0.0070) (0.0071) (0.0071) (0.0236)
Plural birth 0.5735%** 0.5807%*** 0.5806%** 0.6764***
(0.0329) (0.0322) (0.0323) (0.0642)
Parents no college 0.0392%*** 0.03971 *** 0.0404*** 0.0704**
(0.0134) (0.0137) (0.0138) (0.0351)
Missing: Parents no college 0.0855 0.0812 0.0801 0.2476
(0.0873) (0.0950) (0.0954) (0.1851)
Mom 15-24 years -0.0067 -0.0051 -0.0054 -0.0251
(0.0094) (0.0098) (0.0098) (0.0238)
Mom 35-44 years 0.0053 0.0063 0.0066 0.0602*
(0.0138) (0.0144) (0.0144) (0.0339)
Missing: Mom age 0.0382 0.0437 0.0436 -0.0807
(0.0437) (0.0438) (0.0437) (0.0518)
Smoked 0.0741%** 0.0737%%* 0.0738%** 0.0800%**
(0.0130) (0.0127) (0.0127) (0.0347)
Missing: Smoked -0.0086 0.0049 0.0062 -0.0906
(0.0917) (0.1014) (0.1019) (0.1893)
Second birth -0.0215%* -0.0236** -0.0236** -0.0292
(0.0090) (0.0095) (0.0095) (0.0261)
Third birth -0.0241** -0.0252%* -0.0249%* -0.0542*
(0.0096) (0.0102) (0.0102) (0.0307)
Fourth birth -0.0192 -0.0210 -0.0208 -0.0376
(0.0151) (0.0150) (0.0151) (0.0316)
> Fifth birth -0.0193 -0.0189 -0.0192 -0.1292%**
(0.0189) (0.0198) (0.0199) (0.0492)
Not married 0.0160* 0.0138 0.0141 0.0017
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(0.0092) (0.0096) (0.0096) (0.0240)

Missing: Not married -0.0462%* -0.1065%** -0.1062%** 0.0000
(0.0260) (0.0383) (0.0383) ()
WIC -0.0417%%* -0.0418%* -0.0414%* -0.1056**
(0.0162) (0.0174) (0.0175) (0.0442)
Missing: WIC -0.0011 -0.0198 -0.0150 -0.0572
(0.0531) (0.0661) (0.0671) (0.0994)
Medicaid 0.0235 0.0210 0.0203 0.1112%**
(0.0192) (0.0199) (0.0199) (0.0406)
Missing: Medicaid -0.0094 -0.0081 -0.0061 -0.0001
(0.0448) (0.0568) (0.0579) (0.1224)
Constant 0.0543 0.0913* 0.0542 0.0154
(0.0479) (0.0506) (0.0489) (0.0936)
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X
Observations 8173 8168 8168 1307
Adjusted R-squared 0.109 0.104 0.103 0.170

Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is a
binary indicator, equal to one for children designated as low birthweight (i.e., less than 2500 grams), and zero otherwise. All
independent variables are binary indicators.
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Table AS. RDID Very Low Birthweight (VLBW) Full Regression Model Results.

@) 2 3) “)
0-250 meters 0.0220* 0.0224** 0.0287**
(0.0114) (0.0109) (0.0126)
post-HEUC 0.0037 -0.0010 -0.0302
(0.0065) (0.0245) (0.0249)
0-250 meters x post-HEUC -0.0335%* -0.0312%* -0.0282 -0.0368
(0.0157) (0.0165) (0.0192) (0.0225)
Black 0.0209%*%** 0.0198*** 0.0198*** 0.0395%*
(0.0059) (0.0065) (0.0065) (0.0175)
Hispanic 0.0070 0.0078 0.0080 0.0172
(0.0056) (0.0067) (0.0067) (0.0146)
Other race/ethnicity 0.0148%* 0.0146** 0.0145%* 0.0467%*
(0.0058) (0.0063) (0.0064) (0.0230)
Missing: Race/Ethnicity 0.0256%** 0.0255%** 0.0253%** 0.0402*
(0.0059) (0.0065) (0.0065) (0.0226)
Male 0.0031 0.0041 0.0038 0.0005
(0.0035) (0.0036) (0.0036) (0.0103)
Plural birth 0.1375%%* 0.1427%%%* 0.1437%** 0.1176*
(0.0284) (0.0285) (0.0286) (0.0664)
Parents no college 0.0137** 0.0129* 0.0126%* 0.0222
(0.0068) (0.0075) (0.0075) (0.0136)
Missing: Parents no college 0.0342 0.0305 0.0301 -0.0392
(0.0588) (0.0502) (0.0502) (0.0490)
Mom 15-24 years -0.0064 -0.0073 -0.0075 -0.0383***
(0.0051) (0.0054) (0.0054) (0.0126)
Mom 35-44 years 0.0069 0.0063 0.0063 0.0199
(0.0075) (0.0075) (0.0075) (0.0202)
Missing: Mom age 0.0050 0.0009 0.0007 -0.0513%**
(0.0237) (0.0223) (0.0223) (0.0191)
Smoked 0.0100%* 0.0090* 0.0089* 0.0253
(0.0054) (0.0053) (0.0053) (0.0219)
Missing: Smoked -0.0487 -0.0411 -0.0411 0.0543
(0.0619) (0.0541) (0.0542) (0.0496)
Second birth -0.0001 -0.0010 -0.0010 -0.0093
(0.0039) (0.0043) (0.0043) (0.0096)
Third birth -0.0033 -0.0037 -0.0038 -0.0170
(0.0047) (0.0048) (0.0048) (0.0125)
Fourth birth -0.0052 -0.0056 -0.0058 -0.0149
(0.0066) (0.0070) (0.0070) (0.0179)
> Fifth birth -0.0077 -0.0114 -0.0114 -0.0637%**
(0.0097) (0.0103) (0.0103) (0.0185)
Not married 0.0049 0.0041 0.0044 0.0114
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(0.0049) (0.0049) (0.0048) (0.0121)

Missing: Not married 0.0019 -0.0024 -0.0018 0.0000
(0.0120) (0.0109) (0.0109) ()
WIC -0.0166** -0.0167** -0.0170%* -0.0606*
(0.0084) (0.0084) (0.0084) (0.0316)
Missing: WIC -0.0009 0.0039 0.0040 -0.0549
(0.0187) (0.0265) (0.0269) (0.0535)
Medicaid -0.0044 -0.0040 -0.0034 0.0356
(0.0091) (0.0102) (0.0103) (0.0250)
Missing: Medicaid -0.0089 -0.0209 -0.0206 0.0240
(0.0146) (0.0219) (0.0223) (0.0558)
Constant 0.0006 0.0090 0.0096 0.0206
(0.0197) (0.0212) (0.0205) (0.0256)
Spatiotemporal intercepts:
Month X X X X
Year X X X X
Site X X X X
Site x Year X X
Site x 0-250 meters X
Site x post-HEUC X
Matched sample X
Observations 8178 8173 8173 1308
Adjusted R-squared 0.016 0.010 0.009 0.055

Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is a
binary indicator, equal to one for children designated as very low birthweight (i.e., less than 1500 grams), and zero otherwise. All
independent variables are binary indicators.
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Table A6. Two-sample t-tests comparing control and treated groups.

Control (250-1,000m)

Treated (0-250m)

Mean Mean t-stat
Black 0.409 0.399 0.32
Hispanic 0.139 0.078 3.54%Hx*
Other race/ethnicity 0.204 0.209 -0.19
Male 0.511 0.517 -0.24
Plural birth 0.031 0.035 -0.37
Parents no college 0.888 0.851 1.87*
Mom 15-24 years 0.519 0.531 -0.43
Mom 35-44 years 0.081 0.061 1.46
Smoked 0.157 0.158 -0.05
Second birth 0.300 0.302 -0.10
Third birth 0.180 0.142 1.95%
Fourth birth 0.082 0.078 0.27
> Fifth birth 0.055 0.041 1.34
Not married 0.635 0.642 -0.28
WIC 0.604 0.567 0.73
Medicaid 0.643 0.600 0.87

Note: *p<0.10, ** p<0.05, *** p<0.01.
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Table A7. Regression models to investigate demographic sorting.

White White Black Black Hispanic Hispanic No College  No College Medicaid Medicaid
2 4) 2) “) 2) “) 2) 4 2) )
0-250 meters -0.0066 -0.0128 0.1034 0.1067 -0.0872** -0.1018** 0.0371** 0.0457 -0.0997 -0.1625
(0.0384) (0.0479) (0.0825) (0.1020) (0.0412) (0.0504) (0.0180) (0.0279) (0.1700) (0.1590)
post-HEUC 0.0026 0.1752%* 0.0002 -0.1263 0.0358 -0.0562 0.0167 -0.0901 -0.0516 -0.1057
(0.0709) (0.0977) (0.0659) (0.0932) (0.0385) (0.0747) (0.0503) (0.0710) (0.0928) (0.1199)
0-250 meters x
post-HEUC -0.0171 -0.0372 -0.1452 -0.1430 0.0997** 0.0542 -0.0923** -0.0434 0.1259 0.2610
(0.0694) (0.0939) (0.0919) (0.1178) (0.0470) (0.0646) (0.0465) (0.0860) (0.1705) (0.1724)
Constant 0.2495%**  (0.1881***  (0.4072***  (0.4805***  (.1238***  (.1670*** 0.8813%** 0.8699%** 0.6857***  (.6088***
(0.0304) (0.0438) (0.0296) (0.0485) (0.0166) (0.0394) (0.0168) (0.0266) (0.0830) (0.1200)
Spatiotemporal
intercepts:
Month X X X X X X X X X X
Year X X X X X
Site X X X X X
Site X Year X X X X X
Matched sample: X X X X X
Observations 6194 798 6194 798 6194 798 7850 1262 2478 383
Adjusted R-
squared 0.363 0.325 0.225 0.278 0.111 0.101 0.200 0.249 0.138 0.211

Note: *p<0.10, ** p<0.05, *** p<0.01.
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