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The Effects of Hazardous Chemical Cleanups on Birth Outcomes 

 

Dennis Guignet, Kyle Vetter, Linda Bui, Heather Klemick, and Ron Shadbegian 

 

Abstract: Focusing on hazardous chemical cleanups under the US Resource Conservation and 

Recovery Act (RCRA), we employ a reverse difference-in-differences design to estimate the 

effects of cleanup on birth outcomes. Data on the population of births in North Carolina from 

1990-2019 are linked to cleanups at contaminated sites across the state. We find robust evidence 

that for children born to mothers residing within 250 meters, cleanup leads to an almost one week 

increase in gestational age, and a 6 to 8 percentage point reduction in the risk of preterm birth. 

Cleanup may also lead to improvements in birthweight, but these results are not statistically 

significant across all models. Assessments of the post-treatment trends and demographic sorting 

support a causal interpretation of the results. We illustrate how these quantified improvements in 

newborn health can be monetized to inform local land use and cleanup decisions, as well as future 

regulations under RCRA.  
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I. INTRODUCTION 

The Resource Conservation and Recovery Act (RCRA) requires facilities to investigate and clean 

up releases of hazardous chemicals. Such activities are collectively referred to as Corrective 

Actions. Releases of hazardous chemicals can potentially yield extensive adverse effects in the 

United States, with over 31 million people (9% of the US population) living within one mile of a 

RCRA Corrective Action (CA) site (EPA, 2023a). Despite RCRA being a cornerstone of US 

environmental policy for nearly 50 years, benefit-cost analyses for most US Environmental 

Protection Agency (EPA) regulations under the authority of RCRA do not quantify the benefits to 

residents living near these facilities (Guignet and Nolte, 2024).   

A critical step in the monetization of benefits is to first quantify the effects, and that is the objective 

of our study. Focusing on RCRA facilities in North Carolina where a CA has occurred, we 

implement a reverse difference-in-differences  (RDID) design (Kim and Lee 2019; von Hinke and 

Sørensen 2023), where the treated and control groups are different prior to treatment, but then 

become similar after treatment. Our approach is coupled with multivariate regression modelling 

and exact covariate matching, to estimate the effects of hazardous chemical cleanups on birth 

outcomes. We circumvent recent criticisms against conventional difference-in-differences (DID) 

models in the face of staggered treatment events by utilizing a natural control group specific to 

each site and treatment (i.e., cleanup) – children born to mothers who live in the same 

neighborhood and around the same CA sites, but who live far enough away from the site so that 

they are not exposed to the released chemicals, nor affected by the subsequent cleanup. The 

appropriate distance threshold between the treated and control groups is determined based on 

econometric examination of the conditional pre- and post-treatment distance gradients (Linden and 

Rockoff 2008; Muehlenbachs et al. 2015; Haninger et al. 2017; Guignet et al. 2023b). The presence 

of a natural control group corresponding to each site and treatment event allows for a naturally 

stacked DID approach. Stacked DID designs have been touted as one approach to circumvent the 

“negative weighting” concerns associated with staggered treatment events and conventional DID 

estimation via two-way fixed effects models (Goodman-Bacon 2021, Roth et al. 2023).   

We set out to answer two main questions. First, do cleanups and exposure mitigating activities 

associated with RCRA Corrective Actions lead to improvements in birth outcomes for children 

whose mothers reside near the sites?  Second, what is the spatial extent of any such health 

improvements?   

We find that cleanup leads to localized improvements in newborn health, extending only to 

children born to mothers who lived within 250 meters of a CA site. The strongest evidence is in 

terms of gestational age and preterm birth, suggesting that cleanup leads to a 0.8 to 0.9 week 

increase in gestation, and a 6 to 8 percentage point decrease in the risk of preterm birth. 

Supplemental diagnostics confirm that post-cleanup sorting of different demographic groups is 

likely not driving the results, and that the evidence is overall consistent with a causal interpretation.  

We also find consistent (but sometimes statistically insignificant) evidence regarding increases in 

birthweight and reductions in the risk of low and very low birthweight. Such improvements in 

birth outcomes can yield benefits in terms of longer-term health and increased human capital 
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(Currie 2011). Both increases in gestational age (Crump et al. 2011; Boyle et al. 2012) and 

birthweight ( Black et al., 2007; Belbasis et al. 2016; Xie et al. 2017; Baguet and Dumas 2019; 

Ludvigsson et al. 2018; WHO 2022) are associated with later-in-life improvements in health, 

education, and labor outcomes. Given the extremely localized nature of the estimated health effects 

and minimal use of local groundwater around our study sites, we conjecture that re-suspension of 

contaminated particles into the air, and mothers’ subsequent inhalation, ingestion, and/or dermal 

contact with these particles is a plausible exposure pathway. Vapor intrusion into homes and 

subsequent inhalation of hazardous vapors is also possible.  

This study offers several policy-relevant contributions to the literature. First, we add to a growing 

quasi-experimental literature that quantifies the effects of exposure to hazardous chemicals on 

children’s health (e.g., Currie et al., 2011, 2015; Rau et al., 2015; Klemick et al. 2020; Bui et al., 

2022). Second, our quantified estimates of improvements in newborn health pave the way for 

monetization of this critical endpoint. A review of economic analyses for recent EPA regulations 

under the authority of RCRA finds that, in most cases, the only monetized benefits were avoided 

cleanup costs experienced by the regulated facilities, and/or cost-savings to regulators. Benefits 

accruing to residents living near hazardous chemical facilities are often discussed only 

qualitatively (Guignet and Nolte 2024). Third, our study provides two methodological 

contributions. To our knowledge, it is one of only a few applications demonstrating the RDID 

design (Kim and Lee 2019; von Hinke and Sørensen 2023). Additionally, we illustrate how 

commonly applied spatial DID designs, where there is a natural control group corresponding to 

each treatment event, allow researchers to circumvent potential biases when estimating the effects 

of treatment events that are staggered over time (Goodman-Bacon 2021, Roth et al. 2023).    

 

II. METHODOLOGY 

II.A. Reverse Difference-in-differences (RDID)  

Difference-in-differences (DID) has emerged as one of the most prominent methodologies for 

causal inference in the social sciences (Roth et al. 2023). Recently formalized by Kim and Lee 

(2019), a much less studied variant of the DID approach is the reverse difference-in-differences 

(RDID) design. In a conventional DID setting, the treated and control groups are as similar as 

possible before the treatment event, but then post-treatment the two groups become different due 

to the treatment. In a RDID setting, however, the treated and control groups are different prior to 

treatment, but then become similar after treatment. To our knowledge there are only two published 

applications of the RDID approach. Kim and Lee (2019) assess the impact of work-hour limits on 

work hours and wages in South Korea. Initially work-hour limits were only in place for a subset 

of firms. This control group was compared to a “treated” group of firms that did not initially face 

work-hour limits, but where such limits were put in place one year later. von Hinke and Sørensen 

(2023) used the RDID approach to examine how exposure in utero and in infancy to an extreme 

air pollution event – the 1952 London smog – affected cognitive ability and respiratory health later 

in life. Their identification strategy compared those exposed to the London smog while in utero 
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and infancy to those born in the same areas, but after the smog event. This difference was in turn 

compared to a control group of individuals born during the same time period, but in areas 

unaffected by the smog.  

Similar to von Hinke and Sørensen (2023), in our current context we have a treated group of 

exposed individuals – i.e., children born to mothers living near a chemical facility and who are 

thus potentially exposed to hazardous chemicals. This set of individuals is denoted as group 𝐴 in 

Figure 1. We have a control group of children born to mothers living in the same neighborhood, 

and around the same chemical facility, but who live far enough away so that they are not exposed 

to hazardous chemicals (denoted as group 𝐵). These two groups are different prior to treatment – 

one is potentially exposed to hazardous chemicals, and the other is not.  

 

We define treatment as the completion of cleanup and exposure mitigation activities. More 

formally, we define treatment as a Corrective Action (CA) site receiving a Human Exposure Under 

Control (HEUC) determination by regulators.1 The HEUC determination is a formal milestone of 

the RCRA Corrective Action (or cleanup) process, and it is assigned when the responsible party 

sufficiently demonstrates that there is no longer a risk of human exposure. After the HEUC, 

exposure to hazardous chemicals is eliminated and the treated and control groups are now 

hypothesized to be similar; as depicted by groups 𝐴′ and 𝐵′ in Figure 1. 

 

Figure 1. Depiction of the Reverse Difference-in-differences (RDID) Design. 

 

 

The identification strategy outlined in Figure 1 is similar to a typical DID setting. We are 

estimating the change or difference in average outcomes among the treated group, before and after 

treatment (𝐴′ − 𝐴). This first difference could also capture other trends that coincide with the 

HEUC event, and so a second differencing subtracts out the average change over the same time 

 

1 In North Carolina, the Department of Environmental Quality (NC DEQ) operates the CA program and makes such 

determinations. Although the US EPA provides oversight and ensures that federal standards are met, 44 states are 

authorized to operate their CA programs (EPA 2025).  
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period for children born to mothers in the same neighborhood and around the same chemical 

facility, but who are far enough away that they are not exposed to hazardous chemicals (𝐵′ − 𝐵). 

As in a typical DID framework, our RDID estimator can be summarized as (𝐴′ − 𝐴) − (𝐵′ − 𝐵). 

The difference between the DID and RDID approaches primarily comes into play when we assess 

parallel trends and the plausibility for causal inference, which we return to in Section IV.C.  

 

II.B. Empirical Model  

We implement the RDID approach within a regression model framework, as shown by equation 

(1). The birth outcomes of interest are denoted as 𝑌𝑖𝑗𝑡. In our primary models, the outcomes of 

interest are continuous measures of gestational age (measured in weeks) and birthweight 

(measured in grams). To examine the robustness of our results we also estimate linear probability 

models, where 𝑌𝑖𝑗𝑡 represents binary indicators denoting preterm birth (PTB), low birth weight 

(LBW), and very low birthweight (VLBW).2  

The unit of observation is the birth of child i to a mother living near chemical facility j, and who 

was conceived in period t. We control for 𝒙𝑖𝑗𝑡, which is a vector of individual-level characteristics 

of the child (race or ethnicity, sex at birth, and the month of conception), and of the parents 

(education, mother’s smoking and marital status, mother’s age, birth order, and proxies for income, 

namely participation in Medicaid and in the US Department of Agriculture’s Special Supplemental 

Nutrition Program for Women, Infants, and Children (WIC)).   

(1)      𝑌𝑖𝑗𝑡 = 𝒙𝑖𝑗𝑡𝜷 + 𝛼𝑗𝐻𝐸𝑈𝐶𝑗𝑡 + 𝜆𝑗𝟙(𝑑𝑖𝑗 ≤ 𝐷) + 𝛾{𝟙(𝑑𝑖𝑗 ≤ 𝐷) × 𝐻𝐸𝑈𝐶𝑗𝑡} + 𝜙𝑗𝑡 + 𝜀𝑖𝑗𝑡 

The “treatment” event of interest is verification by regulators that human exposure is under control 

(𝐻𝐸𝑈𝐶𝑗𝑡) at chemical facility j. This treatment event indicator equals one if the child was 

conceived after the HEUC determination, and is zero otherwise. We also include a treated group 

indicator 𝟙(𝑑𝑖𝑗 ≤ 𝐷), which equals one when child i is born to a mother who lives within a distance 

D from chemical facility j, and is zero otherwise. This indicator denotes the treated group, both 

pre- and post-treatment.   

Critical to our identification strategy is the inclusion of site-by-conception year fixed effects (𝜙𝑗𝑡). 

These fixed effects account for site-specific factors and temporal trends that could otherwise 

 

2 For the binary outcomes, linear probability models are estimated instead of common nonlinear models (e.g., probit 

or logit). This is primarily due to our inclusion of high-dimensional fixed effects to control for spatially and temporally 

correlated confounders. These overlapping fixed effects cannot be simply differenced or conditioned out in nonlinear 

models, leading to an incidental parameters problem (Lancaster 2000; Wooldridge 2010, page 612). In such cases, the 

linear probability model provides a reasonable approximation when the objective is to estimate partial effects on the 

probability of the outcome of interest (Wooldridge 2010, pp. 563), as is the case here. Linear probability models also 

accommodate a mix of continuous and categorical variables and offer easily interpretable marginal effects (Angrist 

and Pischke 2009). 
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confound our results. The inclusion of 𝜙𝑗𝑡 also allows us to circumvent criticisms of DID 

applications when the treatment events are staggered over time (Goodman-Bacon 2021, Roth et 

al. 2023), and therefore we do not need to implement models developed to address these criticisms 

(e.g., Callaway and Sant’Anna 2021, Wooldridge Forthcoming). In our setting, we do have 

staggered treatment events. We observe cleanup and HEUC determinations at different chemical 

facilities, and that occur at different points in time. In this and other staggered DID settings, 

analysts are effectively pooling numerous sub-experiments, and are estimating an overall average 

treatment effect on the treated (ATT) that is a weighted average of the ATTs across the sub-

experiments. The crux of the staggered DID criticism is that the conventional two-way fixed 

effects (TWFE) model compares treated observations to not-yet- and never-treated observations, 

which act as control group observations. However, the TWFE model also implicitly makes 

“forbidden” comparisons to already-treated observations, which can lead to negative weighting of 

the ATTs from some sub-experiments. In cases where the ATT is varying over time this can bias 

the overall average ATT estimate of interest (Goodman-Bacon 2021, Roth et al. 2023). We cannot 

rule out the possibility of time varying treatment effects in our current setting. For example, 

residual parental health effects and within-body chemical burden could remain after the HEUC 

determination, but may continue to diminish over time.  

In our current context, these “forbidden” comparisons would involve cross-site comparisons. 

However, our estimation approach avoids such concerns because each chemical facility includes 

a natural control group that is specific to the site and HEUC event – children born around the same 

CA site, but who were too far away to be exposed to the hazardous chemicals. These individuals 

“experience” a specific treatment event but are not exposed to the treatment. The typical TWFE 

model does not contain control observations that are linked to a specific sub-experiment, as we 

have here. The availability of site-specific control groups allows us to identify 𝜙𝑗𝑡 in equation (1), 

and thus absorb any cross-site variation over time, including variation based on “forbidden” 

comparisons. Due to the inclusion of 𝜙𝑗𝑡, identification of the overall ATT in our analysis is based 

solely on within-site and year variation. When considering only within-site, the treatment is not 

staggered over time, and so there are no “forbidden” comparisons of treated observations to 

already-treated observations.3  

Our empirical framework is more akin to a stacked DID design (Cengiz et al. 2019; Deshpande 

and Li 2019; Fadlon and Nielsen, 2021), where analysts construct a counterfactual group specific 

to each sub-experiment and then stack the datasets to estimate a pooled model. We refer to our 

setting as a naturally stacked DID design because we do not need to construct a counterfactual 

group for each sub-experiment, one is inherently present by our comparison of children living 

nearest to the CA sites to those living around the same sites but farther away. The stacked DID 

method has been suggested as one approach to address concerns regarding staggered treatment 

 

3 This feature is not unique to our study, and in fact such spatial DID approaches have been widely used, particularly 

in the hedonic property value literature (e.g., Linden and Rockoff 2008, Muehlenbachs et al. 2015, Haninger et al. 

2017, Guignet et al. 2023a, 2023b, Guignet and Nolte 2024, Cassidy et al. 2024). Basu et al. (2025) recently applied 

this same identification strategy in their analysis of residential sorting and pollution exposure among older adults.   
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events (Goodman-Bacon 2021, Roth et al. 2023, Basu et al. 2025). To further align with the stacked 

DID framework, in our most flexible models we interact the post-treatment indicator 𝐻𝐸𝑈𝐶𝑗𝑡 and 

treated zone indicator 𝟙(𝑑𝑖𝑗 ≤ 𝐷) with site-specific indicators (hence the j subscript on the 𝛼𝑗 and 

𝜆𝑗 coefficients in equation (1)). In theory, we could estimate a separate regression model for each 

of the chemical facilities, but as demonstrated in Section III, the sample sizes (particularly for the 

treated group) are quite small around some of the sites. Instead, we pool the data across sites and 

estimate the average effect of cleanups on birth outcomes within the same regression model. Doing 

so provides more power to statistically estimate the average effect of the HEUC events.  

Of primary interest in equation (1) is the interaction term between the treated group and the post-

treatment event, 𝟙(𝑑𝑖𝑗 ≤ 𝐷) × 𝐻𝐸𝑈𝐶𝑗𝑡.  The corresponding coefficient to be estimated, 𝛾, is the 

weighted-average of the ATTs across the sites. All else constant, 𝛾 captures the average 

incremental effect of cleanup on gestational age or birthweight among children born to mothers 

who live near the chemical facilities. Our primary hypothesis is 𝛾 > 0, which would imply that 

cleanup and the subsequent HEUC determination increase gestational age and birthweight. In our 

linear probability models of PTB, LBW, and VLBW, the primary hypothesis is 𝛾 < 0, which 

would imply a reduction in the risk of these conditions.   

The other parameters to be estimated include 𝜷, 𝛼𝑗, 𝜆𝑗, and 𝜙𝑗𝑡. The unobserved disturbance term 

𝜀𝑖𝑗𝑡 is allowed to be correlated for children within the same neighborhood (i.e., within the same 

Census block group).  

 

II.C. Pre-regression Matching  

To further assess the robustness of our results, we also estimate a series of regression models using 

a matched sample. An exact covariate matching algorithm is used to create a more comparable set 

of treated and control units. Treated observations (births within close proximity to the chemical 

facility, i.e., 𝟙(𝑑𝑖𝑗 ≤ 𝐷) = 1) and control observations (births farther away from the same 

chemical facility, i.e., 𝟙(𝑑𝑖𝑗 ≤ 𝐷) = 0) are matched if they simultaneously fulfill all three of the 

following conditions: (i) they are nearest to the same chemical facility4, (ii) they are conceived in 

the same year and month, and (iii) both are conceived either pre- or post-HEUC. The motivation 

of our matching algorithm is to provide a more balanced sample over time and across sites, and 

thus better control for any remaining unobserved confounders that may be correlated over space 

and time.5  

 

4 As discussed in Sections III and IV.A, in our application this means that the treated and control observation are both 

within 1,000 meters of the same chemical facility.  
5 We assessed the possibility of also matching based on sociodemographic characteristics (e.g., gender, race or 

ethnicity, parental education, and mother’s age), but doing so even for one of these characteristics resulted in too few 
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The sample is pruned and re-weighted so that the distributions of the treated and control groups 

across these dimensions are the same.  Each matched treated observation is given a weight of one 

if it is matched to at least one control observation. A control observation can be given a weight 

greater than one if it was matched to more than one treated observation, or could have a weight 

less than one if there are many similar control observations matched to the same treated 

observation. In essence, the matching algorithm constructs a counterfactual based on a weighted 

average of control observations. Treated and control observations that were not matched 

simultaneously based on these three dimensions are given a weight of zero and discarded from the 

matched sample. Although we are performing exact matching, we employ this matching procedure 

using a Coarsened Exact Matching (CEM) algorithm (Blackwell et a. 2009; Iacus et al. 2012). 

Regression models based on equation (1) are then estimated using the weighted sample, controlling 

for the same set of sociodemographic characteristics and other covariates.  

 

III. DATA 

III.A. Data Sources and Background 

This research is conducted under an agreement with the Children’s Environmental Health Initiative 

(CEHI) at the University of Illinois-Chicago and a protocol approved by the University of Illinois-

Chicago Institutional Review Board. The data are from the Vital Statistics Department of North 

Carolina State Center for Health Statistics (NCSCHS), and are subsequently compiled and 

maintained by CEHI. The data include individual-level observations for all live births in NC from 

1990-2019 and contain information on the date of birth, birthweight, gestational age, race and 

ethnicity, and parental characteristics. We use the mother’s place of residence and baby’s date of 

conception to spatially and temporally link each individual birth record to chemical facilities 

regulated under RCRA and the cleanup activities at these sites. We assume that a mother lives at 

the same address throughout the pregnancy, but only observe the mother’s place of residence at 

the time of the child’s birth. 

Data on all 2,447 RCRA facilities in NC were obtained from RCRAInfo, EPA’s comprehensive 

database of facilities handling hazardous chemicals. Geographic coordinates of the RCRA 

facilities come from EPA’s Facility Registry Service. We first draw focus to the 34 RCRA facilities 

in North Carolina where a CA investigation was opened, and where that investigation identified a 

contamination release severe enough to require intervention to protect human health.6 

 

matches and an estimating sample that was too small for statistical analysis. Nonetheless, we control for these key 

sociodemographic characteristics by including them in 𝒙𝑖𝑗𝑡  when estimating equation (1).  
6 We define such sites as those where active remediation technologies, physical controls, and/or institutional controls 

were deemed necessary. Such cases are identified in the RCRAInfo database based on the following event codes: 

CA550RC (remedy construction); CA770GW and CA770NG (groundwater and nongroundwater controls); and 

CA772EP, CA772GC, CA772ID, and CA772PR (institutional controls). 
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Diagnostic analysis suggests that any effects on newborn health are extremely localized, and thus 

the treated group zone extends only 250 meters from a site, on average (see Section IV.A for 

details). To facilitate a clean quasi-experiment and thus more valid quantification of any health 

improvements associated with cleanup, we further draw focus to the 12 CA sites where births were 

observed within the treated group zone (i.e., 0-250 meters) both before and after the HEUC 

determination. The location of the 12 CA sites analyzed are shown in Figure 2. 

Figure 2. Map of 12 Corrective Action Sites in North Carolina. 

 

Review of the case files from the North Carolina Department of Environmental Quality (NCDEQ) 

confirm that in all 12 cases there was a chemical spill or release at the facility, and that physical 

remediation of the pollutants was undertaken. Remediation methods included excavation of 

contaminated soil, soil aeration and vapor extraction, groundwater treatment, and the installation 

of physical barriers to minimize the migration of contaminants. Some barriers contained reactive 

materials to chemically neutralize pollutants. Active monitoring of soil and groundwater and some 

element of natural attenuation were included in the remediation activities at all sites.  

According to the available North American Industry Classification System (NAICS) codes in 

RCRAInfo, most of the 12 facilities are involved in manufacturing activities (8 facilities), followed 

by transportation (6), waste management (5), general services (3), and construction (1). Half of the 

sites are recorded as having more than one NAICS categorization. Based on the individual case 

files from the NCDEQ, the most common contaminants released included heavy metals (e.g., lead, 

nickel, chromium, cadmium), volatile organic compounds (e.g., benzene, toluene, and 

ethylbenzene), and other toxic chemicals such as arsenic and sulfuric acid.7  

When routine monitoring of soil, groundwater, and (when applicable) surface water consistently 

suggest that migration of pollutants to human and environmental endpoints is no longer a concern, 

then the regulators make a HEUC determination. Testing and related cleanup activities may 

continue after the HEUC determination, but after this event the site is generally deemed safe to 

surrounding populations.  

 

7 The NCDEQ case files can be accessed at https://edocs.deq.nc.gov/WasteManagement/Browse.aspx.  

https://edocs.deq.nc.gov/WasteManagement/Browse.aspx
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In an ideal quasi-experiment, the HEUC event would denote a discrete decrease in contamination 

and human exposure, however that is not necessarily the situation. In most (if not all) cases, 

cleanup entails the use of controls that substantially reduce contamination prior to the HEUC event, 

and the reduction in chemical exposures could occur gradually. For example, remediation 

technologies like pumping and treating groundwater, vapor extraction, and chemical neutralization 

lead to gradual reductions in pollution. In some cases, continued monitoring after initial cleanup 

activities may reveal additional contamination, and as a result additional remediation activities 

may then be implemented. Such sequencing of cleanup activities can occur over many years. 

Among the 12 chemical facilities in our study, the cleanup process took 6 to 15 years from the 

opening of the CA to the time the facility received a HEUC determination. This makes it less than 

ideal for a DID approach because children in our treated group may have experienced some of the 

health improvements from cleanup during the pre-treatment period. In this situation, our RDID 

design may underestimate the health improvements.  

Nonetheless, the spatiotemporal variation across the 12 CA sites and HEUC determinations lend 

support to our quasi-experimental design. These facilities are located across the State (see Figure 

2), and the HEUC events occur at different times during our 1990-2019 study period, with the first 

HEUC determination being made in 1998, and the last occurring in 2014 (see Figure A1 in the 

Appendix). Residual confounding factors that are specific to a particular site or year are minimized 

by analyzing numerous sites and HEUC events.  

 

III.B. Summary Statistics 

Our RDID analysis focuses on the n=8,178 live births from 1990-2019 in North Carolina, where 

the mother lived within 1,000 meters of one of the twelve CA facilities analyzed.8 Summary 

statistics are provided in Table 1. The average newborn weighs 3,126 grams at birth, and was in 

utero for 38.4 weeks. About 12.7% and 2.5% of babies are designated as low birth weight (LBW) 

or very low birth weight (VLBW), meaning that they were below 2500 or 1500 grams at birth, 

respectively.  About 12.5% of the newborns are designated as a preterm birth (PTB), meaning that 

they were in utero for less than 37 weeks. Just over half of the children were male (51%). Most 

children were a singleton birth, with only 3% of our sample corresponding to a plural birth (twins 

or triplets). About 24% of the newborns in our sample did not have a race or ethnicity listed, but 

among those who did, about 25% were White, 40% Black, 14% Hispanic, and 20% were noted as 

another race or ethnicity. The relatively small percent of children who are White in this sample of 

newborns living within 1,000 meters of a chemical facility, compared to the 49% White among 

 

8 Although our dataset started with the population of births in North Carolina during this period, we restrict attention 

to this subset for the main analysis (see Section IV.A for details).  
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the broader population of live births in NC during this period, highlights the potential disparities 

in terms of where these chemical facilities are located.9  

Table 1. Descriptive Statistics. 

Variable Obs Mean Std. dev. Min Max 

Birthweight (grams) 8,173 3126 648 0 5982 

Gestational Age (weeks) 8,178 38.42 2.73 15 47 

Low Birth Weight 8,173 0.127 0.333 0 1 

Very Low Birthweight 8,173 0.025 0.155 0 1 

Preterm Birth 8,178 0.125 0.331 0 1 

White 6,202 0.251 0.433 0 1 

Black 6,202 0.409 0.492 0 1 

Hispanic 6,202 0.136 0.343 0 1 

Other race/ethnicity 6,202 0.204 0.403 0 1 

Missing: Race/Ethnicity 8,178 0.242 0.428 0 1 

Male 8,178 0.511 0.500 0 1 

Plural birth 8,178 0.031 0.174 0 1 

Parents no college 7,858 0.887 0.317 0 1 

Missing: Parents no 

college 8,178 0.039 0.194 0 1 

Mom 15-24 years 8,117 0.519 0.500 0 1 

Mom 35-44 years 8,117 0.080 0.271 0 1 

Missing: Mom age 8,178 0.007 0.086 0 1 

Smoked 7,875 0.157 0.364 0 1 

Missing: Smoked 8,178 0.037 0.189 0 1 

Second birth 8,178 0.300 0.458 0 1 

Third birth 8,178 0.179 0.383 0 1 

Fourth birth 8,178 0.082 0.275 0 1 

≥ Fifth birth 8,178 0.055 0.228 0 1 

Not married 8,177 0.635 0.481 0 1 

Missing: Not married 8,178 0.000 0.011 0 1 

WIC 2,481 0.602 0.490 0 1 

Missing: WIC 8,178 0.697 0.460 0 1 

Medicaid 2,479 0.641 0.480 0 1 

Missing: Medicaid 8,178 0.697 0.460 0 1 
Note: All variables are binary indicators, unless otherwise noted in parentheses.  

 

When data on parental education is available, we see about 89% of the children near these facilities 

were born to parents with no college education. About 52% of the mothers were between 15-24 

years of age at the time of the child’s birth, followed by mothers between 25-34 years (the omitted 

 

9 See Brodin and Guignet (2024) for an in-depth, nationwide distributional analysis of the RCRA Corrective Action 

program.  
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category), and then mothers between 35-44 years. Just under 16% of the mothers reported smoking 

during pregnancy, and 63% of mothers were not married at the time of the baby’s birth. Although 

we do not directly observe income in the birth records data, for births in 2011 and after, we have 

proxy information based on whether the mother participated in the USDA’s nutritional supplement 

WIC program, and was enrolled in Medicaid, both of which indicate low income. Among the 

observations where these data are available, we see participation rates of 60% and 64%, 

respectively.  

 

IV. RESULTS  

IV.A. Determining the Spatial Extent of Newborn Health Effects 

To determine the spatial cutoff between the treated and control groups we adopt a procedure often 

used to examine the effects of local disamenities on house prices. It was first introduced by Linden 

and Rockoff (2008), and subsequently refined by Muehlenbachs et al. (2015), Haninger et al. 

(2017), Guignet and Nolte (2024), and others. A regression model similar to equation (1) is 

estimated, which allows us to estimate the pre- and post-HEUC gradients with respect to distance 

to the site, conditional on all observed characteristics.  In theory, the conditional distance gradients 

will be different closer to the site, but then converge at some distance D.  This distance D is the 

assumed cutoff between the treated and control groups. The regression model to be estimated is:  

(2)      𝑌𝑖𝑗𝑡 = 𝒙𝑖𝑗𝑡𝜷1 + 𝑷𝒓𝒆𝑯𝑬𝑼𝑪𝑖𝑡𝜽𝑝𝑟𝑒 + 𝑷𝒐𝒔𝒕𝑯𝑬𝑼𝑪𝑖𝑡𝜽𝑝𝑜𝑠𝑡 + 𝜏𝑡 + 𝜐𝑗 + 𝜀𝑖𝑗𝑡 

where 𝑷𝒓𝒆𝑯𝑬𝑼𝑪𝑖𝑡 is a vector of indicator variables denoting whether the mother of child i lived 

in different distance bins from the nearest chemical facility j, and whether time t (when the child 

was conceived) was before the HEUC determination for facility j. The distance bins are measured 

in 250-meter increments starting with 0-250m, 250-500m, and so on. The farthest distance bin is 

omitted for identification. Similarly, 𝑷𝒐𝒔𝒕𝑯𝑬𝑼𝑪𝑖𝑡 is a vector of indicators denoting proximity to 

chemical facility j but indicates whether child i was conceived after the HEUC event.  The vectors 

to be estimated, 𝜽𝑝𝑟𝑒 and 𝜽𝑝𝑜𝑠𝑡, capture the conditional pre- and post-treatment distance gradients 

in a flexible fashion. In this diagnostic exercise, we include separate site and conception year fixed 

effects (𝜐𝑗 and 𝜏𝑡, respectively), rather than site-by-year fixed effects (𝜙𝑗𝑡), as done in the main 

regression model shown in equation (1). 

We estimate equation (2) using a broader sample of children born to mothers living within 5 km 

of one of the original 34 CA sites in North Carolina.10 Estimates of 𝜽𝑝𝑟𝑒 and 𝜽𝑝𝑜𝑠𝑡 are presented 

in Figure 3, thus showing the pre- and post-HEUC conditional distance gradients for gestational 

age and birthweight (Panels (a) and (b), respectively). Both graphs suggest that prior to the HEUC 

 

10 Earlier analysis included births out to 10 km and produced the same result in terms of the estimated spatial extent 

of the effects of cleanup on infant health.  
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determination, children born to mothers living nearest the chemical sites (i.e., within 250 meters) 

experienced a lower birthweight and gestational age, on average, but this negative association 

dissipates farther from the CA sites, moving towards zero in the subsequent distance bins. The 

post-HEUC gradients suggest that, on average, newborns nearest the site experience a greater 

gestation period and birthweight. The post-HEUC gradient converges towards the pre-HEUC 

gradient beyond 250 meters.   

Wald tests confirm that the pre- and post-HEUC distance gradients corresponding to the 0-250 m 

distance interval are statistically different (p = 0.001 for both the gestational age and birthweight 

estimates). Therefore, we define the treated group as children born to mothers who lived within 0-

250 of a CA site. We assume a control group of infants born to mothers who lived between 250-

1000 meters from a site. These definitions were informed by the results in Figure 3, as well as 

consideration of the tradeoffs between a larger sample size when extending the outer boundary of 

the control group, versus the possibility of introducing additional spatially correlated confounders. 

For the control group distance bins (250-500; 500-750; and 750-1,000 meters), we fail to reject 

the null hypotheses that the pre- and post-HEUC estimates are statistically equivalent, supporting 

the assumption that newborns in the broader 250-1,000 meter zone serve as a reasonable control 

group. We arrive at the same conclusion when re-estimating equation (2) with binary health 

outcome variables (see Figure A2 in the Appendix).   

Given that any potential improvements in birth outcomes are very local in nature, the sample size, 

particularly of the treated group, is relatively small. Focusing on the 12 (out of the original 34) CA 

sites where there are observed births within the 0-250 meter treated zone, both before and after the 

HEUC event, we see a total of just 344 observations (225 births pre-HEUC and 119 post-HEUC). 

The number of control group births within 250-1000 meters of these same 12 sites is 7,834 (with 

5,394 and 2,440, before and after the HEUC determination, respectively). When using our matched 

sample to better balance our treated and control groups across sites and over time, the sample size 

is reduced even further, resulting in just 66 treated and 6,804 control observations. The small 

number of identifying observations in our analysis is an important caveat to keep in mind when 

interpreting the results.  
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Figure 3. Conditional Pre- and Post-HEUC Distance Gradients. 

 
Note: Figure displays estimates of 𝜽𝑝𝑟𝑒 and 𝜽𝑝𝑜𝑠𝑡 from regression models of equation (2). The vertical lines denote 

the 95% confidence interval around each estimate.  

 

IV.B. RDID Regression Results 

Using the sample of births within 1,000 m of one of the 12 CA sites, we first estimate variants of 

equation (1) where gestational age (measured in weeks) is the dependent variable. ATT estimates 

(i.e., 𝛾 in equation (1)) for the models of gestational age are presented in Table 2. The first model 

includes the full suite of covariates, conception month and year fixed effects, and separate time-

invariant site fixed effects. The coefficient corresponding to 0-250m × post-HEUC is positive and 

statistically significant, suggesting that children living within 0-250m of a site experienced an 

average increase in gestation of about 0.89 weeks if they were conceived after cleanup and when 

human exposure is determined to be under control at the chemical facility. Considering that the 

average gestation period in our sample is 38.4 weeks, this corresponds to a 2.3% increase in the 

time a child  has to develop in utero.   
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Model 2 in Table 2 includes the site-by-year fixed effects, which as discussed in Section II.B are 

important for our identification strategy and ability to circumvent criticisms regarding the 

staggered treatment events over time. Model 2 suggests a similarly sized and statistically 

significant 0.76 week increase in gestational age after the HEUC determination. Model 3 

introduces additional interaction terms to allow the post-HEUC and 0-250 meter treated zone 

associations to vary across the 12 CA sites. Model 3 yields a similar result, suggesting 0.91 week 

increase. Although Model 3 is the most thorough in controlling for site-specific factors, we do 

have some concerns related to the small number of just 344 treated observations (only 119 of which 

occur post-HEUC). Dividing those identifying observations across the 12 sites when estimating 

site-specific interaction effects with the 0-250 meter treated zone indicator and the post-HEUC 

indicator (in addition to the inclusion of the site-by-year fixed effects) results in a loss of statistical 

power. Nonetheless, the results from Model 3 are robust and of the greatest magnitude, at least in 

terms of gestational age. Model 4 is the same as Model 1, but utilizes the matched sample discussed 

in Section II.C. We employ a specification similar to Model 1 here because the matched sample is 

notably smaller than the full sample included in Models 1-3. The results from Model 4 are similar 

to the earlier models, suggesting an almost 0.80 week increase in gestational age after the HEUC 

determination.   

The full results including all covariates are provided in Table A1 of the Appendix, and generally 

align with expectations. For example, a newborn who is Black or of another race/ethnicity tends 

to have a shorter gestation period relative to a White newborn, all else constant. Plural births, as 

well as children born to parents with no college education, or to a mother who reports smoking 

during pregnancy, also experience a shorter gestation period.  

 

Table 2. RDID Gestational Age Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters × post-HEUC 0.8890*** 0.7649*** 0.9085*** 0.7978** 

 (0.2490) (0.2591) (0.3283) (0.3775) 

     
Additional covariates X X X X 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8178 8173 8173 1308 

Adjusted R-squared 0.094 0.089 0.087 0.141 
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Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. 

Dependent variable is gestational age (in weeks). See Table A1 in the Appendix for the full results 

 

We find similar results when estimating variants of these same four specifications, but where a 

binary indicator of PTB is the dependent variable. As shown in Table 3, Model 1 suggests a 6.0 

percentage point decrease in the risk of PTB following cleanup.  Models 2 through 4 suggest 

similar reductions in the risk of PTB, ranging from 5.9-7.8 percentage points.11 Considering that 

the average risk of PTB in our sample is 12.5%, these results suggest that cleanup leads to a 

staggering 47-63% reduction in the risk of PTB.  

The full results for the PTB models are provided in Table A2 in the Appendix. The estimated 

associations pertaining to the independent variables that are not of primary interest suggest a 

similar story as in the models of gestational age.     

 

Table 3. RDID Preterm Birth (PTB) Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters × post-HEUC -0.0599** -0.0585** -0.0697** -0.0784* 

 (0.0291) (0.0287) (0.0314) (0.0412) 

     
Additional covariates X X X X 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

 

11 Although we have concerns with nonlinear binary model specifications due to our inclusion of high-dimensional 

spatial and temporal fixed effects, we do re-estimate Models 1 through 3 for PTB using Chamberlain’s (1980) Fixed 

Effect Logit model. Fixed Effect Logit variants of Model 4 could not be estimated because the matching weights were 

not constant across all observations pertaining to each site (i.e., were not the constant within the same fixed effect). 

The PTB results are consistent in sign, but the relationship between PTB and the HEUC determination is only 

significant for Model 1 (p = 0.081). The estimated relationship from Models 2 and 3 are marginally insignificant (p = 

0.140 and p = 0.150, respectively). It is important to note that only one dimension of the high-dimensional fixed effects 

(in our case the site or site-by-year fixed effects, depending on the model) could be conditioned out using the Fixed 

Effect Logit specification. The other fixed effects were accounted for by including a series of indicator variables. As 

such, the statistically insignificant results could be at least partly driven by the incidental parameters problem 

(Lancaster 2000; Wooldridge 2010, page 612); hence our preference for the linear probability models in the main 

analysis.   
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Observations 8178 8173 8173 1308 

Adjusted R-squared 0.086 0.080 0.079 0.141 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. 

Dependent variable is a binary indicator, equal to one for children designated as a preterm birth (i.e., in utero 

for less than 37 weeks), and zero otherwise. See Table A2 in the Appendix for the full results. 

 

We next turn to the models focused on measures of birthweight. Table 4 shows the results of the 

models of birthweight (measured in grams). The coefficient corresponding to 0-250m × post-

HEUC in Model 1 is positive and statistically significant, suggesting that children living within 0-

250m of a site experienced an average gain in birthweight of 164 grams if they were conceived 

after cleanup and when human exposure was determined to be under control at the chemical 

facility. Considering that the average newborn in our sample weighed 3,126 grams at birth, this 

corresponds to a notable 5.3% increase in birthweight.  Model 2 suggests a similarly sized and 

marginally significant 125 gram increase in birthweight after the HEUC determination. Models 3 

and 4 suggest results that are similar in magnitude, but are statistically insignificant. For both 

Models 3 and 4, we have some concerns regarding the relatively small number of identifying 

observations and low statistical power, which may be at least partly driving the statistically 

insignificant results.  

 

Table 4. RDID Birthweight Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters × post-HEUC 164.4512*** 125.0005* 110.3970 117.4240 

 (62.1264) (65.6349) (80.2677) (88.8404) 

     
Additional covariates X X X X 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8173 8168 8168 1307 

Adjusted R-squared 0.144 0.142 0.141 0.203 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. 

Dependent variable is birthweight (in grams). See Table A3 in the Appendix for the full results. 

 

Estimates from the linear probability models of the risk of LBW and VLBW are consistent in sign,  

but the results are mixed in terms statistical significance. As shown in Table 5, Model 1 suggests 

a marginally significant 4.4 percentage point reduction in the risk of LBW. Models 2 through 4 
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suggest a reduction in risk that is similar in magnitude, but the estimates are statistically 

insignificant. When re-estimating these models with VLBW as the dependent variable (Table 6), 

we find evidence that cleanup and the HEUC event may lead to a 3-percentage point reduction in 

the risk of VLBW, but this result is statistically significant only in Models 1 and 2. The point 

estimates are similar in Models 3 and 4, but are statistically insignificant. Again, this statistically 

insignificant result may, at least partly, be driven by a lack of statistical power. Model 3 could be 

allowing for too many site-specific parameters given the small number of treated observations 

around each individual site, and Model 4 is estimated using the much smaller, matched sample.12  

The full results for the birthweight, LBW, and VLBW models are provided in Tables A3, A4 and 

A5 in the Appendix. The estimated associations between the independent variables that are not of 

primary interest and each birth outcome suggest a similar story as in the earlier models. For 

example, birthweight tends to be lower for mothers who report smoking during pregnancy, and the 

risk of LBW and VLBW are higher.  

 

Table 5. RDID Low Birthweight (LBW) Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters × post-HEUC -0.0444* -0.0326 -0.0308 -0.0425 

 (0.0265) (0.0257) (0.0328) (0.0428) 

     
Additional covariates X X X X 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8173 8168 8168 1307 

Adjusted R-squared 0.109 0.104 0.103 0.170 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. 

Dependent variable is a binary indicator, equal to one for children designated as low birthweight (i.e., less than 

2500 grams), and zero otherwise. See Table A4 in the Appendix for the full results. 

 

 

12 Again, we have concerns with nonlinear binary model specifications due to our inclusion of high-dimensional spatial 

and temporal fixed effects, but for completeness we re-estimate the LBW and VLBW models using Chamberlain’s 

(1980) Fixed Effects Logit specification. The results are consistent in sign, suggesting a negative average effect from 

the HEUC event, but are statistically insignificant across all Logit model specifications.   
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Table 6. RDID Very Low Birthweight (VLBW) Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters × post-HEUC -0.0335** -0.0312* -0.0282 -0.0368 

 (0.0157) (0.0165) (0.0192) (0.0225) 

     
Additional covariates X X X X 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8173 8168 8168 1307 

Adjusted R-squared 0.030 0.025 0.023 0.042 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. 

Dependent variable is a binary indicator, equal to one for children designated as very low birthweight (i.e., less 

than 1500 grams), and zero otherwise. See Table A5 in the Appendix for the full results 

 

IV.C. Assessing a Causal Interpretation 

Overall, the RDID regression results suggest that the cleanup of hazardous chemicals through 

RCRA’s Corrective Action program is associated with improvements in birth outcomes, 

particularly in terms of gestational age and reduced risk of preterm births. We take several steps 

to control for possibly confounding factors and best identify a plausibly causal relationship. We 

account for numerous individual-level characteristics, include high-dimensional spatiotemporal 

fixed effects, implement a RDID identification strategy, and in some models employ exact 

covariate matching. We next conduct three supplemental analyses to assess the appropriateness of 

a causal interpretation of our findings. We first implement an event study and examine whether 

the trends across the treated and control groups are parallel. We then compare the observed 

characteristics across the treated and control groups to assess the degree to which the two are 

similar, and hence that our assumed counterfactual group is reasonable.  Finally, we estimate a 

series of simple DID regression models to assess whether post-treatment sorting across 

socioeconomic groups could be confounding our results.  

In a conventional DID setup, having parallel pre-treatment trends is generally considered a 

necessary (but not necessarily sufficient) condition for a causal interpretation of the treatment 

effect estimates (Angrist and Pischke 2009, Roth 2022). Within a RDID framework, however, it 

is the post-treatment trends that must be parallel for a plausibly causal interpretation (Kim and Lee 

2019; von Hinke and Sørensen 2023). At first, this may seem counterintuitive, but in a RDID 
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setting the treated and control groups are dissimilar in terms of hazardous chemical exposures prior 

to treatment, and so there is no reason to suspect the pre-treatment trends in the outcomes of interest 

are similar across the two groups. The treatment – minimizing chemical exposure in our case – 

then makes the treated and control groups similar. If the trends are parallel after treatment, it 

suggests that the chemical exposure was the only factor deterring the pre-treatment trends from 

being parallel, supporting a causal interpretation of the ATT estimates. 

To assess whether the post-treatment trends are parallel, we conduct an event study where we 

estimate a variant of equation (1) that includes 5-year incremental lead and lag indicator variables 

for 𝐻𝐸𝑈𝐶𝑗𝑡 and 𝟙(𝑑𝑖𝑗 ≤ 𝐷) × 𝐻𝐸𝑈𝐶𝑗𝑡. Coefficients corresponding to the latter term capture the 

incremental difference in the outcome of interest between the treated and control groups, and allow 

for this association to vary over time relative to the HEUC event. The regression model is estimated 

for each of the five birth outcomes.  The results for each outcome are plotted in Figure 4. Panel (a) 

of Figure 4, for example, focuses on gestational age and demonstrates that prior to the HEUC 

determination the trends are not parallel. The estimated associations displayed in Figure 4 reflect 

the incremental difference between the treated and control group, and so the point estimates being 

statistically equal (i.e., a constant difference between the treated and control groups at each point 

in time) would suggest a parallel trend. Based on an F-test we reject the null hypothesis that the 

pre-treatment estimates are equal (p = 0.060), suggesting that the pre-treatment trends are not 

parallel.  In particular, we can clearly see a decrease in gestational age around 5 to 10 years before 

the HEUC event. Anecdotally, this corresponds to the time in which the CA investigations were 

opened at many sites. Recall that the time between a CA investigation opening and the HEUC 

determination ranges from 6 to 15 years in our study. Although the contamination issues often date 

back much further and are usually linked to historical activities, an additional release, migration 

of chemicals, and/or new discovery of exposure often leads to an investigation being opened. 

Exposure mitigation and cleanup activities are put in place shortly after an investigation is opened 

and risks to human health and the environment are identified. The observed decrease in newborn 

health 5 to 10 years before the HEUC determination is consistent with the general story around 

many of these sites.  

We observe much less fluctuation in the post-treatment trends for gestational age. The post-HEUC 

point estimates in Panel (a) of Figure 4 are more similar in magnitude, and the 95% confidence 

intervals largely overlap. We fail to reject the null hypothesis that the post-treatment estimates are 

equal (p =  0.486), which is consistent with the post-treatment trends being parallel. We see similar 

patterns when looking at the event study results for the other health outcomes, as shown in the 

other panels in Figure 4. The pre-treatment trends often suggest a decrease in health around 5 to 

10 years before the HEUC event. More importantly, a series of F-tests again suggest that the post-

treatment trends are parallel.13 Overall, the evidence is consistent with a causal interpretation of 

the ATT estimates from the main analysis.  

 

13 The corresponding p-values for each of these parallel post-treatment trends tests are p = 0.658 for PTB, 0.565 for 

birthweight, p = 0.447 for LBW, and p = 0.217 for VLWB.  
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Figure 4. Event study analysis of parallel trends. 

 
Note: Estimates from event study variant of equation (1). The plotted coefficient estimates correspond to interaction 

terms between 5-year increment lead and lag indicators relative to the HEUC event, and the 0-250 meter treated group 

indicator, and thus reflect the incremental difference in health outcomes between the treated and control group at each 

5-year time period, all else constant. The vertical lines denote the 95% confidence intervals.   
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We next assess the comparability of our treated and control groups in terms of observed 

characteristics. Our identification strategy relies on the assumption that infants born to mothers 

residing within 0-250 meters of a chemical facility (the treated group) are similar to infants born 

to mothers residing within 250-1,000 meters of the same chemical facilities in terms of 

characteristics besides chemical exposure. Although we condition on numerous covariates in the 

regression models, assessing the similarity between the two groups based on observed 

characteristics can shed light on the plausibility that the two groups are also similar based on 

unobserved characteristics. We conduct a series of two-sample t-tests to assess the comparability 

of the two groups. As shown in Table A6 in the Appendix, the two groups are statistically similar, 

on average, with respect to 13 out of the 16 observed characteristics. There is a marginally 

significant difference in the percent of children born to parents with no college education, but the 

magnitude of this difference is small – 88.8% versus 85.1%. There is also a marginally significant 

difference in the percent of children who correspond to their mother’s third birth, but this statistical 

difference seems sporadic because there are no clear patterns nor statistically significant 

differences among the other birth order indicators. The only significant difference that could 

confound our comparison is that the farther out control group has a greater proportion of Hispanics 

(13.9%) compared to the treated group (7.8%). Otherwise, our treated and control groups are quite 

similar in terms of observed characteristics, and we control for ethnicity in all the models.  

For our final supplemental analysis to assess the appropriateness of a causal interpretation of the 

main RDID results, we examine whether there is any systematic demographic sorting in response 

to cleanup activities. Such sorting behavior has been observed in similar contexts (e.g., Gamper-

Rabindran and Timmins 2011), but in a nationwide analysis Cassidy et al. (2024) specifically 

looked at RCRA CA sites and cleanups and found no evidence of such sorting. Focusing on North 

Carolina, we are particularly concerned about whether gentrification could be driving our results. 

If more educated, wealthier people move near these chemical facilities after chemical exposures 

are eliminated, then that could be driving the estimated improvements in health, rather than the 

changes in exposure. To assess whether any demographic sorting occurred in our data, we estimate 

a series of regression models similar to equation (1), but where the outcomes of interest are racial 

and ethnic indicators, whether the parents were college educated, and whether the household was 

enrolled in Medicaid.  The models only include 𝐻𝐸𝑈𝐶𝑗𝑡, 𝟙(𝑑𝑖𝑗 ≤ 𝐷), and 𝟙(𝑑𝑖𝑗 ≤ 𝐷) × 𝐻𝐸𝑈𝐶𝑗𝑡 

as independent variables.  No other covariates are included because we are only interested in 

statistical associations in this supplemental exercise, and not necessarily a causal interpretation. 

More specifically, we simply want to assess whether there is any systematic sorting of certain types 

of households after cleanup, and more specifically, whether those patterns differ across the 

treatment and control groups.  

We re-estimate variants of our preferred model specifications, Models 2 and 4. Due to missing 

values for some of the demographic characteristics,  we redo the matching algorithm prior to 

estimating each variant of Model 4. As shown in Table A7 in the Appendix, the coefficients 

corresponding to the 0-250 meters × post-HEUC interaction term are largely insignificant, 

suggesting that there is no systematic sorting that would confound our interpretation of the ATT 

estimates from the main analysis. There are two exceptions to this conclusion, however, both based 
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on variants of Model 2. First, the results suggest that there is a relative increase in newborns who 

are Hispanic in the treated zone after the HEUC event. Given that being Hispanic in our analysis 

is associated with negligible changes, or sometimes even worsened birth outcomes (see Tables A1 

through A5 in the Appendix), this type of sorting would not suggest a gentrification story that 

confounds the interpretation of our main findings. Another variant of Model 2 suggests that after 

the HEUC event, there is a decrease in newborns within the 0-250 meter zone whose parents are 

less educated. This finding is consistent with a gentrification story, suggesting that more educated 

parents could be moving near the site after cleanup. Neither of these patterns emerge when pre-

regression matching procedures are utilized (variants of Model 4). And perhaps most importantly, 

we see no evidence of sorting based on Medicaid participation, which is perhaps the most direct 

proxy for income in the data. Overall, we conclude that demographic sorting is likely not a primary 

driver of the estimated post-cleanup improvements in birth outcomes from our RDID analysis, but 

this is an important caveat to keep in mind when interpreting the results.   

 

V. DISCUSSION  

The Resource Conservation and Recovery Act (RCRA) has been in place since 1976 and is a 

cornerstone of environmental policy in the US; and yet benefit-cost analyses for most regulations 

under the authority of RCRA do not quantify the benefits to the primary groups that they are 

intended to protect – people living in the communities around these hazardous chemical facilities 

(Guignet and Nolte, 2024). A critical step for benefit-cost analysis, and for welfare analysis more 

broadly, is to first quantify the effects. We carry out this step, and find localized improvements in 

birth outcomes for children whose mothers lived within 250 meters of a chemical facility.  

Finding such localized health effects is not necessarily surprising in our context because the 

consumption of contaminated groundwater is likely not an exposure pathway of concern, at least 

not among the CA sites analyzed in our study. The vast majority of people living around the 12 

CA sites in our study lived within a public water system (PWS) service area, and likely relied on 

these public systems for their potable water.14 In contrast to private groundwater wells, public 

water systems typically draw on water sources far away from one’s home and nearby CA sites, 

and are likely not contaminated by hazardous chemicals from nearby sites. Only 1.24% of our 

sample of newborns potentially relied on private groundwater wells for their potable water (i.e., 

lived outside the PWS service area), and none of the children living within 250 meters of a CA 

site relied on private groundwater wells. Similar analyses of other CA sites where local populations 

rely on private groundwater wells could find much farther-reaching health effects.  

Given the extremely localized nature of the estimated health effects and minimal use of local 

groundwater in our study area, we speculate that re-suspension of contaminated particles into the 

air and mothers’ subsequent inhalation, ingestion, and/or dermal contact with these particles is a 

 

14 PWS service area boundaries were obtained from the EPA (2023b). Using Geographic Information Systems (GIS), 

we determined whether each mother’s place of residence was located within a PWS service area.  
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plausible exposure pathway. Vapor intrusion into homes and subsequent inhalation of hazardous 

fumes is also possible. The potential for soil vapor intrusion and/or the implementation of soil 

vapor extraction systems were documented at 4 of the 12 CA sites. Detailed, site-specific 

monitoring and exposure analysis would be needed to firmly identify the mechanisms by which 

populations near RCRA sites came in contact with hazardous chemicals.    

Nonetheless, we find that children born to mothers living within 250 meters of a CA site 

experienced an average 110 to 164 gram improvement in birthweight after cleanup was completed, 

as established by the official HEUC determination made by regulators. This corresponds to a 3-

5% increase in birthweight, although the results are not significant across all model specifications. 

The results are also mixed when analyzing alternative binary measures of birthweight. Models of 

the risk of a low birthweight (LBW) suggest a decrease in risk post-HEUC, but this result is only 

statistically significant in the simplest of the four model specifications. Models of the risk of very 

low birthweight (VLBW) suggest a marginally significant 3 percentage point decrease in risk, on 

average; but again this result is statistically significant in only two of the four models.  

We find stronger, and more robust evidence when examining the effects of cleanup on gestational 

age. Across all model specifications, we find that after the HEUC determination, gestational age 

increased by an average of almost a week (0.8 to 0.9 weeks). This corresponds to a roughly 2% 

increase in the amount of time that a child has to develop in utero. Models of a binary preterm 

birth (PTB) indicator reveal a statistically significant 6 to 8 percentage point average decrease in 

risk after the HEUC event.   

To illustrate the potential magnitude of the monetized newborn health benefits from hazardous 

chemical cleanups, we apply unit value estimates for reductions in the risk of PTB and VLBW. 

We focus on these two health outcomes because unit value estimates were available from recently 

released studies that were sponsored by federal and international government organizations. The 

first study was by Abt Associates (2022), and was conducted to aid the US EPA in benefit-cost 

analyses. Abt Associates (2022) estimated the incremental cost-of-illness (COI) for the average 

PTB.15 The COI estimates include the expected costs for birth-related and subsequent inpatient 

hospital visits during the first two years of a child’s life. Based on Abt Associates’ estimates, the 

cost-savings for an avoided PTB case is $13,894 (2024$ USD).16 The expected avoided costs from 

a reduction in the risk of PTB can be used as a proxy to estimate the monetized benefits, 

 

15 Abt Associates (2022) also calculated COI estimates for changes in continuous birthweight and the risk of LBW. 

We focus on PTB in this exercise because applying their COI estimates for continuous birthweight would be more 

complicated. Although their COI estimates for changes in continuous birthweight could be applied, doing so requires 

information of the baseline birthweight distribution, and this is beyond the scope of what we wanted to do for this 

illustrative exercise.  Furthermore, our estimated improvements in birthweight and the risk of LBW, were statistically 

significant in half or less than half of the models, and so monetizing these mixed results may not be as interesting of 

an example. Additionally, we have more theoretically valid willingness-to-pay estimates for reduced VLBW risks, 

which we discuss next.  
16 Our COI estimate is calculated by multiplying Abt Associates’ (2022) annual inpatient costs by two (to account for 

the first two years of life), and adding the birth-related hospital costs. We then convert their estimates to 2024$ USD 

using the US Bureau of Labor Statistics’ (BLS) annual urban consumer price index (BLS 2025).   
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particularly when more theoretically appropriate willingness to pay (WTP) estimates for ex ante 

benefits analysis are not available (EPA 2014).   

The Organisation for Economic Co-operation and Development (OECD) recently conducted a 

series of international stated preference studies focused specifically on reduced morbidity risks 

from reductions in hazardous chemical exposures. Under these broader efforts, Ščasný et al. (2023) 

estimated prospective parents’ WTP for reduced risks of VLBW. Based on their results, the value 

for (an avoided) statistical case (VSC) of VLBW is $1,488,832 (2024$ USD).17  

Whether based on COI or WTP, we can use the unit value estimates to illustrate the newborn health 

benefits from remediating hazardous chemical releases at RCRA sites. We estimate the household-

level per child benefits of cleanup and the HEUC determination by taking the product of the unit 

value estimate (𝑀) and our estimated reduction in risk (∆𝑅), as shown:  

(3)  𝐻𝐻 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑀 × ∆𝑅 

𝐻𝐻 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 is the benefit per child to the average household that lives within 250 meters of a CA 

site and is planning to (or will) have one or more children.  

We can also calculate aggregate benefits. For example, we can estimate the average annual benefit 

from the cleanup and HEUC determination at the 12 CA sites analyzed by multiplying the 

household per child benefit from equation (3) by the average number of conceived children within 

250 meters of a site each year (𝑁). More formally:  

(4)  𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑀 × ∆𝑅 × 𝑁 

The monetized benefits are presented in Table 7, and are based on the estimated reductions in risk 

from our preferred specifications, Models 2 and 4.  First focusing on preterm birth, our results 

suggested a reduction of about 5.9 or 7.8 percentage points in the risk of PTB, depending on the 

model (see Table 6).  Applying the COI estimate suggests that the average affected household 

experiences a benefit from cleanup and the HEUC determination of $813 to $1089 per child.18 We 

emphasize that the affected households are those who live within 250 meters and who will have a 

child. There are 11.34 children conceived each year, on average, whose mother lived within 250 

meters of one of the 12 CA sites.  Plugging this in for 𝑁 in equation (4) yields a total annual benefit 

from the HEUC event at these 12 CA sites of $9,217 to $12,352.   

Turning to the estimated reductions in the risk of VLBW, and applying Ščasný et al.’s (2023) WTP 

estimate, we find that the benefit of cleanup to the average affected household is $46,414 or 

$54,783 per child, depending on the model. We emphasize that the latter result from the Model 4 

specification is statistically insignificant. Again, these WTP estimates would only apply to 

 

17 This estimate is based on Ščasný et al.’s (2023) US-specific VSC estimate of $1,389,000 (2022$ USD). We convert 

this to 2024$ USD using the BLS’s annual urban consumer price index (BLS 2025).  
18 All monetized values are presented in 2024$ USD. 
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households living within 250 meters of a CA site and who plan to have a child. Aggregating the 

estimated benefits from reduced VLBW risks across the 12 sites, as per equation (4), suggests an 

average annual benefit of $526,334 to $621,243.19 The estimated benefits from reduced PTB and 

VLBW risks should not be summed. Doing so would likely result in at least partial double 

counting.   

 

Table 7. Illustrative Monetized Benefits (2024$ USD). 

  PTB VLBW 

  (2) (4) (2) (4) 

     

Change in Riska -0.0585** -0.0784* -0.0312* -0.0368 

 [-0.1147 - -0.0023] [-0.1994 - 0.0024] [-0.0635 - 0.0011] [-0.0809 - 0.0073] 

Household 

Benefit $813** $1089* $46,414* $54,783 

 [32 - 1,594] [-33 - 2,211] [-1,666 - 94,494] [-10,899 - 120,466] 

Total Annual 

Benefit $9,217** $12,352* $526,334* $621,243 

  [359 - 18,074] [-371 - 25,075] [-18,891 - 1,071,558] [-123,597 - 1,366,083] 

Note: *p<0.10, ** p<0.05, *** p<0.01. The 95% confidence intervals are in brackets.  (a) Estimated benefits from reductions in the risk 

of preterm birth (PTB) and very low birth weight (VLBW) are based on Models (2) and (4) in Tables 6 and 4, respectively.  

 

Although the annual benefits across the 12 CA sites analyzed seem relatively small, especially 

considering that the total remediation costs at just one RCRA CA site can often be a few to several 

million dollars (see footnote 23 in Guignet and Nolte (2024)), we emphasize that these are annual 

benefits and that this is only one set of health endpoints. There are numerous other benefit 

endpoints to consider. In addition, the estimated health effects in our study are very localized, thus 

affecting a small number of households. Our finding of such localized effects is at least partly 

driven by the fact that residents do not use the groundwater near these facilities as their potable 

water source. The potential health effects to surrounding communities could be much farther 

reaching at other CA sites where consumption of contaminated groundwater is a viable exposure 

pathway. In such cases, we would expect larger aggregate benefits from cleanup (i.e., the N in 

equation (4) would be greater).  

 

19 The WTP estimates from Ščasný et al.’s (2023) are based on a representative sample of the US population of adults 

over 18 years of age, and who are of childbearing age, in a relationship, and plan to have a(nother) biological child 

within the next five years. When applying Ščasný et al.’s estimates we are assuming that our target population in North 

Carolina holds a similar value. However, our target population may include unplanned pregnancies. For example, our 

sample includes mothers under the age of 18 (almost 21% of mothers within 250 meters of a CA site were between 

15 and 19 years of age). The preferences and income of households in our sample could be different from Ščasný et 

al.’s nationally representative sample, but we do not think it is warranted to exclude these households from our 

illustrative benefit calculations. Doing so would assume that these households place a value of $0 on avoiding the 

adverse birth outcomes.  
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VI. CONCLUSION 

Our study set out to (i) estimate the effects of cleanups at RCRA-regulated chemical facilities on 

newborn health, and (ii) determine the spatial extent of any newborn health effects. Focusing on 

Corrective Action (CA) investigations at chemical facilities across North Carolina and using 

individual-level birth certificate data over a 30-year study period (1990-2019), we employed a 

Difference-in-differences (DID) methodology that features two methodologically novel features. 

First, our empirical setting is better accommodated by a Reverse Difference-in-difference (RDID) 

framework, which to our knowledge has only been applied in two published studies (Kim and Lee 

2019; von Hinke and Sørensen 2023) but may fit a variety of similar contexts in environmental 

economics and beyond. Our study contributes to this nascent literature, and aids in furthering the 

potentially widely viable RDID methodology. Second, our RDID design features a naturally 

stacked DID setup, which allows us to circumvent recent concerns around staggered treatment 

events over time (Goodman-Bacon 2021, Roth et al. 2023).  

Our analysis reveals localized improvements in newborn health following cleanup and the official 

Human Exposure Under Control (HEUC) determination. Children born to mothers living within 

250 meters of a CA site experienced an average 110 to 164 gram improvement in birthweight, and 

a 4 and 3 percentage point decrease in the risk of low birthweight and very low birth weight, but 

these results were not statistically significant across all models. In contrast, we find robust 

evidence of newborn health improvements in terms of gestational age, suggesting that cleanup and 

the HEUC determination led to a 0.8 to 0.9 week increase in the gestation, and a significant 6 to 8 

percentage point average decrease in the risk of preterm birth. Considering that the average risk of 

a preterm birth in our sample is 12.5%, the latter is particularly notable because it suggests that 

cleanup cuts the risk of preterm birth in half, on average.  

Focusing on preterm birth and very low birth weight, we applied COI and WTP estimates from 

the literature to illustrate how our quantified health improvements from cleanups can be used for 

benefits analyses. Doing so suggested that the average affected household would benefit $813 to 

$1089 per child from the reduced risk of a PTB due to cleanup and the HEUC determination. The 

corresponding benefit for the reduced risk of VLBW is $46,414 to $54,783 per child, but only the 

former estimate is statistically significant.      

The estimated newborn health effects from reduced chemical exposure are important in their own 

right, but also signal potential longer term, later-in-life benefits (Currie 2011) that we do not 

capture here. Studies have linked increases in both birthweight (e.g., Black et al., 2007; Belbasis 

et al. 2016; Xie et al. 2017; Ludvigsson et al. 2018; Baguet and Dumas 2019; WHO 2022) and 

gestational age (e.g., Crump et al. 2011; Boyle et al. 2012) to later improvements in health, 

education, and labor outcomes.  

We went to great lengths in the empirical analysis to minimize the influence of potentially 

confounding factors, and undertook several checks to assess the plausibility of a causal 
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interpretation of our results. Our regression models included numerous, individual-level covariates 

and spatiotemporal fixed effects, and a RDID identification strategy that utilized infants born to 

mothers living in the same neighborhoods and around the same chemical facilities as a control 

group. We investigated the robustness of the results across numerous alternative birth outcomes, 

and in some models employed an exact covariate matching to yield more balanced and comparable 

treated and control groups across sites and over time. In our supplemental diagnostic analyses, we 

confirmed that post-treatment sorting is likely not driving the results, that the treated and control 

groups are similar in terms of most observed characteristics, and that the post-treatment trends are 

parallel. Although causality can never be unambiguously claimed in analyses of observational data 

like ours, the evidence is overall consistent with a causal interpretation of the results.   

There are several caveats to keep in mind. For example, to facilitate a clean quasi-experimental 

comparison, we focused on just 12 RCRA CA sites in North Carolina, where we observed treated 

births (i.e., within 0-250 meters of a CA site) both before and after the HEUC determination. There 

is surely a high degree of heterogeneity across chemical facilities in terms of surrounding 

residential development and populations; types of industrial activities; the types and volumes of 

chemicals used and released; the direction, speed, and extent of exposure pathways; etc. Caution 

is warranted when extrapolating our average estimates to other sites, both within North Carolina 

and beyond. It is also important to keep in mind that although our data started with the population 

of live births across the State from 1990-2019, the number of identifying observations is small. 

We observe only 119 post-HEUC births within the 0-250 meter treated group bin. The small 

number of identifying observations is due to the extremely localized nature of the estimated health 

effects. We interpret our finding of statistically significant improvements in gestational age and 

reduced risks of preterm birth, despite the small number of identifying observations, as evidence 

of the strength of the responses in newborn health from cleanup. At the same time, our often 

marginally significant or statistically insignificant estimates of the effects of cleanup on measures 

of birthweight may be, at least partly, driven by the small sample size. The sign and magnitude of 

those results are consistent with the overall finding that cleanup leads to localized improvements 

in newborn health. An additional limitation is that our data only includes live births. If chemical 

exposure and the resulting health effects lead to an increased risk of miscarriage or stillbirth, then 

this would not be captured in our analysis. A final caveat is that cleanup at these sites often takes 

years, and even decades. Our HEUC treatment event is not a discrete change in actual exposure, 

but instead corresponds to the official determination on paper of when there is no longer a risk of 

human exposure. Our estimated health improvements could be considered under-estimates, at least 

to the extent that chemical exposure was being reduced and subsequent health benefits realized, 

prior to the official HEUC determination.  

Despite these caveats, our quantified health effects can inform local cleanup and land use 

decisions, and create a path for expanding what benefits are quantified in benefit-cost analyses of 

future regulations under RCRA and similar programs addressing chemical incidents and cleanups.  
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APPENDIX 

Figure A1. Human Exposure Under Control (HEUC) determinations at each Corrective Action 

Site by Year. 
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Figure A2. Conditional Distance Gradients: Binary Infant Health Outcomes. 
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Table A1. RDID Gestational Age Full Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters -0.2558 -0.2768  -0.3008 

 (0.1889) (0.1974)  (0.2036) 

post-HEUC 0.1060 0.3419  0.0715 

 (0.1263) (0.3883)  (0.4278) 

0-250 meters × post-HEUC 0.8890*** 0.7649*** 0.9085*** 0.7978** 

 (0.2490) (0.2591) (0.3283) (0.3775) 

Black -0.5018*** -0.4833*** -0.4841*** -1.1919*** 

 (0.1115) (0.1093) (0.1108) (0.3145) 

Hispanic -0.1741 -0.1803 -0.1781 -0.7119** 

 (0.1076) (0.1172) (0.1167) (0.2967) 

Other race/ethnicity -0.3905*** -0.4032*** -0.4050*** -1.1541*** 

 (0.1052) (0.1100) (0.1113) (0.4279) 

Missing: Race/Ethnicity -0.5997*** -0.6101*** -0.6117*** -1.3396*** 

 (0.1160) (0.1173) (0.1186) (0.3828) 

Male -0.0731 -0.0792 -0.0800 -0.1068 

 (0.0614) (0.0610) (0.0617) (0.1910) 

Plural birth -4.1896*** -4.3130*** -4.3094*** -4.8311*** 

 (0.3254) (0.3255) (0.3254) (0.9617) 

Parents no college -0.2764** -0.2812** -0.2836** -0.6437** 

 (0.1250) (0.1320) (0.1317) (0.2617) 

Missing: Parents no college -0.5526 -0.5149 -0.5063 -0.3481 

 (1.1462) (1.0603) (1.0581) (0.9365) 

Mom 15-24 years 0.1228 0.1318 0.1310 0.8528*** 

 (0.0823) (0.0861) (0.0869) (0.2766) 

Mom 35-44 years -0.1021 -0.1209 -0.1231 -0.2943 

 (0.1270) (0.1314) (0.1312) (0.3440) 

Missing: Mom age -0.1760 -0.1713 -0.1717 1.6704** 

 (0.3390) (0.3366) (0.3377) (0.8196) 

Smoked -0.3257*** -0.3089*** -0.3093*** -0.4764 

 (0.0942) (0.0973) (0.0973) (0.3519) 

Missing: Smoked 0.6105 0.5473 0.5499 -0.3207 

 (1.1934) (1.1251) (1.1240) (1.0454) 

Second birth -0.1916*** -0.1609** -0.1638** -0.0804 

 (0.0690) (0.0740) (0.0741) (0.1788) 

Third birth -0.2552*** -0.2421*** -0.2432*** 0.0453 

 (0.0768) (0.0799) (0.0806) (0.2565) 

Fourth birth -0.3847*** -0.3735*** -0.3768*** 0.0269 

 (0.1160) (0.1176) (0.1177) (0.3252) 

≥ Fifth birth -0.4082** -0.3420** -0.3433** 0.6566* 

 (0.1603) (0.1696) (0.1690) (0.3882) 

Not married -0.1247 -0.1069 -0.1113 -0.0847 
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 (0.0809) (0.0828) (0.0827) (0.2419) 

Missing: Not married -0.4414* 1.1670 1.1588 0.0000 

 (0.2300) (0.8281) (0.8301) (.) 

WIC 0.3368** 0.3625** 0.3632** 0.9168* 

 (0.1471) (0.1464) (0.1466) (0.4711) 

Missing: WIC -0.4070 -0.3778 -0.4161 0.2889 

 (0.6018) (0.6865) (0.6988) (1.0378) 

Medicaid 0.1053 0.1608 0.1641 -0.4693 

 (0.1460) (0.1595) (0.1601) (0.4059) 

Missing: Medicaid 0.4307 0.4822 0.4797 0.1707 

 (0.5984) (0.6768) (0.6839) (1.1312) 

Constant 39.3032*** 39.1381*** 39.2664*** 39.4900*** 

 (0.3680) (0.3729) (0.3736) (0.7350) 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8178 8173 8173 1308 

Adjusted R-squared 0.094 0.089 0.087 0.141 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is 

gestational age (in weeks). All independent variables are binary indicators.  
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Table A2. RDID Preterm Birth (PTB) Full Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters 0.0119 0.0166  0.0334 

 (0.0199) (0.0208)  (0.0227) 

post-HEUC 0.0034 -0.0156  -0.0062 

 (0.0156) (0.0482)  (0.0652) 

0-250 meters × post-HEUC -0.0599** -0.0585** -0.0697** -0.0784* 

 (0.0291) (0.0287) (0.0314) (0.0412) 

Black 0.0327** 0.0333** 0.0332** 0.0876** 

 (0.0128) (0.0129) (0.0131) (0.0350) 

Hispanic 0.0166 0.0210 0.0211 0.0965** 

 (0.0149) (0.0157) (0.0157) (0.0420) 

Other race/ethnicity 0.0116 0.0155 0.0154 0.0776* 

 (0.0127) (0.0133) (0.0134) (0.0399) 

Missing: Race/Ethnicity 0.0500*** 0.0536*** 0.0535*** 0.1225*** 

 (0.0150) (0.0153) (0.0154) (0.0399) 

Male 0.0091 0.0095 0.0092 0.0183 

 (0.0074) (0.0073) (0.0073) (0.0232) 

Plural birth 0.5094*** 0.5185*** 0.5173*** 0.5796*** 

 (0.0349) (0.0349) (0.0349) (0.0938) 

Parents no college 0.0270* 0.0265* 0.0263* 0.0713** 

 (0.0151) (0.0157) (0.0158) (0.0306) 

Missing: Parents no college 0.0823 0.0687 0.0669 0.3432* 

 (0.0894) (0.0967) (0.0968) (0.1849) 

Mom 15-24 years -0.0067 -0.0059 -0.0054 -0.0623** 

 (0.0094) (0.0096) (0.0097) (0.0265) 

Mom 35-44 years -0.0096 -0.0069 -0.0064 -0.0089 

 (0.0152) (0.0158) (0.0158) (0.0379) 

Missing: Mom age 0.0588 0.0636 0.0636 -0.0594 

 (0.0480) (0.0496) (0.0497) (0.0670) 

Smoked 0.0387*** 0.0354*** 0.0353*** 0.0742** 

 (0.0118) (0.0122) (0.0123) (0.0360) 

Missing: Smoked -0.0388 -0.0222 -0.0213 -0.2076 

 (0.0980) (0.1065) (0.1067) (0.1890) 

Second birth 0.0005 -0.0012 -0.0010 -0.0176 

 (0.0081) (0.0087) (0.0087) (0.0241) 

Third birth 0.0040 0.0034 0.0038 -0.0312 

 (0.0105) (0.0110) (0.0110) (0.0304) 

Fourth birth 0.0412*** 0.0413*** 0.0418*** -0.0114 

 (0.0149) (0.0150) (0.0150) (0.0376) 

≥ Fifth birth 0.0435** 0.0422* 0.0427* -0.0680 

 (0.0212) (0.0219) (0.0219) (0.0450) 

Not married 0.0246** 0.0223** 0.0226** 0.0114 
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 (0.0103) (0.0106) (0.0106) (0.0245) 

Missing: Not married -0.0520** -0.1591*** -0.1574*** 0.0000 

 (0.0241) (0.0481) (0.0485) (.) 

WIC -0.0392** -0.0403** -0.0404** -0.1182** 

 (0.0156) (0.0164) (0.0164) (0.0535) 

Missing: WIC -0.0330 -0.0351 -0.0296 -0.2320** 

 (0.0438) (0.0522) (0.0534) (0.0992) 

Medicaid -0.0149 -0.0217 -0.0220 0.0456 

 (0.0191) (0.0197) (0.0197) (0.0414) 

Missing: Medicaid -0.0452 -0.0537 -0.0523 -0.1284 

 (0.0338) (0.0423) (0.0433) (0.1154) 

Constant 0.0933** 0.1078** 0.0988** 0.2458** 

 (0.0415) (0.0439) (0.0420) (0.1014) 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8178 8173 8173 1308 

Adjusted R-squared 0.086 0.080 0.079 0.141 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is a 

binary indicator, equal to one for children designated as a preterm birth (i.e., in utero for less than 37 weeks), and zero otherwise. All 

independent variables are binary indicators.  
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Table A3. RDID Birthweight Full Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters -57.0938 -57.7150  -47.8427 

 (39.1015) (40.8152)  (50.3419) 

post-HEUC 30.7765 130.2504  154.1671 

 (29.3475) (87.9825)  (110.4513) 

0-250 meters × post-HEUC 164.4512*** 125.0005* 110.3970 117.4240 

 (62.1264) (65.6349) (80.2677) (88.8404) 

Black -280.2240*** -271.7354*** -271.3556*** -427.2834*** 

 (24.7012) (24.8584) (25.0899) (74.7313) 

Hispanic -83.6063*** -84.8407*** -82.6124*** -211.9060*** 

 (26.4104) (28.4458) (28.2976) (75.3924) 

Other race/ethnicity -211.9341*** -208.1100*** -207.7227*** -412.3379*** 

 (25.7615) (27.9025) (28.0416) (95.3206) 

Missing: Race/Ethnicity -289.4577*** -281.4315*** -281.2579*** -486.6319*** 

 (25.9703) (27.2738) (27.4002) (85.7015) 

Male 103.9291*** 104.1050*** 104.2239*** 96.2285** 

 (12.7829) (12.9722) (13.0350) (46.1184) 

Plural birth -1025.0927*** -1043.8657*** -1044.6878*** -1102.6581*** 

 (53.9279) (55.8800) (56.0546) (148.5574) 

Parents no college -100.0102*** -101.5395*** -102.6591*** -145.7058** 

 (27.7884) (29.1439) (29.2325) (72.3100) 

Missing: Parents no college -186.7590 -167.2425 -168.0220 -112.3624 

 (194.9381) (187.6598) (188.0081) (259.2772) 

Mom 15-24 years -16.0518 -18.3433 -18.4358 74.0224 

 (18.1334) (19.1499) (19.0895) (51.2844) 

Mom 35-44 years -4.0750 -5.2402 -4.8649 -58.1222 

 (29.3726) (30.0840) (29.9964) (72.8817) 

Missing: Mom age -142.5147** -151.7646** -152.1213** 256.1181 

 (69.8619) (67.0090) (66.9069) (212.9595) 

Smoked -212.7797*** -205.5970*** -205.7531*** -238.6378*** 

 (20.4064) (20.8633) (20.9399) (67.9316) 

Missing: Smoked 111.8521 90.6235 92.5746 -211.4604 

 (213.6967) (206.4856) (206.9778) (293.5349) 

Second birth 65.6913*** 70.5244*** 69.4871*** 75.0071* 

 (16.5059) (17.2467) (17.2454) (42.8083) 

Third birth 62.6198*** 67.4462*** 66.3186*** 113.6084** 

 (21.5606) (21.4307) (21.5753) (55.1763) 

Fourth birth 57.8700** 62.9846*** 61.7574*** 173.3839*** 

 (22.6607) (23.0042) (23.0852) (62.7089) 

≥ Fifth birth 95.1407*** 101.6716*** 101.7160*** 451.0519*** 

 (35.5182) (37.7004) (37.6518) (98.2166) 

Not married -37.7024** -33.0000* -34.4836* -27.2159 
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 (18.5771) (18.8283) (18.7201) (55.0883) 

Missing: Not married -346.0038*** -78.9715 -80.4339 0.0000 

 (56.5864) (93.6628) (93.8913) (.) 

WIC 61.5788** 54.5717* 54.4600* 252.0527*** 

 (28.2011) (29.0105) (29.1693) (88.4588) 

Missing: WIC -185.0651 -217.4368 -225.1606 233.6796 

 (174.0992) (189.8621) (191.4368) (211.7911) 

Medicaid 5.4855 17.5059 17.9297 -131.9629* 

 (32.7404) (35.0223) (35.2825) (78.4166) 

Missing: Medicaid 160.5469 190.0834 185.2244 4.1328 

 (187.7460) (202.4730) (203.9231) (235.7041) 

Constant 3411.7762*** 3373.0842*** 3422.3620*** 3274.0555*** 

 (88.1437) (91.0191) (87.5804) (196.1728) 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8173 8168 8168 1307 

Adjusted R-squared 0.144 0.142 0.141 0.203 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is 

birthweight (in grams). All independent variables are binary indicators.  
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Table A4. RDID Low Birthweight (LBW) Full Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters 0.0183 0.0246  0.0350 

 (0.0191) (0.0204)  (0.0271) 

post-HEUC -0.0299* -0.1027**  0.0043 

 (0.0155) (0.0518)  (0.0442) 

0-250 meters × post-HEUC -0.0444* -0.0326 -0.0308 -0.0425 

 (0.0265) (0.0257) (0.0328) (0.0428) 

Black 0.0569*** 0.0552*** 0.0553*** 0.0911*** 

 (0.0115) (0.0118) (0.0119) (0.0316) 

Hispanic 0.0123 0.0132 0.0131 0.0498 

 (0.0147) (0.0153) (0.0153) (0.0307) 

Other race/ethnicity 0.0407*** 0.0406*** 0.0410*** 0.1008** 

 (0.0122) (0.0128) (0.0128) (0.0415) 

Missing: Race/Ethnicity 0.0686*** 0.0681*** 0.0681*** 0.1327*** 

 (0.0131) (0.0138) (0.0139) (0.0339) 

Male -0.0179** -0.0187*** -0.0188*** -0.0026 

 (0.0070) (0.0071) (0.0071) (0.0236) 

Plural birth 0.5735*** 0.5807*** 0.5806*** 0.6764*** 

 (0.0329) (0.0322) (0.0323) (0.0642) 

Parents no college 0.0392*** 0.0391*** 0.0404*** 0.0704** 

 (0.0134) (0.0137) (0.0138) (0.0351) 

Missing: Parents no college 0.0855 0.0812 0.0801 0.2476 

 (0.0873) (0.0950) (0.0954) (0.1851) 

Mom 15-24 years -0.0067 -0.0051 -0.0054 -0.0251 

 (0.0094) (0.0098) (0.0098) (0.0238) 

Mom 35-44 years 0.0053 0.0063 0.0066 0.0602* 

 (0.0138) (0.0144) (0.0144) (0.0339) 

Missing: Mom age 0.0382 0.0437 0.0436 -0.0807 

 (0.0437) (0.0438) (0.0437) (0.0518) 

Smoked 0.0741*** 0.0737*** 0.0738*** 0.0800** 

 (0.0130) (0.0127) (0.0127) (0.0347) 

Missing: Smoked -0.0086 0.0049 0.0062 -0.0906 

 (0.0917) (0.1014) (0.1019) (0.1893) 

Second birth -0.0215** -0.0236** -0.0236** -0.0292 

 (0.0090) (0.0095) (0.0095) (0.0261) 

Third birth -0.0241** -0.0252** -0.0249** -0.0542* 

 (0.0096) (0.0102) (0.0102) (0.0307) 

Fourth birth -0.0192 -0.0210 -0.0208 -0.0376 

 (0.0151) (0.0150) (0.0151) (0.0316) 

≥ Fifth birth -0.0193 -0.0189 -0.0192 -0.1292*** 

 (0.0189) (0.0198) (0.0199) (0.0492) 

Not married 0.0160* 0.0138 0.0141 0.0017 
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 (0.0092) (0.0096) (0.0096) (0.0240) 

Missing: Not married -0.0462* -0.1065*** -0.1062*** 0.0000 

 (0.0260) (0.0383) (0.0383) (.) 

WIC -0.0417** -0.0418** -0.0414** -0.1056** 

 (0.0162) (0.0174) (0.0175) (0.0442) 

Missing: WIC -0.0011 -0.0198 -0.0150 -0.0572 

 (0.0531) (0.0661) (0.0671) (0.0994) 

Medicaid 0.0235 0.0210 0.0203 0.1112*** 

 (0.0192) (0.0199) (0.0199) (0.0406) 

Missing: Medicaid -0.0094 -0.0081 -0.0061 -0.0001 

 (0.0448) (0.0568) (0.0579) (0.1224) 

Constant 0.0543 0.0913* 0.0542 0.0154 

 (0.0479) (0.0506) (0.0489) (0.0936) 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8173 8168 8168 1307 

Adjusted R-squared 0.109 0.104 0.103 0.170 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is a 

binary indicator, equal to one for children designated as low birthweight (i.e., less than 2500 grams), and zero otherwise. All 

independent variables are binary indicators.  
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Table A5. RDID Very Low Birthweight (VLBW) Full Regression Model Results. 

  (1) (2) (3) (4) 

     
0-250 meters 0.0220* 0.0224**  0.0287** 

 (0.0114) (0.0109)  (0.0126) 

post-HEUC 0.0037 -0.0010  -0.0302 

 (0.0065) (0.0245)  (0.0249) 

0-250 meters × post-HEUC -0.0335** -0.0312* -0.0282 -0.0368 

 (0.0157) (0.0165) (0.0192) (0.0225) 

Black 0.0209*** 0.0198*** 0.0198*** 0.0395** 

 (0.0059) (0.0065) (0.0065) (0.0175) 

Hispanic 0.0070 0.0078 0.0080 0.0172 

 (0.0056) (0.0067) (0.0067) (0.0146) 

Other race/ethnicity 0.0148** 0.0146** 0.0145** 0.0467** 

 (0.0058) (0.0063) (0.0064) (0.0230) 

Missing: Race/Ethnicity 0.0256*** 0.0255*** 0.0253*** 0.0402* 

 (0.0059) (0.0065) (0.0065) (0.0226) 

Male 0.0031 0.0041 0.0038 0.0005 

 (0.0035) (0.0036) (0.0036) (0.0103) 

Plural birth 0.1375*** 0.1427*** 0.1437*** 0.1176* 

 (0.0284) (0.0285) (0.0286) (0.0664) 

Parents no college 0.0137** 0.0129* 0.0126* 0.0222 

 (0.0068) (0.0075) (0.0075) (0.0136) 

Missing: Parents no college 0.0342 0.0305 0.0301 -0.0392 

 (0.0588) (0.0502) (0.0502) (0.0490) 

Mom 15-24 years -0.0064 -0.0073 -0.0075 -0.0383*** 

 (0.0051) (0.0054) (0.0054) (0.0126) 

Mom 35-44 years 0.0069 0.0063 0.0063 0.0199 

 (0.0075) (0.0075) (0.0075) (0.0202) 

Missing: Mom age 0.0050 0.0009 0.0007 -0.0513*** 

 (0.0237) (0.0223) (0.0223) (0.0191) 

Smoked 0.0100* 0.0090* 0.0089* 0.0253 

 (0.0054) (0.0053) (0.0053) (0.0219) 

Missing: Smoked -0.0487 -0.0411 -0.0411 0.0543 

 (0.0619) (0.0541) (0.0542) (0.0496) 

Second birth -0.0001 -0.0010 -0.0010 -0.0093 

 (0.0039) (0.0043) (0.0043) (0.0096) 

Third birth -0.0033 -0.0037 -0.0038 -0.0170 

 (0.0047) (0.0048) (0.0048) (0.0125) 

Fourth birth -0.0052 -0.0056 -0.0058 -0.0149 

 (0.0066) (0.0070) (0.0070) (0.0179) 

≥ Fifth birth -0.0077 -0.0114 -0.0114 -0.0637*** 

 (0.0097) (0.0103) (0.0103) (0.0185) 

Not married 0.0049 0.0041 0.0044 0.0114 
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 (0.0049) (0.0049) (0.0048) (0.0121) 

Missing: Not married 0.0019 -0.0024 -0.0018 0.0000 

 (0.0120) (0.0109) (0.0109) (.) 

WIC -0.0166** -0.0167** -0.0170** -0.0606* 

 (0.0084) (0.0084) (0.0084) (0.0316) 

Missing: WIC -0.0009 0.0039 0.0040 -0.0549 

 (0.0187) (0.0265) (0.0269) (0.0535) 

Medicaid -0.0044 -0.0040 -0.0034 0.0356 

 (0.0091) (0.0102) (0.0103) (0.0250) 

Missing: Medicaid -0.0089 -0.0209 -0.0206 0.0240 

 (0.0146) (0.0219) (0.0223) (0.0558) 

Constant 0.0006 0.0090 0.0096 0.0206 

 (0.0197) (0.0212) (0.0205) (0.0256) 

Spatiotemporal intercepts:     
Month X X X X 

Year X X X X 

Site X X X X 

Site × Year  X X  
Site × 0-250 meters   X  
Site × post-HEUC   X  

Matched sample    X 

Observations 8178 8173 8173 1308 

Adjusted R-squared 0.016 0.010 0.009 0.055 
Note: *p<0.10, ** p<0.05, *** p<0.01. Standard errors in parentheses, clustered at 2000 block group level. Dependent variable is a 

binary indicator, equal to one for children designated as very low birthweight (i.e., less than 1500 grams), and zero otherwise. All 

independent variables are binary indicators.  
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Table A6. Two-sample t-tests comparing control and treated groups. 

 Control (250-1,000m) Treated (0-250m)  

  Mean Mean t-stat 

Black 0.409 0.399 0.32 

Hispanic 0.139 0.078 3.54*** 

Other race/ethnicity 0.204 0.209 -0.19 

Male 0.511 0.517 -0.24 

Plural birth 0.031 0.035 -0.37 

Parents no college 0.888 0.851 1.87* 

Mom 15-24 years 0.519 0.531 -0.43 

Mom 35-44 years 0.081 0.061 1.46 

Smoked 0.157 0.158 -0.05 

Second birth 0.300 0.302 -0.10 

Third birth 0.180 0.142 1.95* 

Fourth birth 0.082 0.078 0.27 

≥ Fifth birth 0.055 0.041 1.34 

Not married 0.635 0.642 -0.28 

WIC 0.604 0.567 0.73 

Medicaid 0.643 0.600 0.87 

Note: *p<0.10, ** p<0.05, *** p<0.01. 

 

 

  



Table A7. Regression models to investigate demographic sorting. 

  White White Black Black Hispanic Hispanic No College No College Medicaid Medicaid 

  (2) (4) (2) (4) (2) (4) (2) (4) (2) (4) 

           

0-250 meters -0.0066 -0.0128 0.1034 0.1067 -0.0872** -0.1018** 0.0371** 0.0457 -0.0997 -0.1625 

 (0.0384) (0.0479) (0.0825) (0.1020) (0.0412) (0.0504) (0.0180) (0.0279) (0.1700) (0.1590) 

post-HEUC 0.0026 0.1752* 0.0002 -0.1263 0.0358 -0.0562 0.0167 -0.0901 -0.0516 -0.1057 

 (0.0709) (0.0977) (0.0659) (0.0932) (0.0385) (0.0747) (0.0503) (0.0710) (0.0928) (0.1199) 

0-250 meters × 

post-HEUC -0.0171 -0.0372 -0.1452 -0.1430 0.0997** 0.0542 -0.0923** -0.0434 0.1259 0.2610 

 (0.0694) (0.0939) (0.0919) (0.1178) (0.0470) (0.0646) (0.0465) (0.0860) (0.1705) (0.1724) 

Constant 0.2495*** 0.1881*** 0.4072*** 0.4805*** 0.1238*** 0.1670*** 0.8813*** 0.8699*** 0.6857*** 0.6088*** 

 (0.0304) (0.0438) (0.0296) (0.0485) (0.0166) (0.0394) (0.0168) (0.0266) (0.0830) (0.1200) 

Spatiotemporal  

intercepts:          

Month X X X X X X X X X X 

Year  X  X  X  X  X 

Site  X  X  X  X  X 

Site × Year X  X  X  X  X  

Matched sample:  X  X  X  X  X 

Observations 6194 798 6194 798 6194 798 7850 1262 2478 383 

Adjusted R-

squared 0.363 0.325 0.225 0.278 0.111 0.101 0.200 0.249 0.138 0.211 
Note: *p<0.10, ** p<0.05, *** p<0.01. 
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