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Abstract

Despite growing research interest in school entry policies, their effects on newborn well-being

remain understudied. This study provides new causal evidence using restricted birth data from

three states, which are based on the latest 2003 revision of birth certificate instruments. Our

normalized-and-pooled regression discontinuity analysis demonstrates young mothers born just

after the school entry date cutoff have considerably lower educational attainment than those

born just before. These women also tend to experience poorer birth outcomes, including a

modest decrease in birth weight and a large increase in the risks of multiple adverse birth

outcomes. Maternal health behaviors, insurance coverage, and paternal age are key channels for

these intergenerational health effects. Overall, in states where educational systems fall behind

the national average in terms of advancing academic progress and retaining students, we find

additional education can yield significant health benefits for young mothers and their newborns.
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1 Introduction

The last two decades saw a great deal of research and policy discussion on school entry age laws.

The state legislation typically specifies a date on or before which children must turn 5 years old in

order to begin kindergarten in public schools each fall. Otherwise similar children born just after

that date are not eligible to enter kindergarten until the following school year. On one hand, the

policy has the potential to reduce the years of schooling for those born right after their state’s

eligibility date. Entering school almost a year older than those born just before the cutoff date,

the older entrants have fewer years of compulsory education when reaching the school dropout

age and are at risk of legally leaving school for a longer duration of time (Cook and Kang, 2016;

Arnold and Depew, 2018).1 On the other hand, being born just after eligibility cutoff dates means

that children start school at an older age (higher absolute maturity) and may be more ready for

instruction. However, they are also older relative to their classmates (higher relative maturity),

and as a result, could be negatively affected by younger, more disruptive peers.

Prior studies using data from the United States (US) have documented individuals with birth-

days after eligibility cutoffs tend to have lower educational attainment than those with birthdays

immediately prior (Cascio and Lewis, 2006; Dobkin and Ferreira, 2010; Tan, 2017). Nevertheless,

older entrants are inclined to have better academic performance, although it is debated whether the

age effect on test scores dissipates as children advance through school (Bedard and Dhuey, 2006;

Dhuey, Figlio, Karbownik, and Roth, 2019).2 Late entry also reduces risky health behaviors, rates

of juvenile delinquency and crime, and the likelihood of being misdiagnosed as having learning dis-

abilities (Cook and Kang, 2016; Depew and Eren, 2016; Elder, 2010; Evans, Morrill, and Parente,

1Consider an example in which the school entry date is August 30th, the school year begins in early September, and
the school leaving age is 17. Students born right after the cutoff date will turn 6 just after they begin kindergarten
and become eligible to leave school upon turning 17, near the beginning of their 12th school year (11th grade). Those
born just before the school start date will have just turned 5 when beginning kindergarten and won’t turn 17 until just
before their 13th school year (12th grade) begins. Even if they don’t leave school immediately upon turning 17, older
starters will have an extra year of exposure to the option of dropping out than younger starters, when we consider
their timeline toward high school graduation. This prolonged dropout exposure may also subject older starters to
increased pressure to prioritize work, family responsibilities, or other non-academic pursuits, potentially undermining
their longer-term educational trajectories. Furthermore, other factors such as biological age and minimum working
age could influence the gap in educational attainment between older and younger starters, in a way similar to school
leaving age (Dobkin and Ferreira, 2010; McCrary and Royer, 2011).

2This overall age effect is a composite of three impacts which are difficult to separately estimate: that of age at entry,
age at test, and age relative to the peer group (Black, Devereux, and Salvanes, 2011; Cascio and Schanzenbach, 2016).
The first two effects pertain to absolute maturity and the third concerns relative maturity.
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2010; Johansen, 2021). Nevertheless, to these older starters, there is evidence of negative spillovers

from younger peers regarding classroom performance and substance misuse (Elder and Lubotsky,

2009; Johansen, 2021). A growing literature looks at the longer term effects of school starting age.

The findings are mixed on labor market outcomes such as earnings and employment (Arnold and

Depew, 2018; Bedard and Dhuey, 2012; Black et al., 2011; Dobkin and Ferreira, 2010; Fredriksson

and Ockert, 2014). Prior work also shows a positive health effect of higher school starting age for

adult males (Arnold and Depew, 2018; Black et al., 2011). Moreover, raising the state minimum

school starting age lowers crime activity later in life (McAdams, 2016).

Less attention has been given to the intergenerational effects of school entry policies. There is

limited evidence on fertility. Several studies using European data report late school entry reduces

teenage pregnancy and increases maternal age at first birth, but doesn’t affect completed fertility

(Black et al., 2011; Beck, Hart, and Flato, 2024; Borra, Gonzalez, and Patino, 2024). In contrast,

US-based research shows no impact on teenage pregnancy or age at first birth (McCrary and

Royer, 2011; Tan, 2017). Because many European countries have compulsory schooling laws tied

to educational attainment and not age, older female entrants in these countries spend more time

in school than those in the US, which implies a stronger incapacitation effect on teen pregnancy.

Even less is known about newborn well-being. Two Europe-based studies which analyze women

of childbearing age find being born after cutoff dates has a modest and negative effect on infant

health in Finland and Spain, primarily due to delayed motherhood (Borra et al., 2024; Fredriksson,

Huttunen, and Ockert, 2022).3 To the best of our knowledge, McCrary and Royer (2011) is the

only relevant causal analysis in the US context. Using restricted birth data from California and

Texas, they find that being born after statewide school start dates lowers educational attainment

for first-time young mothers but, somewhat surprisingly, has small overall effects on health of their

offspring.

The small literature regarding newborn health is noteworthy, given that health at birth has

profound and lasting impacts on health, human capital, labor market performance, and well-being

over one’s lifecycle (Almond, Currie, and Duque, 2018; Bharadwaj, Lundborg, and Rooth, 2018;

3There is no evidence of an impact on mother’s educational attainment. But unlike the US, both countries require
that individuals achieve a certain level of education, regardless of the age when they start schooling.
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Helgertz and Nilsson, 2019). Of course, a notable barrier for new research on this issue is accessing

US data with mother’s date of birth. Furthermore, we do anticipate school entry policies to make

a difference in birth outcomes through schooling and age-for-grade effects. For expectant mothers,

education enhances their permanent income, enabling them to afford quality health insurance and

receive appropriate health services especially prenatal care (Currie and Moretti, 2003; Heckman,

Humphries, and Veramendi, 2018). Second, a woman’s education is causally connected to the

quality of her mate (Anderberg and Zhu, 2014). Third, education improves women’s mental and

physical health, facilitates the acquisition of health knowledge, and promotes healthy pregnancy

behaviors (Cutler and Lleras-Muney, 2010; Eide and Showalter, 2011; Brunello, Fabbri, and Fort,

2013). Moreover, absolute and relative maturity manipulated by school entry policies also impacts

a mother’s choice of health inputs, through channels such as cognitive abilities, partner selection,

and substance use (Dhuey et al., 2019; Johansen, 2021; Borra et al., 2024).

In this study, we provide new causal evidence on the effects of school entry policies on pregnancy

outcomes. Among the three study states, Nevada and Tennessee require individuals to be five years

old before or on September 30th to begin kindergarten for the mother cohorts we examine, while

New Mexico sets the cutoff at August 31st (Evans et al., 2010; Bedard and Dhuey, 2012).4 The

corresponding birth data we access includes mother’s exact date of birth, which permits implemen-

tation of a regression discontinuity (RD) design.

We follow McCrary and Royer (2011) to focus on young women for whom the education dis-

continuities induced by school entry policies are most relevant. After validating our RD design,

we estimate the impact on education at motherhood using the pooled and state-level samples.5

4We observe fairly high compliance with the entry laws across the three states, although parents may delay their child’s
enrollment in public kindergarten (redshirting), petition for early enrollment for children born after school start dates,
or choose private kindergarten to circumvent public school cutoff dates (Taveras, 2025). Using census data, we find
about 73 to 78 percent of 5-year-old females in these states who were age eligible for kindergarten attended public
kindergarten between 1980 and 2000. In addition, as long as these noncompliance behaviors influence later education
attainment and infant health solely through child’s actual start age and introduce no extra direct effects of birthdate
relative to the eligibility cutoff on the outcomes, they won’t bias our estimated intention-to-treat effect of school entry
policies.

5As mentioned above, school entry policies affect educational attainment of young women whose academic progression
decisions are age dependent. The education discontinuities also pertain to young women born near the cutoff date
whose schooling is interrupted by pregnancy. In addition, the mother cohorts in Nevada (Tennessee) for our analysis
were mostly exposed to a school leaving age of 18(17), whereas those in New Mexico were consistently subject to a
leaving age of 18. The results change little when we restricting the sample to women who were uniformly exposed to
a given leaving age.
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Next, five birth outcome measures are examined to give a comprehensive picture of the influence

of school entry policies on newborn health. We then conduct multiple inference adjustments and

complement the continuity-based approach with local randomization estimation, which does not

require approximation of smooth regression functions. Furthermore, we explore the mechanisms

through which the entry policies affect education and health, carry out a number of robustness

checks, and perform additional analyses such as estimation of the heterogeneous effects and power

calculations. The rich evidence provided in this study will offer valuable insights for policymakers,

educators, and parents who seek a deeper understanding of the infant health consequences of school

entry laws.

2 Data

We use restricted birth data with mother’s date of birth from Nevada, New Mexico, and Tennessee,

provided by each state’s Department of Health. For Nevada and New Mexico, we have data on

the universe of all within-state births occurring in 2010-2016 and 2008-2015, respectively. For

Tennessee, due to the high cost of accessing data, we obtained access to the subset of statewide

birth records for 2004-2015 that meet our sample selection criteria.6 Through the sampling periods

above, all three states used the latest 2003 revision of the Standard Certificate of Live Birth, which

improves data quality and includes additional information about mothers and newborns than the

old 1989 version.

We examine three sets of dependent variables. First, we check whether there is an effect of

mother’s birthdate relative to the school start cutoff on education, as measured in her baby’s birth

record. The 2003 revised birth certificate instruments include eight categories for the education

level of the parents.7 We use these categories to construct three indicators on mother’s educational

attainment: less than high school education, high school completion or less, some college experience

(without a degree) or less. The first indicator allows us to assess whether school entry policies affect

completing high school education or equivalent for young mothers. The second one focuses on the

6These records cover first-time Tennessee mothers who are no more than 24 years old and born two months before
and after the state’s school entry cutoff date. More information about the final sample selection will be given below.

7The 1989 version records years of schooling completed.
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margin of college enrollment. The third one pertains to the impact on earning an associate degree

or higher.

Second, we analyze five primary birth outcomes: birth weight, low birth weight (LBW, birth

weight < 2,500 grams), preterm birth (or prematurity, gestational age < 37 weeks), 5-minute

Apgar score < 7 (or low Apgar score), and cesarean birth (or caesarean section). Birth weight is

the primary measure of a baby’s health in most economic research on infant well-being. LBW and

preterm birth are two key indicators of poor health at birth. The 5-minute Apgar score evaluates

a baby’s five cardinal signs at 5 minutes after birth, with each sign being scored as 0, 1, or 2. A

5-minute Apgar score of 7 or above is considered normal, while a score below 7 indicates that the

baby needs additional medical care. A cesarean birth is generally more costly than a vaginal birth,

especially when there are complications during pregnancy for mothers or fetuses. Some cesarean

sections can be prevented by enhancing maternal health status and behaviors.

Third, we look at a number of variables that give information about potential mechanisms. The

first group measures maternal health and health behaviors. Three of these variables concern the

preconception period: pre-pregnancy obesity (body mass index or BMI ≥ 30), overweight (BMI ≥

25), and smoking. The other measures we consider include early prenatal care (care initiation in

the first trimester), number of prenatal care visits, prenatal smoking (smoking in any trimester),

and inadequate gestational weight gain. Both the timing and frequency of prenatal care visits are

important for infant health production (Yan, 2020). The second group pertains to the income

channel, which comprises three measures on mother’s insurance for delivery payment and receipt

of benefits from the Special Supplemental Nutrition Program for Women, Infants, and Children

(WIC). The third group includes indicators of father’s education and age, which provides insights

into how school entry policies influence mate selection and quality.

We begin our sample selection by, first, focusing on first-time mothers who have no history

of pregnancy termination and who deliver singletons. Without this restriction, the effect of birth

outcomes of the first pregnancy on future fertility and health of subsequent births would impact

our estimates. Second, as we proxy the state where mothers begin their education by state of

birth, our sample consists exclusively of mothers who were born in and currently reside in the same

state where they give birth. Moreover, our primary sample is limited to mothers who are no older
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than 23 years, as the literature shows education discontinuities induced by the school entry policies

are most relevant to youths whose academic progression decisions are age dependent (Dobkin and

Ferreira, 2010; McCrary and Royer, 2011; Tan, 2017).8 Finally, for the baseline estimation, we

restrict the sample to mothers born 40 days around the first day after school start dates (more

discussion below).

With the resulting pooled and state-level samples of first-time native young mothers, we report

the means of the key variables in Table 1. The majority of the young women and their mates have

completed secondary education, while a moderate percentage have college experience. There is a

relatively high incidence of LBW and prematurity in all the states. Differences in maternal smoking

rates are evident when we compare Tennessee to the other two states. Moreover, more than 70%

of the mothers in the pooled sample are Medicaid or WIC beneficiaries.9 In terms of race and

ethnicity, Native American mothers who identify as American Indian or Alaska Native and are not

Hispanic comprise 18% of the New Mexico sample. About 35% and 62% of the sampled mothers

are Hispanic in Nevada and New Mexico, respectively. Non-Hispanic black mothers constitute

the largest minority group in Tennessee. Finally, we note that mothers in Tennessee make up

approximately 77% of the pooled sample. Appendix Table A1 further provides the means for the

samples with a longer 60-day window on either side. The pattern is very similar.

[Insert Table 1 Here]

3 Method

We begin by considering the following model to compare mothers born near school start dates:

Yi = α0 + α1Ti + α2Bi + α3TiBi + εi (1)

where Yi is a measure of education at motherhood or a birth outcome for mother i. We normalize

mother’s day of birth using the eligibility cutoff, which gives the running variable Bi. It equals

8We see this pattern that the negative effect on education around the cutoff is stronger for young mothers than for old
mothers, using the Nevada and New Mexico datasets which allow us to include older mothers (results not shown).

9About 3% of the mothers in the Tennessee sample have missing information on Medicaid and private insurance. But
the corresponding fractions are much higher in Nevada (9%) and New Mexico (24%).
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0 for mothers born on the first day after the cutoff date, -1 for mothers born on the cutoff date

itself, 1 for mothers born on the second day after the cutoff, and so on. Ti = 1(Bi ≥ 0) indicates

being born after the state’s entry cutoff date for the mother. The parameter of interest is α1 which

captures the discrete change in an outcome variable due to the school entry policies.10

Eq.1 is estimated by local linear regression, which solves the following optimization:

min
N∑
i=1

(Yi − α0 − α1Ti − α2Bi − α3TiBi)
2Kh(Bi) (2)

where Kh(Bi) is a kernel function that assigns non-negative weights to mothers born within a

h-day window around Bi = 0. Our main estimates use the triangular kernel function, but there

are empirical exercises with other kernel functions as well. Moreover, while the baseline analysis

employs a 40-day bandwidth (h=40 and Bi ranges from -40 to 40), we also examine how sensitive

the results are to a range of other bandwidths. The data we have access to for Nevada and New

Mexico can accommodate a bandwidth of up to 182 days. Accordingly, for those two states, we also

perform additional analyses with Mean Square Error (MSE) optimal bandwidths.11 In addition,

we pool observations of the three states in the main analysis to improve estimation precision.

The parameter α1 then gives a normalized-and-pooled RD effect, which is equal to a weighted

average of the state-specific RD effects (Cattaneo, Idrobo, and Titiunik, 2024). The results on the

state-specific RD effects will be presented, too.

With respect to birth outcomes, our focus on the reduced form specification of Eq.1 departs from

McCrary and Royer (2011) which uses Ti to instrument for mother’s education. The instrumen-

tal variable strategy assumes changes in pregnancy outcomes of the affected mothers are entirely

attributable to the pure schooling effect of the entry policies. While education is likely the main

driver for the impacts on birth outcomes, both absolute and relative maturity, as mentioned above,

may also influence infant health. The reduced form RD model we opt for imposes no restriction

10Ti can be viewed as the treatment assignment. Depew and Eren (2016) use Ti as an instrumental variable for late
school entry to estimate the effect of treatment received (or the local average treatment effect). In our context, lacking
data on actual entrance age prevents us from estimating this effect for young mothers. We estimate the intention-to-
treat effect as represented by α1, which is most policy relevant. Moreover, employing Ti as an instrumental variable
for mother’s education instead raises concerns, as discussed below.

11As mentioned earlier, the Tennessee data we have spans only a 60-day window on either side of the cutoff date.
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on how the entry policies work. In addition, the model will be useful when we investigate mother’s

health and health behaviors, access to health care and nutrition, and father’s characteristics.

It is straightforward to employ other model specifications. Consider a generalized model of the

form:

Yi = α0 + α1Ti + α2F (Bi) + α3TiF (Bi) + α4Xi + υi (3)

where F (Bi) is a polynomial function of Bi and Xi is a vector of predetermined covariates. In

some exercises, we additionally control for background characteristics Xi, such as indicators of

mother’s cohort and race/ethnicity. Similar to previous studies (Black et al., 2011; McCrary and

Royer, 2011), each cohort of mothers is defined symmetrically about Bi = 0.12 Of course, we test

smoothness of these covariates before adding them to the model. Some other robustness checks

incorporate a quadratic form for F (Bi) in the specification, with or without additional controls.

Specifications with higher-order polynomials are less preferred, as these models tend to yield less

reliable results near boundary points (Cattaneo, Idrobo, and Titiunik, 2019).

We note the continuity-based approach above is based on approximation and extrapolation of

smooth regression functions. The smoothing bias introduced by extrapolation will be negligible

only with large sample size. For this study, it may be subject to debate whether there are sufficient

mass points for the discrete running variable Bi about the cutoff. However, we also consider the

local randomization approach which does not require approximation of unknown functions. With

this framework, our RD design is regarded as a randomized experiment in a small window of the

cutoff W, in which the potential outcomes are additionally assumed to be unaffected by the running

variable (Cattaneo et al., 2024). We implement a window selector which assesses covariate balance

in a sequence of nested windows.13 The following simple model is then estimated within W:

Yi = β0 + β1Ti + νi (4)

12For instance, all the mothers born within a window of 182 days around the date when Bi = 0 in year 1991 belong to
the 1991 cohort.

13Here, we search for the largest window around the eligibility cutoff where women assigned to treatment and control
are comparable in terms of predetermined characteristics. Covariate balance is then consistent with randomization of
treatment assignment within the chosen W, which allows us to estimate the effect by comparing the average observed
outcomes between the treatment and control groups. In contrast, for our continuity-based RD analysis, testing
covariate balance provides insights into whether smoothness of regression functions holds and whether observed
discontinuities in the outcome variables could be driven by factors other than school entry policies.
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where Ti = 1(Bi ≥ 0) as in Eq.1. We will compare the results on β1 with those on α1 from

Eq.1. Finally, for the outcome measures of maternal education and infant health which this study

focuses on, we will calculate Romano-Wolf (RW) step-down p-values to adjust for multiple inference

(Romano and Wolf, 2016). The RW correction not only controls family-wise error rate (FWER)

but also offers more power than other corrections, because it takes into account dependence among

unadjusted p-values by boostrap resampling (Romano and Wolf, 2005).14

4 Results

4.1 Validity of the RD design

Before we carry out the formal RD analysis, it is important to examine the distribution of birthdays

of the first-time young mothers. Appendix Figure A1 plots density of their birthdays around the

state-specific school entry cutoff or pooled cutoff. We don’t observe any non-random sorting of

birthdays near the cutoff within a 60-day window on either side. The pattern is unchanged for

Nevada and New Mexico when the plots extend to a longer window of ±90 days.15 Additional local

polynomial density tests also confirm no manipulation of the timing of these young mothers’ own

births (suppressed for brevity).16

We also conduct balance tests on predetermined characteristics of the young mothers. As most of

the characteristics observed in the birth records could be considered as a response to the treatment

assignment regarding school entry, a limited set of variables are available for this exercise. We

consider indicators of mother’s race/ethnicity and cohort. To conserve space, we present only the

pooled discontinuity estimates with 90% confidence intervals in Appendix Figure A2. We see little

evidence of discontinuity in the background characteristics, using triangle kernel weights and a 40-

day bandwidth. The only exception is that the estimates for 1996 and 1997 cohorts are marginally

14Suppose we have a family of L null hypotheses, of which M are true (M ≤ L). FWER is the probability that at least
one of the M true null hypotheses in the family is rejected.

15For ease of illustration, we center each histogram on the cutoff date, which is represented as zero on the horizontal
axis. The corresponding distribution variable is the difference in days between mother’s birthday and the cutoff date.
This variable “days from cutoff ” is slight modification of Bi from Eq.1, since it equals Bi + 1.

16Dickert-Conlin and Elder (2010) also suggest US parents do not appear to systematically time childbirth, analyzing
birth records from all the states. Furthermore, birth timing manipulation can lead to covariance imbalance, which is
however ruled out by the smoothness test below.

10



significant at the 10% level. Moreover, none of the estimates are significant when we alternatively

apply uniform kernel weights and a bandwidth of 50 days.

Finally, our decision to limit the sample to young mothers could shut down interesting channels,

especially the timing of fertility. However, we find that school entry policies do not appear to

affect age at motherhood. Appendix Table A2 shows the results of examining the age of first-

time mothers in Nevada and New Mexico, when expanding the sample to include mothers of all

ages.17 The estimates are small, insignificant, and largely unaffected by the chosen kernel function

or bandwidth.

4.2 Main results

4.2.1 Maternal education

Figure 1 provides a graphical display of the relationship between education at motherhood and

normalized birthday, using the pooled sample described in Table 1. To reduce noise in the data,

unconditional means of the education variables in 4-day bins are calculated and presented.18 The

fitting lines come from local linear regression interpolation of Eq.1. A 40-day bandwidth and the

unbinned raw data are used for the regression. At the eligibility cutoff, we see a pronounced

increase in the fraction of young mothers who do not complete high school and those who have

high school or less education. There is also visual evidence of a discontinuity in the rate of having

some college or less. Recall, there are competing mechanisms that could affect years of schooling at

the threshold. Individuals born just after the cutoff experience prolonged dropout exposure, which

allows them legally leave school before completing high school or, more broadly, influences their

overall educational trajectories. In addition, for these older starters, the net age-for-grade impact

is likely to be positive on grade progression.19 Our results suggest that for the young mothers, the

ability to leave school with fewer completed years dominates the age-for-grade effect on educational

attainment.

17Tennessee is excluded from this analysis, since our data for this state only includes information on mothers up to age
24.

18Appendix Figure A3 displays daily averages of educational attainment, rather than 4-day bins.
19In terms of academic performance, the literature shows the advantage of absolute maturity for the older starters more
than offsets the downside of having relatively younger peers (Elder and Lubotsky, 2009; Cascio and Schanzenbach,
2016).
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[Insert Figure 1 Here]

Column (1) in panel A of Table 2 presents the corresponding discontinuity point estimates,

which are also our baseline results. We find that being born after the cutoff elevates the probability

of an unfinished high school education by 6.4 percentage points, or about 21% relative to the

sample mean. The likelihood of having a high school diploma or less is estimated to increase by 3.4

percentage points (about 5%), and the probability of having at most some college experience rises

by 1.3 percentage points (1.4%). All three estimates are statistically significant at the 1 percent

level. In columns (2) and (3), we consider alternative bandwidths of 30 and 50 days. The results

are similar to our baseline findings.

[Insert Table 2 Here]

The other panels of Table 2 report the education estimates by state. Focusing on column (1), we

see a notable rise in high school non-completion at each state’s school entry cutoff. The estimated

effects are also remarkably consistent across states, in terms of magnitude (20-21%). For the other

two education measures, the discontinuity estimates are small and insignificant for Nevada and

New Mexico. In contrast, young mothers born right after the cutoff date in Tennessee experience

a statistically significant increase of 4.2 percentage points of having no more than a high school

diploma or equivalent. Similarly, the likelihood of having at most some college education increases

by 1.5 percentage points, and this estimate is also statistically significant at the 1% level. The

results are again insensitive to bandwidth choice (columns 2 and 3). Moreover, in theory, a state

with more data observations around the cutoff is assigned a greater weight in the estimation of

the normalized-and-pooled effects in panel A. That is why the Tennessee estimates have a larger

influence on the pooled results. Finally, Figures A5, A7, and A9 provide a graphical treatment of

the state-specific estimates from column (1) of Table 2.

McCrary and Royer (2011) find being born after the state’s school start date increases the

probability of not finishing high school by 4 to 6 percentage points, for first-time young mothers in

California and Texas. Our baseline pooled and state-level estimates in Table 2 are above the higher

end of their range. Moreover, for having a high school diploma or less, their estimate of about 2

12



percentage points in both California and Texas is less than our Tennessee and pooled estimates.20

State-level differences in educational systems, socioeconomic conditions, and demographics can

contribute to the discrepancy. For instance, our three states generally face considerable challenges

with school funding, early intervention programs, and access to support services, which likely

hinders student academic achievement and retention. As a result, women born after the cutoff date

in these states may be more sensitive to the possibility of leaving school than their counterparts in

California and Texas, leading to larger education discontinuities. Our findings are also comparable

with Cook and Kang (2016) and Tan (2017), which document discontinuities on the order of 3 to

6 percentage points in attending the 12th grade.

4.2.2 Birth outcomes

Figure 2 demonstrates the profile of the newborn health outcomes by normalized birthday with

4-day bins, as with Figure 1 for education.21 For nearly every outcome, there is obvious visual

evidence of a discontinuity at the cutoff. Although the size of these discrete changes varies, they

overall suggest that young women born just after the eligibility cutoff tend to have poorer birth

outcomes. The corresponding estimates are presented in column (1) of Table 3 (Panel A). We

see a statistically significant reduction of 28.3 grams (g) on birth weight and a 1-percentage-point

increase in LBW (11%). There is also a precisely estimated rise in the risk of preterm birth (1.3

percentage point, or 14%) and cesarean birth (1.3 percentage points, or 5%). The increase in

the likelihood of having a low-Apgar-score baby is small and statistically insignificant. The other

results in column (1) come from estimation by state and the corresponding graphs are shown in

Figures A6, A8, and A10. The pattern in Nevada is broadly consistent with the baseline results

from the pooled sample; but with the limited sample size, the estimates are all imprecise. In New

Mexico, we see some suggestive evidence of worse birth outcomes, except that the discontinuity is

very small for birth weight and the estimate for low Apgar score is of the opposite of the expected

sign. Moreover, none of the point estimates are statistically significant. Turning to Tennessee,

there is evidence of a precisely estimated adverse effect on birth weight (-33.5 g), preterm birth

20The pattern remains unaltered when we account for the baseline difference in young mother’s educational attainment
between their study states and ours.

21Appendix Figure A4 displays daily averages of the birth outcomes.

13



(1.2 percentage points), and low Apgar score (1 percentage point). With a different bandwidth for

the pooled and state-level analysis, the results in the other columns are generally similar to those

in column (1).

[Insert Figure 2 Here]

[Insert Table 3 Here]

Our infant health estimates are larger than McCrary and Royer (2011)’s. They find very

small effects of school entry laws on LBW and prematurity. One possible explanation for our

larger intergenerational estimates is the more sizable change in maternal education reported above.

Moreover, in the states McCrary and Royer (2011) focus on, California and Texas, there is also

suggestive evidence that being young for grade considerably hinders skill acquisition for individuals

born just before the cutoff date (Dobkin and Ferreira, 2010). To the extent that this negative age-

for-grade effect endures throughout adolescence and into adulthood, it may offset the pure schooling

impact on newborn health, resulting in a relatively small overall effect of school entry policies. In our

three study states, the net effect of absolute and relative maturity may not counteract the schooling

impact as strongly. In addition, the 95% confidence intervals of our pooled LBW and prematurity

estimates do not rule out a small effect. It is worth noting the magnitude of our estimated effects

on birth outcomes is generally comparable to those in Currie and Moretti (2003) which uses college

openings to instrument for education and in Noghanibehambari, Salari, and Tavassoli (2022) which

exploits variation in maternal education due to changes in minimum dropout age policies.

4.2.3 Multiple inference adjustments and local randomization estimation

Panel A of Table 4 reproduces the benchmark pooled estimates on education at motherhood and

birth outcomes, and also reports the unadjusted p-values. The Romano-Wolf correction is then

implemented with 1,000 bootstrap replications. According to the RW p-values in panel A, all the

original precise estimates retain significance. Panel B shows the results from local randomization

estimation. As the window selector recommends a 10-day window for this analysis, the sample

size is much smaller. In this sample, women whose normalized birthdays are among the five in-

tegers between -5 and -1 are placed in the control group, while those whose normalized birthdays
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correspond to one of the five integers between 0 and 4 are in the treatment group.22 Moreover,

heteroskedasticity-robust standard errors are preferable to clustered standard errors, as the sam-

pled mothers are randomly drawn from a large population within the 10-day window and random

assignment takes place at the individual level (Abadie, Athey, Imbens, and Wooldridge, 2023).23

The local randomization results are line with those in panel A, although we generally observe larger

unadjusted p-values (except for LBW and prematurity). The estimates for some college or less and

cesarean delivery are now imprecise. The RW correction results in even larger p-values. Still, we see

significant impacts on high school non-completion, high school graduation or less, and prematurity.

[Insert Table 4 Here]

4.3 Potential mechanisms

In Table 5, we investigate the potential mechanisms by which school entry policies affect infant

health, using the pooled sample in Table 1. Looking at the estimates based on a 40-day bandwidth

in column (1), we see young mothers born after the cutoff are significantly more likely to be obese

before pregnancy and to have inadequate gestational weight gain.24 There is also clear evidence of a

decline in the probability of early prenatal care and the number of prenatal care visits. While these

estimates on prenatal care are precise, they are modest in magnitude. We see no difference in pre-

pregnancy smoking at the school start cutoff. The estimate for prenatal smoking has the expected

sign, but it is imprecise. Turning to the results on access to health care and nutrition, we find

being born after the cutoff increases the likelihood of Medicaid coverage but lowers the chance of

having private insurance. The discontinuity is small for receipt of WIC benefits. When examining

father’s characteristics, we find the estimated effects are small and statistically insignificant for

paternal education. However, there is a statistically significant decrease in father’s age. Moreover,

22We use a subset of the available indicators on mother’s race/ethnicity and cohort for window search, and then apply
a different subset for balance check which validates the chosen window. The results are available upon request.

23Intuitively, the sampled women are randomly assigned one of the ten values of the running variable, and accordingly,
they are placed into the control or treatment group.

24For simplicity, we code a mother as having inadequate weight gain if she gains less than 8.5 kilograms during
pregnancy. The cutoff of 8.5 kilograms roughly corresponds to the 15th percentile on the weight gain distribution of
the first-time young mothers we focus on. However, the results are similar when we use alternative cutoffs for low
weight gain, apply other kernel functions for weights, or define inadequate weight gain conditioning on pre-pregnancy
BMI (Yan, 2015).
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employing alternative bandwidths does not appreciably change the results, as shown in columns

(2) and (3).

[Insert Table 5 Here]

Our results on pre-pregnancy obesity, weight gain, prenatal care, and insurance coverage align

with the income and health channels which are tied to mother’s education. For instance, for young

mothers born just after the cutoff who tend to have less education and income, reduced access

to private insurance helps explain why they experience poorer birth outcomes than those born

right before, since private insurance typically provides a broader network of providers and more

comprehensive healthcare services than Medicaid. Of course, Medicaid serves as an important

safety net for low-income mothers who might otherwise be left uninsured. In our context, increased

Medicaid coverage may mitigate the differences in education and income and the associated infant

health effects for mothers born near the cutoff. For smoking, the age-for-grade effect may weaken the

impact of education. Given that many partnerships are formed at the grade level, the discontinuity

for father’s age appears to be driven by relative maturity: women born just after the cutoff interact

with younger peers or potential partners while those born just before have older peers.

We next summarize the results for these mechanism variables by state (not shown to conserve

space). In Nevada, being born after the entry date leads to a higher rate of obesity and overweight

prior to pregnancy and low weight gain, and a lower chance of having early prenatal care or private

insurance. The estimated impacts for New Mexico are generally imprecise. The only exception is a

large and statistically significant rise in pre-pregnancy obesity. For Tennessee, a pattern similar to

Nevada emerges for prenatal care initiation, inadequate weight gain, and private insurance coverage.

Moreover, young mothers from Tennessee born after the cutoff date are more likely to use WIC and

have partners who are less educated and younger. For these women, the discontinuous decline in

paternal education is consistent with both the manipulation of school entry policies on their peer

groups and the tendency for positive assortative mating based on education.
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4.4 Robustness of the main results

Figure 3 provides further evidence on the sensitivity of the results to differing bandwidth choices,

when we pool observations across the three states. Since the bandwidth available to us in the

Tennessee dataset is limited, we focus on a range of 15-55 days in the figure. It is worth mentioning

that when the selection procedure by Calonico, Cattaneo, and Titiunik (2014) and specifications

with lower-order polynomials are employed, recent research has also reported relatively small op-

timal bandwidths (Cook and Kang, 2016; Depew and Eren, 2016; Johansen, 2021; Borra et al.,

2024). In addition, for very small bandwidths below 20 days, the confidence intervals in the figure

may be less reliable due to the limited number of clusters. We see the point estimates are generally

stable for the education outcomes, especially starting at a bandwidth of roughly 25 days. Likewise,

the estimated discontinuities are robust to varying bandwidths for birth weight, LBW, and having

a low-Apgar-score baby. The estimates for prematurity initially decline before stabilizing as the

bandwidth increases, while the results for cesarean birth do appear to be somewhat sensitive to

bandwidth choice, with the estimated impact steadily shrinking as the window expands.25

[Insert Figure 3 Here]

Table 6 displays the results of a variety of additional robustness checks. Again, we focus on

estimation of the pooled RD effect with a 40-day bandwidth. Columns (1) and (2) use an alternative

kernel function (Uniform or Epanechnikov). The pattern is broadly consistent with the baseline

findings in panel A (column 1) of Tables 2 and 3, with some minor differences. For example, the

estimates for LBW and cesarean birth become less precise. But the estimated discontinuities for

having a low-Apgar-score baby turn significant. As shown in column (3), employing a quadratic

polynomial specification does not materially alter the results; however, we now observe stronger

25Moreover, suppose the underlying optimal bandwidth for an outcome lies between 15 and 55 days, for instance, 38
days. Then, the resulting discontinuity estimate will numerically equal the point estimate based on h=38 in the
figure. However, when estimates are based on MSE-optimal bandwidths, robust bias-corrected confidence intervals
are necessary for valid inference (Cattaneo et al., 2019). Another bandwidth t is needed for the correction. Direct
estimation of t is infeasible for the pooling analysis, as it requires data spanning the entire domain of the running
variable (±182 days) for each state. But using the full ±182 days, we find h/t is typically around 0.7 when analyzing
the Nevada and New Mexico data with optimal bandwidth selection. Assuming this ratio holds for the pooling case,
we compute the implied t for a given h. Finally, applying these bandwidths of t and h to re-scale and recenter the
corresponding original confidence intervals, we find nearly all of the precise estimates in the figure retain significance
(results available upon request).

17



effects on birth weight, prematurity, and cesarean birth. The benchmark results are also robust

to inclusion of predetermined covariates, when we sequentially add the mother cohort fixed effects

(FE) and race/ethnicity FE in columns (4) and (5).26 Column (6) shows adding these controls

to the model with a quadratic polynomial produces estimates analogous to those in column (3)

without the controls. Moreover, the results again conform to the baseline when we try controlling

for maternal age FE (not shown).

[Insert Table 6 Here]

The last two columns of Table 6 consider alternative age restrictions for the sample (no more

than 22 or 24 years old for the sampled mothers). The findings again conform to the baseline,

except that the estimated effects for birth weight are smaller and less precise. We also repeat the

nine excises above with the state-level samples and find the results are similar to the counterparts

in Tables 2 and 3 (not shown). Moreover, Appendix Tables A3 and A4 provide evidence for Nevada

and New Mexico when we implement the bandwidth selection procedure by Calonico et al. (2014).

For simplicity, we present the bias-corrected point estimates and standard errors, by which robust

bias-corrected confidence intervals can be easily constructed (Cattaneo et al., 2019).27 Under the

baseline specification with triangle kernel weights, the results for the two states in column (1) of

Tables A3 and A4 are generally in line with their counterparts (based on a 40-day bandwidth) in

Tables 2 and 3.28 The other columns yield analogous results, when we employ an alternative kernel

function or include controls.

4.5 Additional analysis

To explore the heterogeneous effects by mother’s race/ethnicity, we begin by splitting the pooled

sample in Table 1 into two subsamples (non-Hispanic White mothers and non-White mothers) and

26The set of mother race/ethnicity FE for columns (4) and (5) consists of dummy variables which correspond to non-
Hispanic Black, Hispanic, and Native American mothers, respectively. The results change little when we use an
alternative set of three dummy variables, such as White, non-Hispanic Black, and Hispanic.

27The significance level for each estimate in the tables is based on these robust bias-corrected confidence intervals.
Furthermore, as with the original RD estimator, the bias-corrected estimator is also asymptotically consistent.

28Similar to the recent studies mentioned above, the optimal bandwidths are also relatively small for the two states.
This holds especially true for the birth outcomes: all the corresponding optimal bandwidths are less than 55 days in
column (1) of Tables A3 and A4.
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estimate the baseline model for both subsamples. For ease of illustration, the results are graphed

in Figure 4. Being born after the cutoff significantly increases high school non-completion for both

subgroups, almost to the same extent. For the other two education outcomes, the estimated im-

pacts are greater for White mothers. We also observe a pattern of poorer birth outcomes, although

the estimated impacts are generally less precise than the pooled estimates above. Moreover, the es-

timated discontinuities are typically of similar magnitude for the two subgroups, except for preterm

birth. Next, we separately examine non-Hispanic Black, Hispanic, and Native American mothers,

who collectively represent over 95% of all the non-White mothers. Appendix Figure A11 again

shows educational attainment is negatively affected, especially for Black and Hispanic mothers. In

addition, we see suggestive evidence that mothers from the three minority groups who were born

after the cutoff tend to have worse birth outcomes.29

[Insert Figure 4 Here]

As with recent longer term studies (Borra et al., 2024; Fredriksson et al., 2022), auxiliary

analysis also looks at mothers of all ages in Nevada and New Mexico (not shown). This exercise

produces weaker impacts on education at motherhood. In addition, the estimates on newborns are

insignificant and indicate no deterioration in health. The pattern is not surprising: as mentioned

earlier, the education discontinuities are smaller for older mothers, who are now included in the

samples for the auxiliary analysis. The older first-time mothers may have been less likely to have

made their school exit decision according to the legal leaving age, choosing to stop schooling based

on completed education instead. Finally, Appendix Table A5 calculates statistical power for a set

of hypothesized effects against the null hypothesis of zero impact, using the pooled sample in Table

1. Effect sizes under the alternative hypotheses typically come from multiplying the dependent

variable means by a fraction.30 We focus on the baseline specification used for column (1) of Tables

29The estimated effects for Native American mothers above are mainly driven by those in New Mexico, due to the small
number of Native Americans in the other two states. Likewise, the results for Black mothers are primarily driven
by those in Tennessee. Moreover, the contribution of Hispanic mothers in Tennessee to the overall estimates of this
subgroup is small.

30For almost all the dependent variables, these fractions are 35% (a very large effect), 25%, 15%, 10%, and 5% (a
small effect). The only exception is birth weight, as even a reduction of 5% of the mean or about 160 g represents
an enormous effect, which is rarely documented (Fredriksson et al., 2022; Gage, Fang, O’Neill, and DiRienzo, 2013;
Noghanibehambari et al., 2022). Therefore, we begin the power analysis with a more plausible yet still sizable impact
of -80 g, followed by smaller effects down to -10 g.
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2 and 3 and consider power of two-sided tests with 10% size. For the educational outcomes, we

have sufficient power to detect even small effects, except high school non-completion.31 Moreover,

provided the true effect is not small, the sample allows us to correctly rule out zero effect for birth

weight, prematurity, and cesarean birth with an about 80 percent or higher chance. For LBW and

low Apgar score, we have limited statistical power to detect modest effects.

5 Conclusion

This study contributes to the limited body of research examining the impact of school entry policies

on pregnancy outcomes, leveraging birth data from three states based on the latest 2003 revision of

the US birth certificate. Our normalized-and-pooled regression discontinuity analysis shows young

mothers born just after the school entry date have considerably lower educational attainment than

those born just before. These women also tend to have poorer birth outcomes, including a modest

reduction in birth weight and a large increase in LBW, prematurity, and cesarean birth. When we

adjust for multiple testing and implement local randomization estimation, the pattern is consistent

with that from the baseline analysis. The education discontinuities on high school non-completion

are evident across the three states. Moreover, we observe precisely estimated adverse impacts on

the other indicators: earning a high school diploma or less, having at most some college experience.

With respect to newborn health, the most compelling findings are seen in Tennessee, while there is

suggestive evidence of higher risks for several adverse infant health outcomes in Nevada and New

Mexico.

We find maternal pre-pregnancy obesity, weight gain, use of prenatal care, insurance coverage,

and paternal age are key mechanisms through which the school entry policies influence infant health.

Of course, while mother’s education is likely the primary driver of the discontinuities in many of

these inputs, absolute and relative maturity may also be a contributing factor, especially regarding

partner quality. The baseline results are also robust to varying bandwidths, different choices of

kernel function or polynomial order, additional controls, and alternative sample restrictions. For

future research, scholars may provide additional evidence using a national sample with mother’s

31Also recall the baseline estimated effect for some college or less education is 0.013, which is very small relative to the
sample mean. Using 0.013 as the hypothesized effect, we find the corresponding power is 0.93.

20



birthday. Another fruitful avenue is to investigate the infant health consequences of late school

entry in low-income countries. In addition, it will be interesting to compare mental health, alcohol

consumption, and earnings of expectant mothers born near the entry date, when data become

available. Overall, our results suggest academic redshirting for female children may lead to long term

costs of having poorer birth outcomes. In states where educational systems fall behind the national

average in terms of advancing academic progress and retaining students, additional education can

yield significant health benefits for young mothers and their newborns.

21



References

Abadie, A., Athey, S., Imbens, G. W., & Wooldridge, J. M. (2023). When should you adjust

standard errors for clustering? The Quarterly Journal of Economics, 138 (1), 1–35.

Almond, D., Currie, J., & Duque, V. (2018). Childhood circumstances and adult outcomes: act

II. Journal of Economic Literature, 56 (4), 1360–1446.

Anderberg, D., & Zhu, Y. (2014). What a difference a term makes: the effect of educational

attainment on marital outcomes in the UK. Journal of Population Economics, 27 , 387–419.

Arnold, G., & Depew, B. (2018). School starting age and long-run health in the United States.

Health Economics, 27 (12), 1904–1920.

Beck, K. C., Hart, R. K., & Flato, M. (2024). School starting age, fertility, and family formation:

evidence from the school entry cutoff using exact date of birth. Demography , 61 (6), 1999–

2026.

Bedard, K., & Dhuey, E. (2006). The persistence of early childhood maturity: international

evidence of long-run age effects. The Quarterly Journal of Economics, 121 (4), 1437–1472.

Bedard, K., & Dhuey, E. (2012). School-entry policies and skill accumulation across directly and

indirectly affected individuals. Journal of Human Resources, 47 (3), 643–683.

Bharadwaj, P., Lundborg, P., & Rooth, D.-O. (2018). Birth weight in the long run. Journal of

Human Resources, 53 (1), 189–231.

Black, S. E., Devereux, P. J., & Salvanes, K. G. (2011). Too young to leave the nest? The effects

of school starting age. The Review of Economics and Statistics, 93 (2), 455–467.

Borra, C., Gonzalez, L., & Patino, D. (2024). Mothers’ school starting age and infant health.

Health Economics, 33 (6), 1153–1191.

Brunello, G., Fabbri, D., & Fort, M. (2013). The causal effect of education on body mass: evidence

from Europe. Journal of Labor Economics, 31 (1), 195–223.

Calonico, S., Cattaneo, M. D., & Titiunik, R. (2014). Robust nonparametric confidence intervals

for regression-discontinuity designs. Econometrica, 82 (6), 2295–2326.

Cascio, E. U., & Lewis, E. G. (2006). Schooling and the armed forces qualifying test: evidence

from school-entry laws. Journal of Human Resources, 41 (2), 294–318.

22



Cascio, E. U., & Schanzenbach, D. W. (2016). First in the class? Age and the education production

function. Education Finance and Policy , 11 (3), 225–250.

Cattaneo, M. D., Idrobo, N., & Titiunik, R. (2019). A practical introduction to regression discon-

tinuity designs: foundations. Cambridge University Press.

Cattaneo, M. D., Idrobo, N., & Titiunik, R. (2024). A practical introduction to regression discon-

tinuity designs: extensions. Cambridge University Press.

Cook, P. J., & Kang, S. (2016). Birthdays, schooling, and crime: regression-discontinuity analysis of

school performance, delinquency, dropout, and crime initiation. American Economic Journal:

Applied Economics, 8 (1), 33–57.

Currie, J., & Moretti, E. (2003). Mother’s education and the intergenerational transmission of

human capital: evidence from college openings. The Quarterly Journal of Economics, 118 (4),

1495–1532.

Cutler, D. M., & Lleras-Muney, A. (2010). Understanding differences in health behaviors by

education. Journal of Health Economics, 29 (1), 1–28.

Depew, B., & Eren, O. (2016). Born on the wrong day? School entry age and juvenile crime.

Journal of Urban Economics, 96 , 73–90.

Dhuey, E., Figlio, D., Karbownik, K., & Roth, J. (2019). School starting age and cognitive

development. Journal of Policy Analysis and Management , 38 (3), 538–578.

Dickert-Conlin, S., & Elder, T. (2010). Suburban legend: school cutoff dates and the timing of

births. Economics of Education Review , 29 (5), 826–841.

Dobkin, C., & Ferreira, F. (2010). Do school entry laws affect educational attainment and labor

market outcomes? Economics of Education Review , 29 (1), 40–54.

Eide, E. R., & Showalter, M. H. (2011). Estimating the relation between health and education:

what do we know and what do we need to know? Economics of Education Review , 30 (5),

778–791.

Elder, T. E. (2010). The importance of relative standards in adhd diagnoses: evidence based on

exact birth dates. Journal of Health Economics, 29 (5), 641–656.

Elder, T. E., & Lubotsky, D. H. (2009). Kindergarten entrance age and children’s achievement:

23



impacts of state policies, family background, and peers. Journal of Human Resources, 44 (3),

641–683.

Evans, W. N., Morrill, M. S., & Parente, S. T. (2010). Measuring inappropriate medical diagnosis

and treatment in survey data: the case of ADHD among school-age children. Journal of

Health Economics, 29 (5), 657–673.

Fredriksson, P., Huttunen, K., & Ockert, B. (2022). School starting age, maternal age at birth,

and child outcomes. Journal of Health Economics, 84 , 102637.

Fredriksson, P., & Ockert, B. (2014). Life-cycle effects of age at school start. The Economic

Journal , 124 (579), 977–1004.

Gage, T. B., Fang, F., O’Neill, E., & DiRienzo, G. (2013). Maternal education, birth weight, and

infant mortality in the United States. Demography , 50 (2), 615–635.

Heckman, J. J., Humphries, J. E., & Veramendi, G. (2018). Returns to education: the causal effects

of education on earnings, health, and smoking. Journal of Political Economy , 126 (S1), S197–

S246.

Helgertz, J., & Nilsson, A. (2019). The effect of birth weight on hospitalizations and sickness

absences: a longitudinal study of swedish siblings. Journal of Population Economics, 32 (1),

153–178.

Johansen, E. R. (2021). Relative age for grade and adolescent risky health behavior. Journal of

Health Economics, 76 , 102438.

McAdams, J. M. (2016). The effect of school starting age policy on crime: evidence from US

microdata. Economics of Education Review , 54 , 227–241.

McCrary, J., & Royer, H. (2011). The effect of female education on fertility and infant health:

evidence from school entry policies using exact date of birth. American Economic Review ,

101 (1), 158–195.

Noghanibehambari, H., Salari, M., & Tavassoli, N. (2022). Maternal human capital and infants’

health outcomes: evidence from minimum dropout age policies in the US. SSM-Population

Health, 19 , 101163.

Romano, J. P., & Wolf, M. (2005). Stepwise multiple testing as formalized data snooping. Econo-

24



metrica, 73 (4), 1237–1282.

Romano, J. P., & Wolf, M. (2016). Efficient computation of adjusted p-values for resampling-based

stepdown multiple testing. Statistics & Probability Letters, 113 , 38–40.

Tan, P. L. (2017). The impact of school entry laws on female education and teenage fertility.

Journal of Population Economics, 30 (2), 503–536.

Taveras, E. (2025). An unintended effect of school entrance age: pushing children ahead through

private school. Journal of Population Economics, 38 (1), 1–34.

Yan, J. (2015). Maternal pre-pregnancy BMI, gestational weight gain, and infant birth weight: a

within-family analysis in the united states. Economics & Human Biology , 18 , 1–12.

Yan, J. (2020). Healthy babies: does prenatal care really matter? American Journal of Health

Economics, 6 (2), 199–215.

25



Figure 1: Education at motherhood by normalized birthday

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are averages of mother’s
educational attainment over 4-day bins. The fitting lines are from interpolation of local linear regressions which use
triangle kernel weights and a 40-day bandwidth. The pooled sample used for the regressions is described in Table 1.
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Figure 2: Birth outcomes by normalized birthday

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are averages of the birth
outcomes over 4-day bins. The fitting lines are from interpolation of local linear regressions which use triangle kernel
weights and a 40-day bandwidth. The pooled sample used for the regressions is described in Table 1.

27



Figure 3: Robustness to alternative bandwidths

Note. The horizontal axis indicates bandwidth. The solid line denotes the estimates for α1 from Eq.1, for the
first-time young mothers of the three states. The model is estimated with triangle kernel weights and differing
bandwidths. The dash lines represent the 95% confidence intervals. Standard errors are clustered by normalized
mother’s birthday.
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Figure 4: Effects of being born after the eligibility cutoff: White and non-White mothers

Note. The figure plots the discontinuity estimates with 95% confidence intervals, when we split the pooled sample
in Table 1 into two subsamples (non-Hispanic White and non-White mothers). We estimate Eq.1 for either group
with a 40-day bandwidth and triangle kernel weights. Standard errors clustered by normalized mother’s birthday
are used to construct the confidence intervals.
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Table 1: Descriptive statistics

Pooled Nevada New Mexico Tennessee

Mother’s education
Mother less than HS 0.311 0.350 0.346 0.301
Mother HS or less 0.717 0.762 0.702 0.715
Mother some college or less 0.956 0.963 0.952 0.957

Birth outcomes
Birth weight 3158.197 3189.235 3144.165 3158.129
Low birth weight (LBW) 0.093 0.082 0.081 0.096
Preterm birth 0.093 0.075 0.069 0.100
Low Apgar score 0.033 0.022 0.055 0.030
Cesarean birth 0.252 0.236 0.162 0.272

Mother’s health and health behaviors
Pre-pregnancy obesity 0.188 0.183 0.160 0.193
Pre-pregnancy overweight 0.405 0.386 0.403 0.407
Pre-pregnancy smoking 0.236 0.085 0.108 0.274
Early prenatal care 0.657 0.589 0.628 0.669
Number of prenatal visits 11.217 10.766 10.366 11.432
Prenatal smoking 0.178 0.072 0.062 0.211
Inadequate weight gain 0.151 0.138 0.153 0.152

Mother’s access to health care and nutrition
Mother on Medicaid 0.753 0.567 0.800 0.762
Mother on private insurance 0.213 0.266 0.112 0.224
Mother on WIC 0.750 0.573 0.747 0.767

Mother’s other demographic characteristics
Mother Non-Hispanic Black 0.250 0.149 0.012 0.308
Mother Hispanic 0.127 0.348 0.616 0.009
Mother Native American 0.030 0.016 0.180 0.001
Mother’s age 19.562 19.625 19.494 19.569

Father’s characteristics
Father less than HS 0.238 0.272 0.296 0.224
Father HS or less 0.739 0.759 0.692 0.746
Father some college or less 0.942 0.941 0.938 0.943
Father’s age 22.716 22.649 22.448 22.779

Max N 35684 2558 5524 27602

Note. Each state-level sample consists of first-time mothers who are no more than 23 years old and were born 40 days
around the first day after the state’s school entry date. The pooled sample comes from combining the three state-level
samples.
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Table 2: Effects of being born after the eligibility cutoff: Mother’s education

(1) (2) (3)
RD band=40 RD band=30 RD band=50

Panel A: Pooled
Less than HS 0.064∗∗∗ 0.066∗∗∗ 0.063∗∗∗

(0.010) (0.012) (0.010)
HS or less 0.034∗∗∗ 0.031∗∗∗ 0.036∗∗∗

(0.008) (0.008) (0.007)
Some college or less 0.013∗∗∗ 0.014∗∗∗ 0.012∗∗∗

(0.004) (0.005) (0.004)
Max N 35533 26647 44215

Panel B: Nevada
Less than HS 0.073∗ 0.087∗∗ 0.073∗∗

(0.039) (0.043) (0.036)
HS or less -0.012 -0.028 -0.004

(0.033) (0.037) (0.031)
Some college or less -0.004 -0.006 -0.003

(0.021) (0.026) (0.018)
Max N 2530 1906 3169

Panel C: New Mexico
Less than HS 0.068∗∗∗ 0.060∗∗ 0.069∗∗∗

(0.026) (0.029) (0.024)
HS or less 0.017 0.010 0.026

(0.021) (0.021) (0.020)
Some college or less 0.011 0.012 0.010

(0.009) (0.011) (0.008)
Max N 5454 4126 6764

Panel D: Tennessee
Less than HS 0.062∗∗∗ 0.066∗∗∗ 0.061∗∗∗

(0.012) (0.013) (0.010)
HS or less 0.042∗∗∗ 0.040∗∗∗ 0.041∗∗∗

(0.008) (0.009) (0.008)
Some college or less 0.015∗∗∗ 0.016∗∗ 0.013∗∗∗

(0.005) (0.006) (0.005)
Max N 27549 20615 34282

Note. Each entry reports a regression discontinuity estimate of α1 from Eq.1, for the first-time young mothers of all
three states or in each state . The model is estimated with triangle kernel weights and a bandwidth of 30, 40, or 50
days. Standard errors clustered by normalized mother’s birthday are in parentheses. Significance levels: * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 3: Effects of being born after the eligibility cutoff: Birth outcomes

(1) (2) (3)
RD band=40 RD band=30 RD band=50

Panel A: Pooled
Birth weight -28.309∗∗ -29.211∗∗ -25.591∗∗

(12.446) (13.744) (11.399)
LBW 0.010∗ 0.010 0.009

(0.006) (0.007) (0.006)
Preterm birth 0.013∗∗ 0.014∗∗ 0.011∗∗

(0.006) (0.006) (0.005)
Low Apgar score 0.006 0.005 0.006∗

(0.003) (0.004) (0.003)
Cesarean birth 0.013∗∗ 0.020∗∗∗ 0.010∗

(0.006) (0.006) (0.005)
Max N 35684 26771 44410

Panel B: Nevada
Birth weight -28.729 -25.160 -30.188

(41.750) (46.120) (37.810)
LBW 0.003 -0.003 0.004

(0.022) (0.024) (0.020)
Preterm birth 0.009 0.009 0.012

(0.020) (0.022) (0.018)
Low Apgar score 0.003 0.006 0.0002

(0.012) (0.013) (0.012)
Cesarean birth 0.024 0.013 0.026

(0.040) (0.048) (0.034)
Max N 2558 1928 3206

Panel C: New Mexico
Birth weight 0.086 -9.243 0.261

(28.321) (31.755) (26.028)
LBW 0.004 0.011 0.002

(0.016) (0.018) (0.015)
Preterm birth 0.018 0.024 0.008

(0.016) (0.019) (0.015)
Low Apgar score -0.014 -0.019 -0.011

(0.014) (0.016) (0.013)
Cesarean birth 0.018 0.019 0.018

(0.011) (0.012) (0.012)
Max N 5524 4182 6855

Panel D: Tennessee
Birth weight -33.468∗∗ -33.050∗∗ -29.854∗∗

(13.677) (15.167) (12.486)
LBW 0.012 0.011 0.011

(0.008) (0.009) (0.007)
Preterm birth 0.012∗ 0.011 0.012∗

(0.007) (0.008) (0.007)
Low Apgar score 0.010∗∗ 0.009 0.010∗∗

(0.005) (0.006) (0.004)
Cesarean birth 0.011 0.021∗∗∗ 0.008

(0.008) (0.008) (0.007)
Max N 27602 20661 34349

Note. Each entry reports a regression discontinuity estimate of α1 from Eq.1, for the first-time young mothers
of all three states or in each state. The model is estimated with triangle kernel weights and a bandwidth of 30,
40, or 50 days. Standard errors clustered by normalized mother’s birthday are in parentheses. Significance
levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 5: Potential mechanisms

(1) (2) (3)
RD band=40 RD band=30 RD band=50

Panel A: Mother’s health and health behaviors
Pre-pregnancy obesity 0.014∗ 0.015∗ 0.014∗∗

(0.008) (0.009) (0.007)
Pre-pregnancy overweight 0.018 0.023 0.014

(0.013) (0.014) (0.011)
Pre-pregnancy smoking -0.002 0.001 -0.004

(0.010) (0.011) (0.009)
Early prenatal care -0.027∗∗∗ -0.032∗∗∗ -0.021∗∗

(0.009) (0.011) (0.008)
Number of prenatal visits -0.199∗∗ -0.189∗ -0.193∗∗

(0.099) (0.113) (0.090)
Prenatal smoking 0.006 0.012 0.002

(0.009) (0.010) (0.008)
Inadequate weight gain 0.016∗∗ 0.012 0.018∗∗∗

(0.007) (0.008) (0.007)

Panel B: Mother’s access to health care and nutrition
Mother on Medicaid 0.018∗ 0.021∗ 0.015

(0.011) (0.012) (0.010)
Mother on private insurance -0.019∗ -0.025∗∗ -0.016∗

(0.010) (0.011) (0.009)
Mother on WIC 0.015 0.019∗ 0.013

(0.011) (0.011) (0.010)

Panel C: Father’s characteristics
Father less than HS 0.010 0.015 0.007

(0.010) (0.012) (0.009)
Father HS or less 0.009 0.007 0.010

(0.011) (0.013) (0.010)
Father some college or less -0.002 -0.005 -0.0003

(0.005) (0.006) (0.004)
Father’s age -0.257∗∗∗ -0.268∗∗∗ -0.228∗∗∗

(0.086) (0.092) (0.084)

Note. Each entry reports a regression discontinuity estimate of α1 from Eq.1, for the first-time young
mothers for the first-time young mothers of all three states. The model is estimated with triangle kernel
weights and a bandwidth of 30, 40, or 50 days. Standard errors clustered by normalized mother’s birthday
are in parentheses. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Appendix

Figure A1: Distribution of mother’s birthday

Note. The figure plots density of birthdays of the first-time young mothers around the state-specific school
entry cutoff or pooled cutoff.
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Figure A2: Smoothness of maternal predetermined characteristics

Note. The figure plots the discontinuity estimates with 90% confidence intervals for the first-time young mothers
of all the three states. The subfigures use different kernel functions and bandwidths to estimate Eq.1. The
corresponding standard errors used for the confidence intervals are clustered by normalized mother’s birthday.
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Figure A3: Education at motherhood by normalized birthday: Daily averages

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are daily averages of
mother’s educational attainment. The fitting lines are from interpolation of local linear regressions which use triangle
kernel weights and a 40-day bandwidth. The pooled sample used for the regressions is described in Table 1.
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Figure A4: Birth outcomes by normalized birthday: Daily averages

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are daily averages of the
birth outcomes. The fitting lines are from interpolation of local linear regressions which use triangle kernel weights
and a 40-day bandwidth. The pooled sample used for the regressions is described in Table 1.
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Figure A5: Education at motherhood by normalized birthday: Nevada

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are averages of mother’s
educational attainment over 4-day bins. The fitting lines are from interpolation of local linear regressions which use
triangle kernel weights and a 40-day bandwidth. The Nevada sample used for the regressions is described in Table 1.
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Figure A6: Birth outcomes by normalized birthday: Nevada

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are averages of the birth
outcomes over 4-day bins. The fitting lines are from interpolation of local linear regressions which use triangle kernel
weights and a 40-day bandwidth. The Nevada sample used for the regressions is described in Table 1.
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Figure A7: Education at motherhood by normalized birthday: New Mexico

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are averages of mother’s
educational attainment over 4-day bins. The fitting lines are from interpolation of local linear regressions which use
triangle kernel weights and a 40-day bandwidth. The New Mexico sample used for the regressions is described in Table
1.
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Figure A8: Birth outcomes by normalized birthday: New Mexico

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are averages of the birth
outcomes over 4-day bins. The fitting lines are from interpolation of local linear regressions which use triangle kernel
weights and a 40-day bandwidth. The New Mexico sample used for the regressions is described in Table 1.
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Figure A9: Education at motherhood by normalized birthday: Tennessee

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are averages of mother’s
educational attainment over 4-day bins. The fitting lines are from interpolation of local linear regressions which use
triangle kernel weights and a 40-day bandwidth. The Tennessee sample used for the regressions is described in Table
1.
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Figure A10: Birth outcomes by normalized birthday: Tennessee

Note. The horizontal axis indicates the normalized mother’s day of birth in Eq.1. The dots are averages of the birth
outcomes over 4-day bins. The fitting lines are from interpolation of local linear regressions which use triangle kernel
weights and a 40-day bandwidth. The Tennessee sample used for the regressions is described in Table 1.
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Figure A11: Effects of being born after the eligibility cutoff: Three subgroups of non-White mothers

Note. The figure plots the discontinuity estimates with 95% confidence intervals, when we consider three main
subgroups of the non-White mothers examined in Figure 4. We estimate Eq.1 for each subgroup with a 40-day
bandwidth and triangle kernel weights. Standard errors clustered by normalized mother’s birthday are used to
construct the confidence intervals.
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Table A1: Descriptive statistics: Samples with 60-day bandwidth

Pooled Nevada New Mexico Tennessee

Mother’s education
Mother less than HS 0.309 0.341 0.344 0.300
Mother HS or less 0.715 0.762 0.695 0.715
Mother some college or less 0.956 0.962 0.950 0.957

Birth outcomes
Birth weight 3159.505 3189.997 3149.241 3158.697
Low birth weight (LBW) 0.093 0.081 0.082 0.096
Preterm birth 0.094 0.074 0.070 0.101
Low Apgar score 0.033 0.019 0.052 0.030
Cesarean birth 0.252 0.238 0.162 0.271

Mother’s health and health behaviors
Pre-pregnancy obesity 0.188 0.176 0.161 0.194
Pre-pregnancy overweight 0.404 0.379 0.407 0.406
Pre-pregnancy smoking 0.235 0.087 0.109 0.274
Early prenatal care 0.657 0.591 0.626 0.668
Number of prenatal visits 11.213 10.728 10.361 11.431
Prenatal smoking 0.179 0.074 0.062 0.211
Inadequate weight gain 0.150 0.137 0.146 0.152

Mother’s access to health care and nutrition
Mother on Medicaid 0.752 0.560 0.795 0.762
Mother on private insurance 0.213 0.265 0.116 0.224
Mother on WIC 0.749 0.575 0.739 0.767

Mother’s other demographic characteristics
Mother Non-Hispanic Black 0.253 0.148 0.010 0.311
Mother Hispanic 0.127 0.345 0.623 0.008
Mother Native American 0.029 0.016 0.179 0.001
Mother’s age 19.556 19.609 19.490 19.564

Father’s characteristics
Father less than HS 0.238 0.269 0.296 0.224
Father HS or less 0.738 0.756 0.693 0.745
Father some college or less 0.942 0.944 0.935 0.943
Father’s age 22.727 22.577 22.446 22.801

Max N 53123 3846 8192 41085

Note. Each state-level sample consists of first-time mothers who are no more than 23 years old and were born 60 days
around the first day after the state’s school entry date. The pooled sample comes from combining the three state-level
samples.
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Table A2: Regression discontinuity estimates of age at motherhood

(1) (2) (3)

Panel A: Nevada
Bandwidth=40 -0.062 -0.011 -0.052

(0.401) (0.347) (0.380)
MSE optimal bandwidth -0.050 -0.008 -0.041

(0.407) (0.355) (0.397)

Kernel function Tri Uni Epa

Panel B: New Mexico
Bandwidth=40 0.299 0.258 0.288

(0.240) (0.221) (0.235)
MSE optimal bandwidth 0.341 0.309 0.302

(0.242) (0.263) (0.247)

Kernel function Tri Uni Epa
Note. Each entry reports a regression discontinuity estimate of α1 from Eq.1, for the first-time mothers in New Mexico
or Nevada. The model is estimated with weights from the indicated kernel function. The bandwidth is either 40 days
or determined by minimizing the MSE of the RD estimator. The MSE optimal bandwidth takes on a value between
38 and 57. Standard errors clustered by normalized mother’s birthday are in parentheses. Significance levels: * p <
0.1, ** p < 0.05, *** p < 0.01.
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Table A3: RD analysis with optimal bandwidth selection: Nevada

(1) (2) (3) (4)

Less than HS 0.072∗ 0.061 0.075∗∗ 0.071∗∗

(0.037) (0.043) (0.037) (0.033)
Bandwidth 68 42 68 69

HS or less -0.016 0.014 -0.0002 -0.021
(0.034) (0.033) (0.032) (0.034)

Bandwidth 51 59 62 47
Some college or less -0.003 -0.001 -0.006 -0.002

(0.017) (0.017) (0.019) (0.017)
Bandwidth 68 53 53 70

Birth weight -32.393 -17.153 -33.452 -31.477
(43.847) (38.633) (43.903) (42.748)

Bandwidth 52 54 51 57
LBW 0.000003 0.011 0.002 0.001

(0.024) (0.025) (0.025) (0.023)
Bandwidth 47 38 43 48

Preterm birth 0.001 0.002 -0.0002 0.003
(0.022) (0.023) (0.022) (0.023)

Bandwidth 39 30 37 39
Low Apgar score 0.004 -0.007 0.002 0.002

(0.014) (0.011) (0.014) (0.013)
Bandwidth 47 62 48 51

Cesarean birth 0.032 0.045 0.038 0.031
(0.041) (0.037) (0.039) (0.041)

Bandwidth 49 41 46 51

Kernel function Tri Uni Epa Tri
Mother cohort FE N N N Y
Mother race/ethnicity FE N N N Y

Note. Each entry reports a bias-corrected estimate of α1 from Eq.1, for the first-time young mothers in Nevada.
The baseline model in column (1) is estimated with triangle kernel weights. When indicated, models in the
other columns use different kernel weights or additional controls. The bandwidth is determined by minimizing
the MSE of the RD estimator. Bias-corrected standard errors clustered by normalized mother’s birthday are
in parentheses. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A4: RD analysis with optimal bandwidth selection: New Mexico

(1) (2) (3) (4)

Less than HS 0.059∗∗ 0.052∗∗ 0.057∗∗ 0.060∗∗

(0.025) (0.025) (0.025) (0.027)
Bandwidth 68 61 65 58

HS or less 0.025 0.029 0.026 0.019
(0.022) (0.024) (0.023) (0.023)

Bandwidth 60 49 61 62
Some college or less 0.011 0.004 0.011 0.007

(0.010) (0.010) (0.010) (0.010)
Bandwidth 53 49 51 53

Birth weight -2.116 3.694 1.244 -3.899
(30.747) (33.643) (31.113) (31.246)

Bandwidth 50 43 48 49
LBW 0.007 0.012 0.005 0.009

(0.018) (0.019) (0.018) (0.018)
Bandwidth 46 32 42 45

Preterm birth 0.027 0.012 0.023 0.030
(0.019) (0.018) (0.018) (0.019)

Bandwidth 37 40 38 37
Low Apgar score -0.013 -0.008 -0.012 -0.013

(0.016) (0.017) (0.016) (0.016)
Bandwidth 44 37 42 44

Cesarean birth 0.023∗ 0.021 0.022 0.025∗

(0.013) (0.016) (0.014) (0.013)
Bandwidth 50 47 49 49

Kernel function Tri Uni Epa Tri
Mother cohort FE N N N Y
Mother race/ethnicity FE N N N Y

Note. Each entry reports a bias-corrected estimate of α1 from Eq.1, for the first-time young mothers in New
Mexico. The baseline model in column (1) is estimated with triangle kernel weights. When indicated, models
in the other columns use different kernel weights or additional controls. The bandwidth is determined by
minimizing the MSE of the RD estimator. Bias-corrected standard errors clustered by normalized mother’s
birthday are in parentheses. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A5: Power analysis

(1) (2) (3) (4) (5)

Less than HS
Power against alternative 1.000 1.000 0.998 0.907 0.437
Effect under alternative 0.109 0.078 0.047 0.031 0.016

HS or less
Power against alternative 1.000 1.000 1.000 1.000 0.999
Effect under alternative 0.251 0.179 0.107 0.072 0.036

Some college or less
Power against alternative 1.000 1.000 1.000 1.000 1.000
Effect under alternative 0.335 0.239 0.143 0.096 0.048

Birth weight
Power against alternative 1.000 0.999 0.778 0.485 0.207
Effect under alternative -80.000 -60.000 -30.000 -20.000 -10.000

LBW
Power against alternative 1.000 0.985 0.740 0.453 0.197
Effect under alternative 0.032 0.023 0.014 0.009 0.005

Preterm birth
Power against alternative 1.000 0.993 0.797 0.503 0.213
Effect under alternative 0.033 0.023 0.014 0.009 0.005

Low Apgar score
Power against alternative 0.955 0.771 0.417 0.250 0.138
Effect under alternative 0.012 0.008 0.005 0.003 0.002

Cesarean birth
Power against alternative 1.000 1.000 1.000 0.998 0.723
Effect under alternative 0.088 0.063 0.038 0.025 0.013

Note. The table presents statistical power of two-sided tests with 10% percent size, for a set of hypothesized effects
against the null hypothesis of zero impact. The power analysis is based on the baseline specification with a 40-day
bandwidth and triangle kernel weights. In addition, the pooled sample in Table 1 is used.
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