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Abstract: Experimental and behavioral economists, as well as psychologists, commonly 

assume conditional independence of choices when constructing likelihood functions for 

structural estimation of choice functions. I test this assumption using data from a new 

experiment designed for this purpose. Within the limits of the experiment’s identifying 

restriction and designed power to detect deviations from conditional independence, 

conditional independence is not rejected. In naturally occurring data, concerns about 

violations of conditional independence are certainly proper and well-taken (for well-

known reasons). However, when an experimenter employs the particular experimental 

mechanisms and designs used here, the findings suggest that conditional independence is 

an acceptable assumption for analyzing data so generated.  
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1. INTRODUCTION 

 
Conditional independence of sequential observations is a common assumption made 

to justify relatively simple estimators, such as simple maximum likelihood without any 

dynamic relationship between observations now and observations in the past. For 

naturally occurring data (such as most survey data), there is a well-founded concern that 

sequences of decisions made by the same observational unit are probably not conditionally 

independent of one another, and much econometric innovation addresses this problem for 

the kinds of econometric models commonly used for naturally occurring data. 

Laboratory choice data might also display conditional dependence. Experimenters 

(both in economics and psychology) frequently estimate choice functions from such data 

and (to my knowledge and including myself) universally assume conditional independence 

of choices in choice sequences when they build likelihood functions to do this. Again, to my 

knowledge, there have been no direct tests for conditional dependence in any purpose-

designed experiment. I do this here, testing conditional independence against a relatively 

simple restricted conditional dependence alternative hypothesis. 

Conditional independence is a statistical and econometric assumption about 

conditional probabilities. Over the last four decades, innovation of laboratory methods, 

based closely on decision-theoretic “independence” axioms of various types took place. The 

decision-theoretic design of laboratory mechanisms, such as the random problem selection 

or RPS mechanism, can be justified by the “compound independence axiom” (Segal 1990) 

or other decision-theoretic assumptions. When an experimenter employs such 

mechanisms, she means to make a choice now “independent” of decision problems her 

subject has already encountered in the laboratory session, but in a decision-theoretic sense 
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of the word “independence” rather than any statistical or econometric meaning of the word 

“independence.”  

A long history of experimental work (beginning perhaps with Starmer and Sugden 

1991 and continuing through Brown and Healy 2018) examines these decision-theoretic 

senses of independence (or as Brown and Healy wish to frame this, the statewise 

monotonicity axiom discussed by Azrieli et al. 2018). In statistical terms, that long 

experimental literature focused on the behavior of marginal choice probabilities within a 

mechanism, asking whether the presence or absence of other decision problems (within 

the mechanism) affected observed choice proportions in a given decision problem.  

The econometric and statistical sense of the term “conditional independence” concerns 

conditional, not marginal, choice probabilities. Yet decision-theoretic axioms such as the 

compound independence axiom or CIA of expected utility and other theories (or the 

statewise monotonicity axiom) may suggest that, in sequences of decision problems 

embedded within the RPS mechanism, a choice now should not only be independent of 

previous decision problems but also independent of previous choices. Therefore, I ask 

whether or not conditional independence (in its econometric and statistical sense) appears 

to be satisfied in a certain kind of decision-making experiment that is common in 

contemporary work on choice function estimation. Such experiments employ the RPS 

mechanism as well as other features that seem necessary to obtain an empirical version of 

decision theoretic independence (which I define shortly and call behavioral incentive 

compatibility or BIC).  

Related work by Hey and Lee (2005a, 2005b) and Hey and Zhou (2014) tests whether 

subjects appear to be optimizing one grand function of all decisions across all or some 
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decisions in a sequence of decisions (not clearly a sufficient condition for conditional 

dependence) and those tests suggest that subjects do not do that. But conditional 

dependence could arise from other sources such as autocorrelated random preference 

parameter processes. The tests of Hey and Lee, and Hey and Zhou, depend on assumed 

structural models of risk preference. My test here depends on an identifying restriction but 

makes no assumptions concerning any specific underlying preference structure. 

Within the limits of this experiment’s identifying restriction and designed power to 

detect deviations from conditional independence, conditional independence is not rejected. 

A substantial number of scholars may see this as good news since it has been very common 

practice to assume conditional independence when constructing likelihood functions for 

the estimation and analysis of choice functions from laboratory choice data (e.g. Hey and 

Orme 1994; Loomes et al. 2002; Andersen et al. 2008; Rieskamp 2008; Wilcox 2008, 2011). 

My experimental results here suggest this has not been mistaken practice. 

 

2. DEFINITION OF AN EXPERIMENT AND ITS COMMON CONTEMPORARY FEATURES 

 

In this article the term experiment refers to a specific class of choice experiments 

pioneered by Hey and Orme (1994) and common in experimental decision research. Here 

an experiment ℰ = 〈Ω1𝑖𝑖 ,Ω2𝑖𝑖 , … ,Ω𝐽𝐽𝑖𝑖 〉 means a sequence of trials 𝑗𝑗 = {1,2, … , 𝐽𝐽} where each 

subject 𝑖𝑖 ∈ {1,2, … , 𝐼𝐼} chooses from a pair Ω𝑗𝑗𝑖𝑖 = �𝑅𝑅𝑗𝑗𝑖𝑖, 𝑆𝑆𝑗𝑗𝑖𝑖� of lotteries. A lottery 𝑅𝑅𝑗𝑗  means a 

one-stage tabled probability distribution (𝑟𝑟𝑙𝑙𝑗𝑗, 𝑟𝑟𝑚𝑚𝑗𝑗, 𝑟𝑟ℎ𝑗𝑗) over a vector �𝑙𝑙𝑗𝑗 ,𝑚𝑚𝑗𝑗 ,ℎ𝑗𝑗� of three 

possible money outcomes 𝑧𝑧 ∈ ℝ+ where 𝑙𝑙𝑗𝑗 < 𝑚𝑚𝑗𝑗 < ℎ𝑗𝑗 . A one-stage tabled probability 

distribution is a probability measure of three mutually exclusive and exhaustive events, 
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determined by one (and only one) simple random device such as a single throw of a six-

sided die (as employed in my experiment). This rules out resolution of uncertainty by 

means of a sequence of two or more simple random devices (it rules out multi-stage 

probability distributions) because this seems empirically relevant (more on this shortly). 

Finally, neither 𝑅𝑅𝑗𝑗𝑖𝑖 nor 𝑆𝑆𝑗𝑗𝑖𝑖 first order stochastically dominates the other in any pair Ω𝑗𝑗𝑖𝑖. The 

choice situation is known as “forced choice” in which no indifference response is permitted, 

so let 𝑐𝑐𝑗𝑗𝑖𝑖 = 1 if subject 𝑖𝑖 chooses 𝑅𝑅𝑗𝑗𝑖𝑖 from Ω𝑗𝑗𝑖𝑖 and 𝑐𝑐𝑗𝑗𝑖𝑖 = 0 if she chooses 𝑆𝑆𝑗𝑗𝑖𝑖 from Ω𝑗𝑗𝑖𝑖. 

Within each pair Ω𝑗𝑗 = �𝑅𝑅𝑗𝑗 , 𝑆𝑆𝑗𝑗�, 𝑅𝑅𝑗𝑗  is relatively risky compared to the relatively safe 𝑆𝑆𝑗𝑗 , 

meaning 𝑠𝑠𝑚𝑚𝑗𝑗 > 𝑟𝑟𝑚𝑚𝑗𝑗 , 𝑟𝑟𝑙𝑙𝑗𝑗 > 𝑠𝑠𝑙𝑙𝑗𝑗, and 𝑟𝑟ℎ𝑗𝑗 > 𝑠𝑠ℎ𝑗𝑗: 𝑅𝑅𝑗𝑗  has higher probabilities of the low and high 

outcomes 𝑙𝑙𝑗𝑗  and ℎ𝑗𝑗 , while 𝑆𝑆𝑗𝑗  has a higher probability of the middle outcome 𝑚𝑚𝑗𝑗 . This 

conventional terminology is only descriptive (“safe” does not mean better than “risky”) and 

should not be confused with mean-preserving spreads (“risky” may or may not be a mean-

preserving spread of “safe”). 

In an experiment, each page (in the case of a physical booklet presentation) or each 

screen (in the case of a computer presentation) presents exactly one pair: Call this feature 

separated decisions or SED. An experiment also features the random problem selection or 

RPS mechanism meant to motivate subjects without creating unwanted portfolio or wealth 

effects across the trial sequence (Grether and Plott 1979). After all 𝐽𝐽 choices have been 

made by subject 𝑖𝑖, a random device selects just one trial 𝑗𝑗∗ (every trial has an equal 𝐽𝐽−1 

chance of selection). Then subject 𝑖𝑖 plays out only her chosen lottery in trial 𝑗𝑗∗ using a 

second random device, and this is her sole payment from her choices. Subjects may also 

receive a fixed payment simply for showing up on time for an experiment but this is not 

connected to the choices they make.  
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Under either the compound independence axiom (CIA) of expected utility and other 

theories (Segal 1990), the isolation effect of prospect theory (Kahneman and Tversky 

1979), or the statewise monotonicity axiom defined by Azrieli et al. (2018), experiments 

featuring RPS should achieve what I call behavioral incentive compatibility or BIC. Consider 

a 𝐽𝐽 pair experiment ℰ = 〈Ω1𝑖𝑖 ,Ω2𝑖𝑖 , … ,Ω𝑗𝑗𝑖𝑖, … ,Ω𝐽𝐽𝑖𝑖 〉 and a one pair experiment ℰ° = 〈Ω1°
𝑖𝑖 〉 where 

Ω1°
𝑖𝑖 ≡ Ω𝑗𝑗𝑖𝑖 are the same pair: BIC holds iff 𝑃𝑃�𝑐𝑐𝑗𝑗𝑖𝑖 = 1� = 𝑃𝑃�𝑐𝑐1°

𝑖𝑖 = 1�. Put differently, BIC holds 

when the probability of choosing 𝑅𝑅𝑗𝑗𝑖𝑖 in a 𝐽𝐽 pair experiment equals the choice probability of 

choosing 𝑅𝑅1°
𝑖𝑖  in an experiment presenting only that pair. Notice that BIC concerns marginal 

probabilities rather than conditional probabilities. I doubt whether a one pair experiment 

would ever elicit true preference from a completely novice subject (Wilcox 2021), but this 

belief is widespread and shapes many experimental studies of incentive compatibility. 

Brown and Healy (2018) fail to reject BIC in experiments as defined here when the 

experiment features both SED and RPS. Baltussen et al. 2012 show that BIC can fail when 

trials are not choices from lottery pairs (in particular, where each trial is a sequence of 

decisions in a multi-stage risky choice game). Harrison and Swarthout (2014) and Cox et al. 

(2015) find evidence against BIC (with both SED and RPS) using some structural tests. 

Brown and Healy contend that most such evidence is best interpreted as framing effects 

rather than a failure of BIC. With some caution since scholars disagree, I follow Brown and 

Healy’s view here: My new experiment here uses both SED and RPS and no mult-istage 

lotteries (in deference to Baltussen et al.’s findings). More generally, this experiment is not 

about achieving BIC, which is defined in terms of marginal choice probabilities and 

concerns measurement of “true” risk preferences, but rather about conditional 

independence which concerns conditional choice probabilities.  
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3. PURPOSE OF THE NEW EXPERIMENT 

 

The simplest model of choice probabilities 𝑃𝑃�𝑐𝑐𝑗𝑗𝑖𝑖 = 1� = ℎ𝑖𝑖�Ω𝑗𝑗𝑖𝑖� does condition on the 

offered pair Ω𝑗𝑗𝑖𝑖 and subject 𝑖𝑖’s choice function ℎ𝑖𝑖( ) (and sometimes a population choice 

function ℎ( )). A choice function maps the offered pair and subject 𝑖𝑖’s preference order into 

a probability of observing 𝑐𝑐𝑗𝑗𝑖𝑖 = 1. The absence of previous choices in ℎ𝑖𝑖( ) is the relevant 

conditional independence assumption that greatly simplifies construction of the likelihood 

of a choice sequence 𝑐𝑐𝑖𝑖 = (𝑐𝑐1𝑖𝑖 , 𝑐𝑐2𝑖𝑖 , … , 𝑐𝑐𝐽𝐽𝑖𝑖) and minimizes the number of parameters to be 

estimated. Behavioral economists (and psychologists) widely make this assumption for 

likelihood-based analysis of choice sequences (e.g. Hey and Orme 1994; Loomes et al. 2002; 

Andersen et al. 2008; Rieskamp 2008; Wilcox 2008, 2011). In general choices may be 

conditionally dependent: True choice probabilities would then be 𝑃𝑃�𝑐𝑐𝑗𝑗𝑖𝑖 = 1� =

𝑔𝑔𝑖𝑖�Ω𝑗𝑗𝑖𝑖|𝑐𝑐𝑗𝑗−1𝑖𝑖 , 𝑐𝑐𝑗𝑗−2𝑖𝑖 , … , 𝑐𝑐1𝑖𝑖� ≢ ℎ𝑖𝑖�Ω𝑗𝑗𝑖𝑖�.  

Here, I test the null hypothesis of conditional independence against a restricted 

conditional dependence given by 𝑃𝑃�𝑐𝑐𝑗𝑗𝑖𝑖 = 1� = 𝑓𝑓𝑖𝑖�Ω𝑗𝑗𝑖𝑖|𝑐𝑐𝑗𝑗−1𝑖𝑖 �. This restricts conditional 

dependence to the immediately preceding choice 𝑐𝑐𝑗𝑗−1𝑖𝑖 . I view this as the most likely place to 

find conditional dependence if it is present, and so a good place to start with experimental 

tests. This form of conditional dependence informs my experimental design, data analysis, 

and power planning detailed in the Appendix.  

Henceforth I suppress explicit conditioning on Ω𝑗𝑗𝑖𝑖, taking it as implicit that all choice 

probabilities are conditioned on the offered pair and subject 𝑖𝑖’s specific choice function 

𝑓𝑓𝑖𝑖( ). Subsequently, then, 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖|𝑅𝑅𝑗𝑗−1𝑖𝑖 � will mean 𝑓𝑓𝑖𝑖�Ω𝑗𝑗𝑖𝑖|1� and 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖|𝑆𝑆𝑗𝑗−1𝑖𝑖 � will mean 
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𝑓𝑓𝑖𝑖�Ω𝑗𝑗𝑖𝑖|0�, while 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖� written without any condition will mean the marginal probability 

that 𝑐𝑐𝑗𝑗𝑖𝑖 = 1 given that subject 𝑖𝑖 chooses from pair Ω𝑗𝑗𝑖𝑖. 

 
 

4. EXPERIMENTAL DESIGN 

 

Let 𝑡𝑡 and 𝜏𝜏 ∈ {1,2, … ,50} index two distinct sequences of 50 choice pairs, the 𝑡𝑡 

sequence and the 𝜏𝜏 sequence. The design presents each subject with these two sequences, 

for 𝐽𝐽 = 100 total choice pairs. The order of presentation of the 𝑡𝑡 and 𝜏𝜏 sequences is varied 

across subjects: Let 𝒪𝒪1 and 𝒪𝒪2 denote sets of subjects 𝑖𝑖 who receive the 𝑡𝑡 sequence or 𝜏𝜏 

sequence first, respectively. The two sequences are separated by a short unpaid survey (as 

described below, the survey just gives subjects a short break between the sequences that 

may make the experiment’s identifying restriction more plausible; responses to survey 

questions are of no interest here). 

The two sequences hold the same 12 target pairs within them in exactly the same 

order. The target pairs have indices 𝑡𝑡 and 𝜏𝜏 in 𝒯𝒯 = {10,13,16,19,22,25,28,31,34,37,40,43}. 

This yields a test and (fifty pairs later) a subsequent retest of choice from each target pair. 

Target pairs are identical across the two sequences. For example, target pairs 𝑡𝑡 = 10 and 

𝜏𝜏 = 10 are exactly the same choice pair.  

Conditioning pairs with indices 𝑡𝑡 and 𝜏𝜏 in 𝒞𝒞 = {9,12,15,18,21,24,27,30,33,36,39,42} 

immediately precede each target pair. These pairs differ across the 𝑡𝑡 and 𝜏𝜏 sequences. For 

example, conditioning pairs 𝑡𝑡 = 9 and 𝜏𝜏 = 9 (presented just before their common target 

pair 𝑡𝑡 = 𝜏𝜏 = 10) are different choice pairs: In pair 𝑡𝑡 = 9, 𝑅𝑅𝑡𝑡 is meant to be more attractive 

than 𝑆𝑆𝑡𝑡 (call this a high conditioning pair) for most subjects, while in pair 𝜏𝜏 = 9 𝑆𝑆𝜏𝜏 is meant 
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to be more attractive than 𝑅𝑅𝜏𝜏(call this a low conditioning pair) for most subjects. 

Judgments concerning this were based on a previous experiment sampling the same 

subject population. This manipulation makes it likely that any subject comes to the two 

presentations of identical target pair 𝑡𝑡 = 𝜏𝜏 = 10 with two different choice histories 

(different choices at 𝑡𝑡 = 𝜏𝜏 = 9). Similarly, for each 𝑡𝑡 = 𝜏𝜏 ∈ 𝒯𝒯 a high conditioning pair 

immediately precedes 𝑡𝑡 or 𝜏𝜏 while a low conditioning pair immediately precedes the other 

matched target pair. Table 1 shows that this manipulation was largely successful. 

*Table 1 About Here* 

Figure 1 illustrates the overall trial sequence in the experiment. Notice the additional 

presence of buffer pairs which serve several design purposes. First, a buffer pair separates 

each pair of a conditioning and target pair from the next such pair of pairs (see panel B of 

Figure 1). Second, both the 𝑡𝑡 and 𝜏𝜏 sequences begin and end with seven buffer pairs. This 

gives subjects a (short) warm-up prior to presentation of pairs of conditioning and target 

pairs and additionally keeps these away from the ends of sequences (when subjects might 

begin relaxing their concentration). Appendix Table A1 lists all of the choice pairs, and this 

online supplement contains screen prints of the experiment’s computerized instructions. 

*Figure 1 about here* 

 

5. HYPOTHESES AND DATA ANALYSIS 

 

In eqs. 1, 2, 3 and 4 below I index pairs by locations 𝑘𝑘 = 𝑙𝑙 = 𝑚𝑚 ∈ 𝒯𝒯, with exactly one of 

𝑘𝑘 or 𝑙𝑙 in the 𝑡𝑡 sequence and the other in the 𝜏𝜏 sequence. That is, both 𝑘𝑘 and 𝑙𝑙 are the same 

target pair location 𝑚𝑚, one in the 𝑡𝑡 sequence and the other in the 𝜏𝜏 sequence and, for the 

https://www.chapman.edu/research/institutes-and-centers/economic-science-institute/_files/WorkingPapers/Conditional-Independence-Wilcox-2018-online-supplement.pdf
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time being, which is which remains unspecified. The experimental design implies that one 

of 𝑘𝑘 or 𝑙𝑙 follows a high conditioning pair while the other follows a low conditioning pair. 

With all this in mind, conditionally independent and identically distributed trials imply that  

𝑃𝑃�𝑅𝑅𝑘𝑘𝑖𝑖 ∩ 𝑅𝑅𝑘𝑘−1𝑖𝑖 � 𝑃𝑃�𝑅𝑅𝑘𝑘−1𝑖𝑖 �� ≡ 𝑃𝑃�𝑅𝑅𝑘𝑘𝑖𝑖 �𝑅𝑅𝑘𝑘−1𝑖𝑖 � = 𝑃𝑃�𝑅𝑅𝑙𝑙𝑖𝑖|𝑆𝑆𝑙𝑙−1𝑖𝑖 � ≡ 𝑃𝑃�𝑅𝑅𝑙𝑙𝑖𝑖 ∩ 𝑆𝑆𝑙𝑙−1𝑖𝑖 � 𝑃𝑃�𝑆𝑆𝑙𝑙−1𝑖𝑖 �� (1) 

Rearrange the left-most and right-most terms of eq. 1 to get the null hypothesis  

𝐻𝐻0:  𝑃𝑃�𝑅𝑅𝑘𝑘𝑖𝑖 ∩ 𝑅𝑅𝑘𝑘−1𝑖𝑖 �𝑃𝑃�𝑆𝑆𝑙𝑙−1𝑖𝑖 � − 𝑃𝑃�𝑅𝑅𝑙𝑙𝑖𝑖 ∩ 𝑆𝑆𝑙𝑙−1𝑖𝑖 �𝑃𝑃�𝑅𝑅𝑘𝑘−1𝑖𝑖 � = 0. (2) 

To test this null, define these twelve data-derived within-subject differences for each 

subject 𝑖𝑖: 

𝑦𝑦𝑚𝑚𝑖𝑖 = 𝟏𝟏�𝑐𝑐𝑘𝑘𝑖𝑖 = 1 ∩ 𝑐𝑐𝑘𝑘−1𝑖𝑖 = 1� ∙ 𝟏𝟏�𝑐𝑐𝑙𝑙−1𝑖𝑖 = 0� − 𝟏𝟏�𝑐𝑐𝑙𝑙𝑖𝑖 = 1 ∩ 𝑐𝑐𝑙𝑙−1𝑖𝑖 = 0� ∙ 𝟏𝟏�𝑐𝑐𝑘𝑘−1𝑖𝑖 = 1�. (3) 

Adopt the indexing convention that, when it is possible to do so, the target pair indices 𝑘𝑘 

and 𝑙𝑙 are assigned to the 𝑡𝑡 and 𝜏𝜏 sequences so that 𝑐𝑐𝑘𝑘−1𝑖𝑖 = 1 and 𝑐𝑐𝑙𝑙−1𝑖𝑖 = 0. (Notice that 

whenever this is not possible, 𝑦𝑦𝑚𝑚𝑖𝑖 = 0 regardless of the assignment of those indices.) The 

design’s conditioning pair features are meant to make �𝑅𝑅𝑘𝑘−1𝑖𝑖 ∩ 𝑆𝑆𝑙𝑙−1𝑖𝑖 � a likely event in the 

data for 𝑘𝑘 = 𝑙𝑙 = 𝑚𝑚 ∈ 𝒯𝒯. Table 2 shows the experiment’s joint distributions of safe and risky 

choices in pairs of high and low conditioning pairs: The sum of the off-diagonal cells in 

these tables give the percent of subjects for whom 𝑘𝑘 and 𝑙𝑙 can be assigned such that events 

�𝑅𝑅𝑘𝑘−1𝑖𝑖 ∩ 𝑆𝑆𝑙𝑙−1𝑖𝑖 � occur and shows that these are common in the data, as intended. 

*Table 2 about here* 

To know the expected value of each 𝑦𝑦𝑚𝑚𝑖𝑖 , I need an identifying restriction: 

 

Identifying Restriction:  𝑅𝑅𝑘𝑘𝑖𝑖 ∩ 𝑅𝑅𝑘𝑘−1𝑖𝑖  and 𝑆𝑆𝑙𝑙−1𝑖𝑖  are conditionally independent, and 𝑅𝑅𝑙𝑙𝑖𝑖 ∩ 𝑆𝑆𝑙𝑙−1𝑖𝑖  

and 𝑅𝑅𝑘𝑘−1𝑖𝑖  are conditionally independent.  
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This identifying restriction is implied by both the null and alternative hypotheses. Beyond 

the specifics of the null and alternative hypotheses, the restriction requires that at a 

remove of fifty trials there is no dependence between the test and the retest of the same 

target pair and the conditioning pairs preceding them. The design’s survey break between 

the 𝑡𝑡 and 𝜏𝜏 sequences is meant to enhance the plausibility of this “no memory” assumption 

between the two sequences. Under this assumed restriction,  

𝐸𝐸�𝑦𝑦𝑚𝑚𝑖𝑖 � = 𝑃𝑃�𝑅𝑅𝑘𝑘𝑖𝑖 ∩ 𝑅𝑅𝑘𝑘−1𝑖𝑖 �𝑃𝑃�𝑆𝑆𝑙𝑙−1𝑖𝑖 � − 𝑃𝑃�𝑅𝑅𝑙𝑙𝑖𝑖 ∩ 𝑆𝑆𝑙𝑙−1𝑖𝑖 �𝑃𝑃�𝑅𝑅𝑘𝑘−1𝑖𝑖 �. (4) 

Therefore, defining the observation from each subject 𝑖𝑖 as 𝑦𝑦𝑖𝑖 = 1
12
∑ 𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚∈𝒯𝒯 , a one-sample 

test against a zero location of the 𝑦𝑦𝑖𝑖 tests the null of eq. 2 against the alternative of 

conditional dependence.  

Given the construction of 𝑦𝑦𝑖𝑖 detailed above (especially the indexing convention), 

nonzero values of 𝑦𝑦𝑖𝑖 are evidence favoring one of two alternatives. When 𝑦𝑦𝑖𝑖 > 0, relatively 

risky choices are more common (for subject 𝑖𝑖) when preceded by a relatively risky choice 

than when preceded by a relatively safe choice: On average we observe persistence of the 

choices of subject 𝑖𝑖. When 𝑦𝑦𝑖𝑖 < 0, relatively risky choices are less common when preceded 

by a relatively risky choice than when preceded by a relatively safe choice: On average we 

observe alternation of the choices by subject 𝑖𝑖.  

A simple one-parameter odds ratio model of conditional dependence (e.g. Lipsitz et al. 

1991; Carey et al. 1993) captures both possibilities (persistence or alternation) and this 

model motivated the experimental design and informed my power analysis of the design. 

The Appendix contains that power analysis, which is for a two-tailed t-test against the null 

hypothesis of eq. 2, at a size of 5%, given effect sizes described in the Appendix. To obtain 
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power of 90%, the analysis recommends a sample size of 200 subjects. The actual sample 

size is 204 subjects 𝑖𝑖, with half in the 𝒪𝒪1 pair ordering and the other half in the 𝒪𝒪2 ordering. 

The above construction of the null hypothesis and the observation 𝑦𝑦𝑖𝑖 for testing it 

assumes not only conditional independence but identically distributed trials of target pair 

choices across the 𝑡𝑡 and 𝜏𝜏 sequences. There have been several studies showing a simple 

drift across trials toward more risk aversion (e.g. Hey and Orme 1994; Ballinger and Wilcox 

1997; Loomes and Sugden 1998) so to check for it define the observation  

𝑥𝑥𝑖𝑖 =  
1

12
�𝟏𝟏(𝑖𝑖𝑖𝑖𝒪𝒪1) � �𝑐𝑐𝑡𝑡𝑖𝑖 − 𝑐𝑐𝜏𝜏𝑖𝑖�

𝑡𝑡=𝜏𝜏∈𝒯𝒯

+ 𝟏𝟏(𝑖𝑖𝑖𝑖𝒪𝒪2) � �𝑐𝑐𝜏𝜏𝑖𝑖 − 𝑐𝑐𝑡𝑡𝑖𝑖�
𝑡𝑡=𝜏𝜏∈𝒯𝒯

� , (5) 

which is just the difference between observed risky choices of subject 𝑖𝑖 in her first and 

second trials of target pairs. Figure 2 displays the empirical cumulative distribution 

function of 𝑥𝑥𝑖𝑖  across the experiment’s 204 subjects. The sample mean of 𝑥𝑥𝑖𝑖  and that mean’s 

standard error are –0.0041 and 0.0093, respectively, suggesting an absence of significant 

simple drift in the new experiment. 

*Figure 2 about here* 

Figure 3 displays the empirical cumulative distribution function of 𝑦𝑦𝑖𝑖 across the 

experiment’s 204 subjects. The sample mean of 𝑦𝑦𝑖𝑖 and that mean’s standard error are 

0.0069 and 0.0084, respectively, yielding a 𝑡𝑡-statistic with absolute value less than one, so 

there is no significant violation of conditional independence in the new experiment. The 

statistic is positive, suggesting that if there is any conditional dependence here, it is 

perhaps a bit of persistence of choice. 

*Figure 3 about here* 
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6. CONCLUSIONS 
 

It appears that when an experimenter uses certain contemporary experimental 

mechanisms and features in an individual choice experiment, conditional independence of 

observed choices is an acceptable assumption. To my knowledge, the new experiment 

reported here is the first direct test of conditional independence, though the tests reported 

by Hey and Lee (2005a, 2005b) and Hey and Zhou (2014) may weigh in favor of 

conditional independence as well. And perhaps this does not need emphasis, but neither 

my evidence nor that of Hey and his co-authors says anything at all about other decision 

experiments where choice problems are not pairs of one-stage lotteries, or RPS and SED 

are not features of the experiment. Nor does this evidence say anything about other sorts of 

experiments such as repeated games or repeated markets. Other scholars could investigate 

the status of conditional independence in these other kinds of experiments. 

My data analysis and experimental design depended on two things: First, no drift in 

choice probabilities across the two trials of my target choice pairs (which appears to be 

empirically acceptable); and second, an identifying restriction—in essence that at a remove 

of about fifty intervening trials there is no conditional dependence. I have no test of that 

assumption, but believe it is defensible. The two oldest facts from human memory research 

are the primacy and recency effects. The recency effect suggests that if there is any 

conditional dependence, we should probably expect to detect it in recently past choices 

(say one or two trials ago) rather than at a remove of fifty trials past. The primacy effect is 

that the earliest events or stimuli in a sequence are more likely to be remembered. My 

experimental design pads the front end of each choice sequence (the earliest trials, most 
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exposed to any primacy effect) with seven buffer pairs not used in my test. However, I 

accept that there is room for doubt about my identifying restriction. 

A helpful referee pointed out that my test is a population-level test. It’s certainly 

possible that there are some members of the population that exhibit persistence, and 

others that exhibit alternation, and that in the aggregate of a population test they cancel 

each other out. This could be examined by a structural estimation looking for significant 

variance of the odds ratio parameter 𝛾𝛾 (see the appendix) across subjects. The 

experimental design here was not chosen by me to yield a high-power test against zero 

variance of 𝛾𝛾 across subjects, and my goal in this work has been to carry off a test without 

any structural estimation. But obviously this is an interesting question since many scholars 

estimate models one subject at a time (e.g. Hey and Orme 1994). Accordingly it is certainly 

worth exploring whether some subjects do display either persistence or alternation in our 

subject populations. 

Behavioral econometricians and psychometricians frequently assume conditional 

independence when they construct their likelihood functions for structural estimation of 

choice functions from discrete choice sequences observed in laboratory experiments. They 

may take some comfort from my results—assuming, of course, that their experiment 

employs RPS, and SED, and that their subjects’ choices are from pairs of one-stage lotteries. 

For the rest, we await new experiments testing conditional independence in other 

experimental situations. 
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TABLE 1 
 
 
 

high conditioning pairs meant to 
induce choice of 𝑅𝑅 (risky) 

 low conditioning pairs meant to 
induce choice of 𝑆𝑆 (safe) 

pair 
index 

 percentage 
𝑅𝑅 (risky) 

 
 

pair 
index 

 percentage 
𝑆𝑆 (safe) 

𝑡𝑡 = 9  81.37  𝑡𝑡 = 12  87.75 
𝑡𝑡 = 15  79.90  𝑡𝑡 = 18  83.82 
𝑡𝑡 = 21  90.20  𝑡𝑡 = 24  92.65 
𝑡𝑡 = 27  84.80  𝑡𝑡 = 30  90.69 
𝑡𝑡 = 33  90.69  𝑡𝑡 = 36  99.02 
𝑡𝑡 = 39  78.92  𝑡𝑡 = 42  87.75 
𝜏𝜏 = 12  88.24  𝜏𝜏 = 9  68.63 
𝜏𝜏 = 18  92.65  𝜏𝜏 = 15  77.45 
𝜏𝜏 = 24  92.16  𝜏𝜏 = 21  95.10 
𝜏𝜏 = 30  88.73  𝜏𝜏 = 27  65.20 
𝜏𝜏 = 36  91.67  𝜏𝜏 = 33  87.75 
𝜏𝜏 = 42  87.75  𝜏𝜏 = 39  86.76 

average 87.26  average 85.21 
 

Table 1: Choice percentages (of 204 subjects) in conditioning pairs 
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TABLE 2 
 

 
   low conditioning pair choice 

   safe risky  safe risky  safe risky 
        
   𝑡𝑡 = 𝜏𝜏 = 9  𝑡𝑡 = 𝜏𝜏 = 12  𝑡𝑡 = 𝜏𝜏 = 15 
 safe  11.76 6.86  9.80 1.96  15.20 4.90 
 risky  56.86 24.51  77.94 10.29  62.25 17.65 
           
   𝑡𝑡 = 𝜏𝜏 = 18  𝑡𝑡 = 𝜏𝜏 = 21  𝑡𝑡 = 𝜏𝜏 = 24 
 safe  7.35 0.00  9.80 0.00  7.35 0.49 

high 
conditioning 
pair choice 

risky  76.47 16.18  85.29 4.90  85.29 6.86 
          
  𝑡𝑡 = 𝜏𝜏 = 27  𝑡𝑡 = 𝜏𝜏 = 30  𝑡𝑡 = 𝜏𝜏 = 33 

 safe  14.71 0.49  9.80 1.47  8.33 0.98 
 risky  50.49 34.31  80.88 7.84  79.41 11.27 
           
   𝑡𝑡 = 𝜏𝜏 = 36  𝑡𝑡 = 𝜏𝜏 = 39  𝑡𝑡 = 𝜏𝜏 = 42 
 safe  8.33 0.00  18.14 2.94  10.78 1.47 
 risky  90.69 0.98  68.63 10.29  76.96 10.78 
           

 

Table 2: Empirical joint distribution of choices in high and low conditioning pairs  

(percentages of 204 subjects). 
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FIGURE 1 

 
 

A. Pair sequence 
 

 
 

1, 2, 3, ⋯, 𝑗𝑗, ⋯, 49, 50  
survey 

 51, 52, 53, ⋯, 𝑗𝑗, ⋯, 99, 100 
                  

1, 2, 3, ⋯, 𝑡𝑡, ⋯, 49, 50   1, 2, 3, ⋯, 𝜏𝜏, ⋯, 49, 50 
     

the 𝑡𝑡 sequence of choice pairs    the 𝜏𝜏 sequence of choice pairs 
 

B. Pair sequence detail 
 

 
 
 
 
⋯, 8 9 10 ⋯,  survey  ⋯, 8 9 10 ⋯, 

 
             
 
 
 
 

the 𝑡𝑡 sequence    the 𝜏𝜏 sequence 
 

Figure 1: The experiment sequence for the subjects 𝒊𝒊 ∈ 𝓞𝓞𝟏𝟏 (receiving the 𝒕𝒕 sequence first). 
 
  

target pairs 𝑡𝑡 = 𝜏𝜏 = 10: same pair in both sequences 

conditioning pair 𝑡𝑡 = 9 conditioning pair 𝜏𝜏 = 9 

buffer pair 𝑡𝑡 = 8 buffer pair 𝜏𝜏 = 8 

time 

pairs differ 

pairs differ 
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FIGURE 2 
 
 

 
 

Figure 2. Empirical CDF of differences between risky and safe choice 
proportions across the 𝑡𝑡 and 𝜏𝜏 sequences (204 subjects) 
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FIGURE 3 
 
 

 
Figure 3. Empirical cumulative distribution function of 𝑦𝑦𝑖𝑖 across 204 subjects, 
the critical test observation against the null of conditional independence. 
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APPENDIX 

 

An odds ratio model (Lipsitz et al. 1991; Carey et al. 1993) of restricted conditional 

dependence guided my power analysis for designing the experiment: 

Constant odds ratio of four joint probabilities parameterized by the constant 𝛾𝛾 > 0: 

𝛾𝛾 = 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � ∙ 𝑃𝑃�𝑆𝑆𝑗𝑗𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗−1𝑖𝑖 � �𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗−1𝑖𝑖 � ∙ 𝑃𝑃�𝑆𝑆𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 ��� > 0. (A. 1) 

The four joint probabilities add up to unity (probability theory identity): 

1 = 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � + 𝑃𝑃�𝑆𝑆𝑗𝑗𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗−1𝑖𝑖 � +  𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗−1𝑖𝑖 � + 𝑃𝑃�𝑆𝑆𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 �. (A. 2) 

Pairs of joint probabilities add up to marginal probabilities (probability theory 

identities):

𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖� = 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � + 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗−1𝑖𝑖 �, (A. 3) 

𝑃𝑃�𝑅𝑅𝑗𝑗−1𝑖𝑖 � = 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � + 𝑃𝑃�𝑆𝑆𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 �. (A. 4) 

With given values of 𝛾𝛾, 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖�, and 𝑃𝑃�𝑅𝑅𝑗𝑗−1𝑖𝑖 � in hand, eqs. A.1 to A.4 imply the following 

quadratic equation in 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 �: 

(𝛾𝛾 − 1)�𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 ��
2

+ 𝛼𝛼𝑗𝑗𝑖𝑖𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � + 𝛽𝛽𝑗𝑗𝑖𝑖 = 0, (A. 5) 

where 𝛼𝛼𝑗𝑗𝑖𝑖 = (1 − 𝛾𝛾)�𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖� + 𝑃𝑃�𝑅𝑅𝑗𝑗−1𝑖𝑖 �� − 1  and  𝛽𝛽𝑗𝑗𝑖𝑖 = 𝛾𝛾𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖� ∙ 𝑃𝑃�𝑅𝑅𝑗𝑗−1𝑖𝑖 �. 

When 𝛾𝛾 ≠ 1, the quadratic formula gives roots of this equation. Only one root is well-

behaved in the sense that the solution 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � is always in [0,1]  ∀ 𝛾𝛾 ≠ 1): It is 

𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � = − 0.5 ∙ �𝛼𝛼𝑗𝑗𝑖𝑖 + ��𝛼𝛼𝑗𝑗𝑖𝑖�
2
− 4(𝛾𝛾 − 1)𝛽𝛽𝑗𝑗𝑖𝑖�

0.5
� (𝛾𝛾 − 1)−1 ∀ 𝛾𝛾 ≠ 1, (A. 6) 

(and 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � = 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖� ∙ 𝑃𝑃�𝑅𝑅𝑗𝑗−1𝑖𝑖 �  for  𝛾𝛾 = 1.) 
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The solution from eq. A.6 allows a sequential solution for the other three joint probabilities 

using eqs. A.2, A.3 and A.4: 

 

𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗−1𝑖𝑖 � = 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖� − 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 �, (A. 7) 

𝑃𝑃�𝑆𝑆𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � = 𝑃𝑃�𝑅𝑅𝑗𝑗−1𝑖𝑖 � − 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 �, and (A. 8) 

𝑃𝑃�𝑆𝑆𝑗𝑗𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗−1𝑖𝑖 � = 1 − 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 � − 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗−1𝑖𝑖 � − 𝑃𝑃�𝑆𝑆𝑗𝑗𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗−1𝑖𝑖 �. (A. 9) 

 

In turn, with given values of 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖� and 𝑃𝑃�𝑅𝑅𝑗𝑗−1𝑖𝑖 � in hand, Eqs. A.6 and A.7 then give 

solutions for the key conditional probabilities 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖|𝑅𝑅𝑗𝑗−1𝑖𝑖 � and 𝑃𝑃�𝑅𝑅𝑗𝑗𝑖𝑖|𝑆𝑆𝑗𝑗−1𝑖𝑖 � given any value of 

𝛾𝛾 one wishes to specify as an interesting alternative hypothesis. The upper panels of 

Figures A1 and A2 graph these conditional probabilities for a 𝑡𝑡 = 𝜏𝜏 ∈ 𝒯𝒯 target pair where 

𝑡𝑡 − 1 is a high conditioning pair with 𝑃𝑃�𝑅𝑅𝑡𝑡−1𝑖𝑖 � = 0.85 and 𝜏𝜏 − 1 is a low conditioning pair 

with 𝑃𝑃�𝑆𝑆𝜏𝜏−1𝑖𝑖 � = 0.85 (approximately reflecting the average results for conditioning pairs 

shown in Table 1). Figure A1 assumes that 𝛾𝛾 = 2 yielding persistence so that 𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖|𝑅𝑅𝑡𝑡−1𝑖𝑖 � −

𝑃𝑃�𝑅𝑅𝜏𝜏𝑖𝑖 |𝑆𝑆𝜏𝜏−1𝑖𝑖 � > 0 at any common marginal probability 𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖� = 𝑃𝑃�𝑅𝑅𝜏𝜏𝑖𝑖� (shown on the 

horizontal axis). Figure A2 instead assumes that 𝛾𝛾 = 0.5 yielding alternation so that 

𝑃𝑃�𝑅𝑅𝜏𝜏𝑖𝑖 |𝑆𝑆𝜏𝜏−1𝑖𝑖 � − 𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖|𝑅𝑅𝑡𝑡−1𝑖𝑖 � > 0 at any common marginal probability 𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖� = 𝑃𝑃�𝑅𝑅𝜏𝜏𝑖𝑖�. 

The lower panels of Figures A1 and A2 graph corresponding effect sizes. For example, 

to draw the lower panel of Figure A1, one divides the difference 𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖|𝑅𝑅𝑡𝑡−1𝑖𝑖 � − 𝑃𝑃�𝑅𝑅𝜏𝜏𝑖𝑖 |𝑆𝑆𝜏𝜏−1𝑖𝑖 � 

under the alternative hypothesis 𝛾𝛾 = 2 by the standard deviation �2𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖��1 − 𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖���
0.5

 of 

that difference under the null hypothesis that 𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖|𝑅𝑅𝑡𝑡−1𝑖𝑖 � = 𝑃𝑃�𝑅𝑅𝜏𝜏𝑖𝑖 |𝑆𝑆𝜏𝜏−1𝑖𝑖 � =  𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖� (which is 

𝛾𝛾 = 1). The figures reveal that these effect sizes are on the small side. Cohen’s (1988) 
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convention for these kinds of effect sizes calls 0.2 and 0.5 small and medium effect sizes, 

and those in the figures never quite reach 0.25 regardless of the common marginal 

probability 𝑃𝑃�𝑅𝑅𝑡𝑡𝑖𝑖� = 𝑃𝑃�𝑅𝑅𝜏𝜏𝑖𝑖�. This is one reason for the repeated measurement of the design  

 
Figure A1. Conditional probabilities and effect size implied by  

𝑷𝑷�𝑹𝑹𝒕𝒕−𝟏𝟏𝒊𝒊 � = 𝑷𝑷�𝑺𝑺𝝉𝝉−𝟏𝟏𝒊𝒊 � = 𝟎𝟎.𝟖𝟖𝟖𝟖 and persistence (𝜸𝜸 = 𝟐𝟐). 
 

 
(that is, why there are twelve pairs of target and conditioning pairs in each sequence, 

providing twelve values 𝑦𝑦𝑚𝑚𝑖𝑖  which are then averaged within each subject to yield the overall 

within-subject measure 𝑦𝑦𝑖𝑖 of deviations from conditional independence for each subject 𝑖𝑖). 
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𝑃𝑃 𝑅𝑅𝜏𝜏 |𝑆𝑆𝜏𝜏−1
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The figures also reveal an asymmetry relevant to the experimental design. Under the 

alternative hypothesis of persistence (𝛾𝛾 = 2) the range of marginal probabilities achieving 

effect sizes of at least 0.2 is about 0.30 to 0.85. But under the alternative hypothesis of 

alternation (𝛾𝛾 = 0.5), the range of marginal probabilities achieving effect sizes of at least 

0.2 is about 0.15 to 0.70. The compromise range most useful for both alternative 

hypotheses is to (try to) choose target pairs with marginal probabilities in a range from 

about 0.30 to 0.70. On the other hand, some marginal probabilities outside this range are 

among those most useful for estimation of preferences (Manski and McFadden 1981; 

Kanninen 2002). In this design, I attempted to choose target pairs which, on the basis of  

Figure A2. Conditional probabilities and effect size implied by 
 𝑷𝑷�𝑹𝑹𝒕𝒕−𝟏𝟏𝒊𝒊 � = 𝑷𝑷�𝑺𝑺𝝉𝝉−𝟏𝟏𝒊𝒊 � = 𝟎𝟎.𝟖𝟖𝟖𝟖 and alternation (𝜸𝜸 = 𝟎𝟎.𝟖𝟖). 
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past experimental results with the population I sample from in this experiment, would 

have population mean probabilities falling across most of the unit interval. Half of the 

twelve target pair tests and retests fall within the range from 0.30 to 0.70 mentioned 

above, with the other half more extreme. 

I want to choose a sample size for this experiment based on a previous experiment 

with the same subject population. There were 501 undergraduate subjects in this previous 

experiment choosing from 72 lottery pairs on the outcome range $8 to $48, using a 4-sided 

die as the chance device. This unpublished experiment was completed in January 2010 in 

collaboration with the late John Dickhaut. Using this data and assuming conditional 

independence in constructing the likelihood, I estimated a random parameters Rank 

Dependent Utility or RDU model (Quiggin 1982, 1993). RDU is essentially the same as 

Tversky and Kahneman’s (1992) Cumulative Prospect Theory limited to lotteries over 

gains (positive outcomes).  

This yields an estimated distribution of preference parameter vectors 𝜃𝜃 in the 

population of likely subjects at the university where the current experiment was done. I 

sample from this estimated distribution to choose a sample size with desired power 0.9 to 

reject the null of conditional independence when there is in fact conditional dependence of 

either strength 𝛾𝛾 ≤ 0.5 or 𝛾𝛾 ≥ 2. The estimated distribution gives me the needed marginal 

choice probabilities while the Appendix equations A.6 through A.9 give me the necessary 

joint choice probabilities under the alternative of conditional dependence of this strength. 

With this estimation completed, I draw 1000 simulated subjects indexed by 𝑛𝑛 ∈

{1,2, … ,1000} from my estimated distribution of RDU parameters, and for design planning 

purposes I regard these 1000 simulated subjects as “the population” I sample from when I 
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run an experiment. Each simulated subject is a vector 𝜃𝜃𝑛𝑛 = (𝜅𝜅𝑛𝑛, 𝜇𝜇𝑛𝑛,𝜔𝜔𝑛𝑛, 𝜆𝜆𝑛𝑛) of four 

probabilistic RDU model parameters described below. 

The parameter  𝜅𝜅𝑛𝑛 ∈ ℝ  is utility curvature in this HARA utility function: 

𝑢𝑢(𝑧𝑧|𝜅𝜅𝑛𝑛) = (1 − 𝜅𝜅𝑛𝑛)−1�−1 + (1 + 𝑧𝑧)(1−𝜅𝜅𝑛𝑛)� for 𝜅𝜅𝑛𝑛 ≠ 1 and ln(1 + 𝑧𝑧) for 𝜅𝜅𝑛𝑛 = 1. (A. 10) 

The parameters  𝜇𝜇𝑛𝑛 ∈ (0,1)  and  𝜔𝜔𝑛𝑛 ∈ (0,∞)  are elevation and curvature parameters of 

this “Beta” weighting function: 

𝑤𝑤(𝐺𝐺|𝜇𝜇𝑛𝑛,𝜔𝜔𝑛𝑛) = 𝐵𝐵(𝐺𝐺|𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛) where 𝑎𝑎𝑛𝑛 = 𝜇𝜇𝑛𝑛𝜔𝜔𝑛𝑛 and 𝑏𝑏𝑛𝑛 = (1 − 𝜇𝜇𝑛𝑛)𝜔𝜔𝑛𝑛, where (A. 11) 

𝐺𝐺 is the decumulative probability distribution function of a lottery, and 

𝐵𝐵(𝑥𝑥|𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛) is the cumulative distribution function of the Beta distribution. 

The parameter  𝜆𝜆𝑛𝑛 ∈ (0,∞)  is a precision or sensitivity parameter of the probabilistic RDU 

model of choice I use in the random parameters estimation. The RDU model of marginal 

probabilities is then 

𝑃𝑃�𝑅𝑅𝑗𝑗𝑛𝑛|𝜃𝜃𝑛𝑛� = Λ�𝜆𝜆𝑛𝑛∆𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗𝑛𝑛�,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗𝑛𝑛 = 𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑗𝑗𝑛𝑛� − 𝑅𝑅𝑅𝑅𝑅𝑅�𝑆𝑆𝑗𝑗𝑛𝑛�, where (A. 12) 

Λ(𝑥𝑥) = [1 + exp (𝑥𝑥)]−1 is the logistic cumulative distribution function, 

𝑅𝑅𝑅𝑅𝑅𝑅�𝑅𝑅𝑗𝑗𝑛𝑛� =  𝜋𝜋ℎ𝑗𝑗(𝜇𝜇𝑛𝑛,𝜔𝜔𝑛𝑛) + 𝜋𝜋𝑚𝑚𝑗𝑗(𝜇𝜇𝑛𝑛,𝜔𝜔𝑛𝑛)𝑣𝑣𝑗𝑗(𝑚𝑚𝑗𝑗|𝜅𝜅𝑛𝑛), 

𝜋𝜋ℎ𝑗𝑗(𝜇𝜇𝑠𝑠,𝜔𝜔𝑠𝑠) = 𝑤𝑤�𝑟𝑟ℎ𝑗𝑗�𝜇𝜇𝑛𝑛,𝜔𝜔𝑛𝑛�,  𝜋𝜋𝑚𝑚𝑗𝑗(𝜇𝜇𝑛𝑛,𝜔𝜔𝑛𝑛) = 𝑤𝑤�𝑟𝑟ℎ𝑗𝑗 + 𝑟𝑟𝑚𝑚𝑗𝑗�𝜇𝜇𝑛𝑛,𝜔𝜔𝑛𝑛� − 𝑤𝑤�𝑟𝑟ℎ𝑗𝑗�𝜇𝜇𝑛𝑛,𝜔𝜔𝑛𝑛�, and 

𝑣𝑣𝑗𝑗�𝑚𝑚𝑗𝑗�𝜅𝜅𝑛𝑛� = �𝑢𝑢�𝑚𝑚𝑗𝑗|𝜅𝜅𝑛𝑛� − 𝑢𝑢�𝑙𝑙𝑗𝑗|𝜅𝜅𝑛𝑛�� �𝑢𝑢�ℎ𝑗𝑗|𝜅𝜅𝑛𝑛� − 𝑢𝑢�𝑙𝑙𝑗𝑗|𝜅𝜅𝑛𝑛��� . 

This specification of marginal RDU choice probabilities employs the contextual utility 

probabilistic choice model of Wilcox (2008, 2011) which is appropriate for three-outcome 

pairs of lotteries. These marginal probabilities, calculated for all 𝐽𝐽 = 100 pairs in the design 

for each of the 1000 simulated subjects 𝑛𝑛, are the choice probabilities under the null 

hypothesis 𝛾𝛾 = 1. Conditional choice probabilities may be calculated from them by way of 
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eqs. A.6 and A.7 for any assumed value of 𝛾𝛾 ≠ 1, providing choice probabilities under any 

alternative hypothesis.   

Monte Carlo simulation can check the size of potential test statistics using the marginal 

probabilities (i.e. those that apply when the null hypothesis 𝛾𝛾 = 1 is true) as true choice 

probabilities. I draw 10,000 samples, each with 𝑁𝑁 = 200 simulated subjects, from my 

population of simulated subjects. For each of those simulated subjects, I draw 100 

Bernoulli variates 𝑐𝑐𝑗𝑗𝑛𝑛 based on their marginal choice probability as given by eq. A.12. Then 

𝑦𝑦𝑛𝑛 may be computed for each of the 200 simulated subjects in each sample, and then one 

may compute (in each sample) the p-values of test statistics against the null hypothesis in 

eq. 2. For a nominal size of 5%, the actual size of t-tests, signed-rank tests, and sign tests 

from this Monte Carlo simulation are 5.06%, 5.15% and 4.12%, respectively. As far as size 

goes, both the t-tests and the signed-rank tests look quite good, whereas the sign tests 

appear to be somewhat conservative. 

Monte Carlo simulation can also check the power of potential test statistics, at various 

sample sizes, using the conditional probabilities (i.e. those that apply when the alternative 

hypotheses with 𝛾𝛾 ≠ 1 are true) as true choice probabilities. I draw 10,000 samples, each 

with 𝑁𝑁 = 200 simulated subjects, from my population of simulated subjects. For each of 

those simulated subjects, eq. A.12 is first used to compute marginal probabilities, and then 

eqs. A.6 and A.7 are used to convert these into conditional probabilities with some 𝛾𝛾 ≠ 1. I 

draw 100 Bernoulli variates 𝑐𝑐𝑗𝑗𝑛𝑛 based on those conditional choice probabilities and the 

previous draw at 𝑗𝑗 − 1 (each draw 𝑐𝑐𝑗𝑗−1𝑛𝑛  determines the conditional choice probability used 

to draw 𝑐𝑐𝑗𝑗𝑛𝑛). Then 𝑦𝑦𝑛𝑛 may be computed for each of the 200 simulated subjects in each 



29 
 

sample, and then one may compute (in each sample) the p-values of test statistics against 

the null hypothesis in eq. 2.  

When 𝛾𝛾 = 2 (the value of 𝛾𝛾 I specify for the alternative hypothesis of persistence), at a 

nominal size of 5% and with 𝑁𝑁 = 200 simulated subjects per sample, t-tests, signed-rank 

tests, and sign tests reject the null hypothesis in 89.71%, 89.20% and 81.20% of the 10,000 

samples, respectively. These power figures show that both the t-tests and the signed-rank 

tests get very close to 90% power with 𝑁𝑁 = 200, whereas the sign tests are noticeably less 

powerful than that. The alternative hypothesis of alternation (I specify 𝛾𝛾 = 0.5 for this) 

produces very similar results. The t-tests, signed-rank tests, and sign tests reject the null 

hypothesis in 90.37%, 90.13% and 81.78% of the 10,000 samples, respectively. Again, both 

the t-tests and the signed-rank tests get very close to 90% power with 𝑁𝑁 = 200, whereas 

the sign tests are noticeably less powerful than that. 

I made the same calculations above for progressively larger samples (beginning at 𝑁𝑁 =

100 and stepping this up in increments of 10) until the sample size produced roughly 90% 

power for both 𝛾𝛾 = 2 and 𝛾𝛾 = 0.5, which first occurs at 𝑁𝑁 = 200. This is how the sample 

size was chosen.



30 
 

Table A1: The lottery pairs. 
 

the 𝑡𝑡 sequence pairs  the 𝜏𝜏 sequence pairs 

𝑡𝑡  𝑙𝑙 𝑚𝑚 ℎ  𝑟𝑟𝑙𝑙 𝑟𝑟𝑚𝑚 𝑟𝑟ℎ  𝑠𝑠𝑙𝑙 𝑠𝑠𝑚𝑚 𝑠𝑠ℎ  pair 
type 

 𝜏𝜏  𝑙𝑙 𝑚𝑚 ℎ  𝑟𝑟𝑙𝑙 𝑟𝑟𝑚𝑚 𝑟𝑟ℎ  𝑠𝑠𝑙𝑙 𝑠𝑠𝑚𝑚 𝑠𝑠ℎ  pair 
type 
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Table A1: The lottery pairs (continued). 
 

the 𝑡𝑡 sequence pairs  the 𝜏𝜏 sequence pairs 

𝑡𝑡  𝑙𝑙 𝑚𝑚 ℎ  𝑟𝑟𝑙𝑙 𝑟𝑟𝑚𝑚 𝑟𝑟ℎ  𝑠𝑠𝑙𝑙 𝑠𝑠𝑚𝑚 𝑠𝑠ℎ  pair 
type  𝜏𝜏  𝑙𝑙 𝑚𝑚 ℎ  𝑟𝑟𝑙𝑙 𝑟𝑟𝑚𝑚 𝑟𝑟ℎ  𝑠𝑠𝑙𝑙 𝑠𝑠𝑚𝑚 𝑠𝑠ℎ  pair 

type 

14  18 23 58  
1
3

 0 
2
3

  0 
1
2

 
1
2

  buff  14  8 18 58  
1
6

 
2
3

 
1
6

  0 1 0  buff 

15  18 23 58  
1
3

 
1
2

 
1
6

  
1
6

 
5
6

 0  high  15  8 18 23  
1
6

 0 
5
6

  0 
1
3

 
2
3

  low 

16  18 23 58  
1
2

 0 
1
2

  0 
2
3

 
1
3

  targ  16  18 23 58  
1
2

 0 
1
2

  0 
2
3

 
1
3

  targ 

17  8 18 23  1
3

 0 
2
3

  1
6

 
2
3

 
1
6

  buff  17  8 18 23  1
6

 0 5
6

  0 5
6

 
1
6

  buff 

18  8 18 58  2
3

 0 
1
3

  1
6

 
2
3

 
1
6

  low  18  18 23 58  2
3

 0 
1
3

  1
6

 
5
6

 0  high 

19  8 18 58  1
3

 0 
2
3

  1
6

 
5
6

 0  targ  19  8 18 58  1
3

 0 
2
3

  1
6

 
5
6

 0  targ 

20  8 18 58  2
3

 0 
1
3

  1
3

 
2
3

 0  buff  20  18 23 58  1
6

 
1
2

 
1
3

  0 
5
6

 
1
6

  buff 

21  18 23 58  1
2

 0 
1
2

  1
6

 
2
3

 
1
6

  high  21  8 18 23  1
3

 
1
2

 
1
6

  0 1 0  low 

22  8 18 23  1
3

 0 
2
3

  0 1 0  targ  22  8 18 23  1
3

 0 
2
3

  0 1 0  targ 

23  18 23 58  2
3

 0 
1
3

  1
6

 
2
3

 
1
6

  buff  23  8 18 58  1
2

 0 
1
2

  1
6

 
2
3

 
1
6

  buff 

24  8 18 23  1
3

 0 
2
3

  0 5
6

 
1
6

  low  24  18 23 58  1
6

 
1
2

 
1
3

  0 1 0  high 

25  8 18 58  5
6

 0 
1
6

  1
2

 
1
2

 0  targ  25  8 18 58  5
6

 0 
1
6

  1
2

 
1
2

 0  targ 

26  8 18 58  2
3

 0 
1
3

  1
6

 
5
6

 0  buff  26  8 18 58  1
6

 0 
5
6

  0 
1
3

 
2
3

  buff 
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Table A1: The lottery pairs (continued). 
 

the 𝑡𝑡 sequence pairs  the 𝜏𝜏 sequence pairs 

𝑡𝑡  𝑙𝑙 𝑚𝑚 ℎ  𝑟𝑟𝑙𝑙 𝑟𝑟𝑚𝑚 𝑟𝑟ℎ  𝑠𝑠𝑙𝑙 𝑠𝑠𝑚𝑚 𝑠𝑠ℎ  pair 
type  𝜏𝜏  𝑙𝑙 𝑚𝑚 ℎ  𝑟𝑟𝑙𝑙 𝑟𝑟𝑚𝑚 𝑟𝑟ℎ  𝑠𝑠𝑙𝑙 𝑠𝑠𝑚𝑚 𝑠𝑠ℎ  pair 

type 

27  8 18 58  
1
6

 0 
5
6

  0 
5
6

 
1
6

  high  27  8 18 23  
5
6

 0 
1
6

  
1
2

 
1
2

 0  low 

28  18 23 58  
2
3

 0 
1
3

  0 
5
6

 
1
6

  targ  28  18 23 58  
2
3

 0 
1
3

  0 
5
6

 
1
6

  targ 

29  8 18 58  5
6

 0 
1
6

  
2
3

 
1
3

 0  buff  29  18 23 58  
2
3

 0 
1
3

  
1
3

 
1
2

 
1
6

  buff 

30  8 18 23  
1
2

 0 
1
2

  
1
6

 
2
3

 
1
6

  low  30  18 23 58  
1
2

 0 
1
2

  0 1 0  high 

31  8 18 23  
1
2

 0 
1
2

  
1
3

 
2
3

 0  targ  31  8 18 23  
1
2

 0 
1
2

  
1
3

 
2
3

 0  targ 

32  8 18 58  
1
3

 
1
2

 
1
6

  0 1 0  buff  32  8 18 58  
1
6

 
1
2

 
1
3

  0 
5
6

 
1
6

  buff 

33  18 23 58  1
3

 0 
2
3

  0 
5
6

 
1
6

  high  33  8 18 23  1
3

 0 
2
3

  0 
2
3

 
1
3

  low 

34  8 18 23  1
3

 0 
2
3

  1
6

 
5
6

 0  targ  34  8 18 23  1
3

 0 
2
3

  1
6

 
5
6

 0  targ 

35  8 18 58  1
3

 0 
2
3

  0 5
6

 
1
6

  buff  35  8 18 58  1
2

 0 
1
2

  0 1 0  buff 

36  8 18 23  2
3

 0 
1
3

  1
3

 
1
2

 
1
6

  low  36  18 23 58  1
2

 0 
1
2

  1
3

 
1
2

 
1
6

  high 

37  8 18 58  5
6

 0 
1
6

  0 1 0  targ  37  8 18 58  5
6

 0 
1
6

  0 1 0  targ 

38  8 18 58  1
3

 0 
2
3

  0 
2
3

 
1
3

  buff  38  8 18 23  2
3

 0 
1
3

  1
2

 
1
2

 0  buff 

39  18 23 58  2
3

 0 
1
3

  1
3

 
2
3

 0  high  39  8 18 23  2
3

 0 
1
3

  1
6

 
5
6

 0  low 
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Table A1: The lottery pairs (continued). 
 

the 𝑡𝑡 sequence pairs  the 𝜏𝜏 sequence pairs 

𝑡𝑡  𝑙𝑙 𝑚𝑚 ℎ  𝑟𝑟𝑙𝑙 𝑟𝑟𝑚𝑚 𝑟𝑟ℎ  𝑠𝑠𝑙𝑙 𝑠𝑠𝑚𝑚 𝑠𝑠ℎ  pair 
type  𝜏𝜏  𝑙𝑙 𝑚𝑚 ℎ  𝑟𝑟𝑙𝑙 𝑟𝑟𝑚𝑚 𝑟𝑟ℎ  𝑠𝑠𝑙𝑙 𝑠𝑠𝑚𝑚 𝑠𝑠ℎ  pair 

type 

40  18 23 58  
5
6

 0 
1
6

  0 1 0  targ  40  18 23 58  
5
6

 0 
1
6

  0 1 0  targ 

41  18 23 58  
1
2

 0 
1
2

  
1
6

 
1
2

 
1
3

  buff  41  18 23 58  
5
6

 0 
1
6

  
1
6

 
5
6

 0  buff 

42  8 18 23  
1
2

 0 
1
2

  
1
6

 
1
2

 
1
3

  low  42  18 23 58  
1
3

 0 
2
3

  
1
6

 
1
2

 
1
3

  high 

43  8 18 58  
1
2

 0 
1
2

  
1
3

 
2
3

 0  targ  43  8 18 58  
1
2

 0 
1
2

  
1
3

 
2
3

 0  targ 

44  18 23 58  
2
3

 0 
1
3

  
1
2

 
1
2

 0  buff  44  18 23 58  
2
3

 0 
1
3

  
1
2

 
1
2

 0  buff 

45  18 23 58  
1
3

 
1
2

 
1
6

  0 1 0  buff  45  18 23 58  
2
3

 0 
1
3

  0 1 0  buff 

46  8 18 58  
1
3

 0 
2
3

  
1
6

 
5
6

 0  buff  46  18 23 58  
1
6

 0 
5
6

  0 
1
2

 
1
2

  buff 

47  8 18 23  
1
3

 0 
2
3

  0 
1
2

 
1
2

  buff  47  18 23 58  
2
3

 0 
1
3

  0 
5
6

 
1
6

  buff 

48  8 18 58  
1
3

 0 
2
3

  
1
6

 
2
3

 
1
6

  buff  48  8 18 23  
1
6

 0 5
6

  0 1 0  buff 

49  8 18 58  1
6

 0 5
6

  0 
2
3

 
1
3

  buff  49  18 23 58  1
3

 0 
2
3

  0 
2
3

 
1
3

  buff 

50  8 18 58  2
3

 0 
1
3

  1
2

 
1
2

 0  buff  50  18 23 58  5
6

 0 
1
6

  2
3

 
1
3

 0  buff 

 
In the “pair type” columns, ‘targ’ denotes target pairs, ‘buff’ denotes buffer pairs, and ‘high’ and ‘low’ denote the two types of 
conditioning pairs that precede target pairs. 
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