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Sea-Level Rise, Drinking Water Quality and the  

Economic Value of Coastal Tourism in North Carolina 

 

Abstract. We estimate economic benefits of avoiding reductions in drinking water quality due to 

sea level rise accruing to North Carolina (NC) coastal tourists. Using stated preference stated 

preference methods data with recent coastal visitors, we find that tourists are 2%, 8%, and 11% 

less likely to take an overnight trip if drinking water tastes slightly, moderately, or very salty at 

their chosen destination. The majority of those who decline a trip would take a trip to another NC 

beach without water quality issues, others would take another type of trip, with a minority opting 

to stay home. Willingness to pay for an overnight beach trip declines with the salty taste of 

drinking water. We find evidence of attribute non-attendance in the stated preference data, which 

impacts the regression model and willingness to pay for trips. Combining economic and 

hydrology models, annual aggregate welfare losses due to low drinking water quality could be as 

high as $401 million, $656 million and $1.02 billion in 2040, 2060 and 2080. 

Key words: Attribute non-attendance, barrier-island aquifers, sea-level rise, stated preference, 

tourism 
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Sea-Level Rise, Drinking Water Quality and the  

Economic Value of Coastal Tourism in North Carolina 

Introduction 

Tourism is a major component of the U.S. coastal economy, contributing about $143 

billion to GDP each year (NOAA, 2023a). Sea-level rise (SLR) is an existential threat to 

economic viability and environmental sustainability of coastal North Carolina (Poulter 2009), 

with serious implications for coastal tourism due to inundation of low-lying areas, erosion of 

beaches and dunes, loss of buildings and public infrastructure, and intrusion of salt water into 

freshwater aquifers. Tidal data collected in the region by the National Oceanic and Atmospheric 

Administration (NOAA) indicate rates of annual SLR of 4.78 mm/y at Duck, NC (NOAA, 

2023b) and 2.61 mm/y at Wilmington, NC (NOAA, 2023c). Bin et al. (2011) estimates negative 

impacts of SLR on property values for four coastal North Carolina counties at up to $7 billion by 

2080. Losses from reduced access to shore fishing locations due to SLR are estimated at $430 

million between 2005 and 2080 (Whitehead et al. 2009). 

An unexplored issue in the context of SLR and coastal tourism is the impact on 

freshwater supplies. Availability of ample clean and safe drinking water supply can be a 

challenge for sustainable coastal development (Chen, Hong, and Gao 2021).  Fiori and Anderson 

(2022) found evidence of decreasing viability of the North Carolina’s barrier-island aquifers due 

to increasing SLR. While most towns on the North Carolina coast have public water facilities 

that use some form of desalinization to supply freshwater, rising sea levels are reducing the 

volume of freshwater in surficial aquifers in these locations, likely to increase the need for more 

extensive water treatment and raise costs of potable water. Also, desalinization cannot eliminate 
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the salty taste of potable water when there are high chloride levels, as is likely to occur on some 

parts of the NC coast under SLR.  

The effect of salty-tasting drinking water is underexplored in the context of SLR and 

coastal tourism. To our knowledge, only two studies have considered the willingness to pay 

(WTP) to avoid salinity in household water supply.  Ragan, Young, and Makela (2000) use a 

damage function approach to estimate the costs of high salinity water on household appliances. 

Using the contingent valuation method (CVM) to value improvements in drinking water quality 

in the State of Palestine, Middle East, Alameddine, Tarhini, and El-Fadel (2018) find that 

existing salinity levels are determinants of WTP for improved drinking water quality. In this 

study we combine revealed preference (RP) and stated preference (SP) data on overnight trips to 

estimate the WTP to avoid SLR-induced effects on the salinity of drinking water in the coastal 

tourism sector. We utilize a series of dichotomous choice questions that inquire whether survey 

respondents would continue to take an overnight trip under various trip degradation scenarios, 

including higher trip costs.  

Our survey design builds on the CVM approach to valuing a recreation trip. This 

literature began with Brown and Hammock (1973) who first asked waterfowl hunters about their 

total costs on all of their hunting trips over the season. They then asked hunters an open-ended 

question about the maximum amount the costs would be before they stopped hunting. Following 

a number of articles that found problems with open-ended willingness to pay data, Bishop and 

Heberlein (1979) introduced the dichotomous choice question. The first dichotomous choice 

study with a trip cost payment vehicle is Cameron and James (1987). Survey respondents who 

had already taken a fishing trip were asked a counterfactual question about whether they would 
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have still taken the trip with higher trip costs. Cameron and James only analyze the stated 

preference data. McConnell, Weninger and Strand (1999) build on this empirical approach by 

analyzing both the baseline RP trip and the SP trip decisions in a panel framework.  

Park, Loomis and Creel (1991) ask a dichotomous choice trip cost question and then 

follow-up questions about the quality of the trip, analyzing the data separately. Loomis (1997) 

extends this approach by analyzing the RP and SP data in a panel framework. More recently, 

Neher et al. (2017) ask four separate questions with changes in trip costs at different quality 

levels and find that the results are temporally reliable; willingness to pay estimates are similar to 

those estimated from the same survey from 20 years earlier. Moreover, Neher et al. (2018) find 

that willingness to pay estimates from dichotomous choice trip cost questions produce similar 

values to those from a discrete choice experiment.  

Our empirical analysis first utilizes ex-post (RP) trip responses based on current 

conditions as a baseline. We then consider an ex-ante (planned) trip responses under current 

conditions, and then under alternative situations with differing quality conditions. We combine 

these data and analyze them in a panel framework. As an extension to the literature we control 

for attribute non-attendance (ANA). ANA occurs when respondents fail to consider every detail 

of the attributes in a valuation scenario (Lew and Whitehead 2020). The literature includes two 

approaches for identifying and accounting for ANA behavior in stated preference studies. The 

stated ANA approach employs self-reported information about ANA behavior while the inferred 

ANA approach relies on the use of econometric models to allow identification of ANA behavior. 

Inferred ANA approaches generally involve applying flexible econometric models that allow for 

ANA to be identified directly from patterns in the stated preference data. In this way, inferred 
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methods do not require the use of potentially endogenous stated ANA information provided by 

individuals.  Rather, they attempt to let the data speak for themselves about whether or not ANA 

behavior is present.  

In the rest of the paper we describe the data, present the model, review empirical results, 

explore policy implications and offer conclusions. Using an inferred ANA model we find 

evidence of attribute non-attendance behavior in the data, suggesting significant upward bias in 

willingness to pay compared to the naïve (base) model. This bias has significant policy 

implications. We recommend that researchers routinely consider ANA, and when present, 

provide adjusted WTP estimates. Various approaches to account for ANA can be utilized for 

sensitivity analysis and robustness checks.  

Data 

In the spring of 2022 we surveyed 434 North Carolina (NC) residents who had taken an 

overnight trip to the NC coast in the previous 36 months and who did not own coastal property. 

The sample is from the Dynata opt-in consumer panel. We pretested the survey in 2021 with 

over 200 respondents. Results of the pretest helped us revise the survey and adjust the additional 

trip cost amounts presented to respondents. We do not include these pretest responses in the 

analysis sample. 

Internet surveys with opt-in samples are one of the least expensive survey modes and, as a 

result, are widely used in the stated preference literature (Champ 2017). But these data may be 

lower in quality than probability-based samples. Johnston et al. (2017) assert that the highest 

quality surveys use probability-based sampling and employ the Dillman repeat-contacts method 
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for quality assurance. A recent special section in the journal Applied Economics Perspectives and 

Policy (forthcoming) examined the use of opt-in survey panels. Goodrich et al. (forthcoming) 

find that one drawback of data from an opt-in sample is that respondents may rush through the 

questionnaire, paying little attention to the details of the valuation questions, which results in 

relatively low-quality data. Sandstrom et al. (forthcoming) compared two opt-in panels with a 

mixed mode mail/internet sample and found that each sample produced the expected results, but 

the WTP estimates in an opt-in sample were always greater than the probability-based sample. 

Penn et al. (forthcoming) compare a probability-based sample with a convenience sample and 

find differences in the determinants of willingness to pay but no differences in the magnitude of 

willingness to pay. Whitehead et al. (forthcoming) find that the probability-based sample data are 

the most likely to pass validity tests with data from in a single bounded referendum question.  

This research examining opt-in panels generally supports their use but with caveats and a 

recognition that extra effort must be expended to develop a reliable sample. In order to increase 

data quality, we first asked for respondents’ state of residence with a screener question before the 

purpose of the survey could be assessed by respondents. Non-NC residents were deleted. This 

was followed by an open-ended question about residents’ ZIP codes. Respondents who reported 

ZIP codes outside the range of NC ZIP codes were deleted. We asked redundant questions to 

screen out additional respondents who were rushing through the questionnaire (i.e., “speeders”). 

We deleted 18 respondents who provided inconsistent age and/or income responses. The median 

time that it took respondents to complete the survey was 7 minutes.  

Eighty-two percent of the original sample took an overnight trip during the previous 12 

months before the interview, and 87% of the sample planned to take an overnight trip in the next 
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12 months. Given that our analysis involves stated preference questions about future trip 

conditions, we focus on the 286 respondents who planned to take an overnight beach trip to the 

NC coast during the next 12 months. The average age of the respondents is 46 years, and 69 

percent are female (Table 1). The average household size is 2.74 people with 1.24 children. The 

average years of schooling is 14, and the average household income is $79 thousand. Seventy-

four percent of respondents had taken an overnight trip to a NC beach in the previous 12 months 

(Table 2), with an overall average number of 2.8 beach trips in the past 12 months. For their 

most recent trip, the average number of nights stayed on overnight trips is 3, and the average 

party size is 4 people.  

These respondents were then asked to consider their next overnight trip to the NC coast. 

The average number of nights that they planned to stay on their next trip is also 3, and average 

party size remains 4. Respondents spent an average of $749 (self-reported) on their most recent 

trip, and state that they plan to spend an average of $879 (self-reported forecasting) on their next 

overnight trip. 

The first stated preference scenario includes up to two questions and considers the most 

recent trip (Table 3). We first ask respondents who had taken a trip in the past year to a NC 

beach (𝑛 = 213) a stated preference question for their most recent trip. We ask them to suppose 

that their most recent trip cost more money as a result of higher rental rates, higher prices, or 

some other reason. We inquire whether they would still have taken the trip if the additional trip 

cost was higher than the amount that they had previously spent, where the additional cost is a 

randomly assigned amount that ranged from $100 to $1000 in increments of $100. Sixty-five 

percent of the respondents state that they would have still taken the trip, with an average 
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additional cost of $569.   

In Table 4 we present the frequency tables of yes responses for each cost amount and 

tests for independence of the yes responses for each SP trip cost question. The percentage of yes 

responses to the first question (yes1) fall from 100% at $100 to 60% at $1000. The sample sizes 

at each cost amount are 30 or below so it is understandable that the yes responses decrease non-

monotonically with the cost amount. But, consistent with demand theory, a chi-square test 

indicates that the percentage of respondents who state that they would have still taken the trip is 

non-constant over the additional cost range.  

For those respondents that affirmed they would still have taken the trip at a higher cost 

we ask a follow-up question with a randomly assigned increased cost amount that ranges from 

$1100 to $1500 in increments of $100. Forty-nine percent of these respondents state that they 

would have still taken the trip, with an average additional cost of $1306 (Table 3). At these 

higher costs, the percentage of respondents who state that they would have still taken the trip 

does not vary as the cost amount increases (yes1f, Table 4).  

The second stated preference scenario is similar to the first but focuses on the next 

planned overnight trip to the NC coast (𝑛 = 286). We ask respondents if they would still take 

the trip if the cost was higher than the amount that they think they will spend, assuming costs are 

not higher at other potential substitute beach sites. Again, the added cost is a randomly assigned 

amount that ranged from $100 to $1000 in increments of $100. The additional specified cost was 

$560, on average, and fifty-seven percent of the respondents stated that they would still take the 

trip (Table 3). The percentage of respondents who state that they would still take the trip falls 

(yes2) as the cost increases, again, consistent with demand theory (Table 4). 
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If the respondent states that they would still have taken the trip we pose the question 

again with a randomly assigned cost increase that ranges from $1100 to $1500 in increments of 

$100. Fifty-two percent of these respondents state that they would still take the trip, with an 

average additional cost of $1288 (Table 3). As in the first scenario, the percentage of respondents 

who state that they would still take the trip (yes2f) does not vary as the cost amount increases at 

these higher amounts (Table 4). 

The questionnaire then turned to the issue of sea-level rise. Respondents were told: “The 

National Oceanic and Atmospheric Administration (NOAA) estimates that sea levels along the 

North Carolina coast have been rising at a rate of about 1/8 inch to almost a 1/4 inch per year 

over the last several decades. At that rate, sea levels along the entire North Carolina coast will be 

more than 1 inch to 2 inches higher in the next 8 years.” Then respondents were asked if they 

were previously aware that sea levels have been rising along the NC coast. Fifty-seven percent of 

respondents indicated that they were aware of SLR.  

Respondents were then told about the problem of saltwater intrusion: “This increase in 

sea-level poses several issues to coastal communities. One of these issues is drinking water 

quality. Saltwater can more easily mix with freshwater sources making water undrinkable. This 

is known as saltwater intrusion. Most of the North Carolina coastal communities are using a 

desalination treatment process. In this situation, continued saltwater intrusion will increase 

treatment costs and may make the water taste salty.” In response, 37 percent of respondents 

indicated that they were very concerned about drinking water quality at NC beaches in the future.  

The hypothetical decrease in drinking water quality at the location of the respondent’s 

next beach trip is then described, as follows: “Now try to imagine a situation where [chosen NC 
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beach] is dealing with saltwater intrusion and drinking water quality in 2022. In this situation the 

water from the tap is treated by desalination. It is safe to drink and fine for bathing, washing 

dishes and washing clothes. But, the water would taste salty. The potential salty taste can be 

described on the following scale:  

1. Slightly intense (barely noticeable compared to your usual tap water)  

2. Moderately intense (somewhat noticeable)  

3. Very intense (definitely noticeable)  

An ‘extremely intense’ salty taste is like when you accidentally swallow ocean water while 

swimming. The tap water would never be this salty.” Respondents were then asked how the tap 

water from their home tastes, with most (56%) stating that it “tastes fine, no complaints”. Only 4 

percent stated that their home tap water tasted salty.  

Respondents were then given details about a third stated preference scenario. They were 

asked what they would do if there were drinking water problems at their chosen NC beach. Then 

we explained several options: (i) respondents could take the trip because they do not think it 

would be an issue, or could find another source for drinking water; (ii) they could decide to take 

a trip to another NC beach; or (iii) do something else entirely. Respondents were told that the 

water quality problems, in this scenario, were isolated to their chosen NC beach and, thus, 

drinking water at all other NC beaches did not have a salty taste. In addition, respondents were 

instructed that they could cancel or change their reservations at no cost, and other costs 

associated with the trip would not change. Respondents were not asked to assume that averting 

expenditures (e.g., purchases of bottled water) would not change. The added cost variable may 

suffer from measurement error that is increasing in the extent that respondents did consider 
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averting expenditures. As an internal quality check, we inquired about attentiveness to the survey 

scenario/instructions. Seventy-five percent of respondents stated that they read the instructions 

very closely, 23% said they read them somewhat closely and 2% percent said that they did not 

read the instructions closely. 

Respondents are first presented with one of two drinking water quality scenarios – 

slightly salty or moderately salty tasting water – and asked if they would still take their planned 

beach trip. Eighty-seven percent of respondents would still take their planned trip in this 

scenario. We follow-up with those respondents who would still take the trip to assess whether 

they would take their planned trip if the drinking water tasted very salty; seventy-nine percent of 

248 respondents would still take the trip. Finally, these remaining respondents are asked if they 

would still take the trip if the cost increased with the very salty taste. The cost increase was a 

randomly assigned amount from $100 to $1500 in increments of $100. Fifty-percent of these 

remaining respondents would still take the trip if the average cost increase was $724 (yes3, Table 

3). The percentage of respondents who state that they would still take the trip falls as the cost 

amount increases (Table 4).   

After the last trip question in each of the three scenarios, we inquire about substitution 

patterns for those respondents who said that they would no longer take their chosen trip (𝑛 =

187). Following the third scenario, 42% of the respondents said that they would go to another 

NC beach; 33% said that they would take a trip somewhere other than a NC beach; 24% said that 

they would stay home, and 2% said that they would do another activity entirely. Twenty-one 

percent of the respondents who stated that they would still go to their chosen beach if the water 

tasted very salty and the trip cost more (𝑛 = 99) indicated that they did not think the drinking 
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water problem would be an issue for them. Seventy-eight percent said that they would bring 

drinking water from home, buy drinking water at the beach, or do both. Those who stated that 

they would buy drinking water were asked how much they think they would spend on bottled 

water during the trip. The mean averting expenditures for hauling or buying water is $36 per trip 

(n= 78).  

Similar to McConnell, Weninger, and Strand (1990) and Loomis (1997), we combine 

(“stack”) the RP and SP trips under baseline conditions with SP trips with posited cost increases 

and increased drinking water salinity. The data are an unbalanced, quasi-panel with three trip 

scenarios (RP trips with cost increases; SP trips with cost increases; and SP trips with cost 

increases and increases in drinking water salinity) and up to three trip responses in each scenario 

(Table 3). The quasi-panel data consist of 2031 observations for the 286 respondents.  

Model 

Suppose that consumers have a quasi-concave, monotonic utility function defined over 

recreation trips, 𝑥 (with baseline cost, 𝑝, and quality, 𝑞), and consumption of a numeraire 

composite commodity, ℎ. The resulting indirect utility function depends upon trip quality and 

numeraire consumption: 𝑣(𝑞, 𝑦 − 𝑝), where y denotes income. If the consumer is observed 

taking the trip under conditions 𝑞 then 𝑣(𝑞, 𝑦 − 𝑝) > 𝑣(𝑦). When faced with additional trip cost, 

𝑐, the consumer will continue to take the trip if 𝑣(𝑞, 𝑦 − 𝑝 − 𝑐) ≥ 𝑣(𝑦), where the trip cost is 

less than the reservation price (implicitly defined as 𝑥(𝑝̅, 𝑞) = 0), 𝑝 + 𝑐 < 𝑝̅. When faced with a 

degradation in trip quality the consumer will continue to take the trip if 𝑣(𝑞′, 𝑦 − 𝑝) ≥ 𝑣(𝑦), 

where 𝑞 > 𝑞′ > 𝑞̅, and 𝑞̅ is the reservation quality for a given price, 𝑥(𝑝, 𝑞̅) = 0. When faced 
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with a cost increase and a degradation in trip quality, the consumer will continue to take the trip 

if 𝑣(𝑞′, 𝑦 − 𝑝 − 𝑐) ≥ 𝑣(𝑦). 

The theoretical model can be operationalized empirically following Hanemann (1984) 

and Loomis (1997). The individual utility from the choice is expected to be increasing in quality 

and income (decreasing in price), 𝑣𝑗(𝑞, 𝑦) + 𝜀𝑗, where 𝑣𝑗  is the non-stochastic portion of utility 

for alternatives 𝑗 =  0,1 (i.e., 𝑥 = 0,1), and ε is the corresponding error term. The random utility 

model assumes that the individual chooses the alternative that gives the highest utility, 𝜋1 =

Pr(𝑣1 + 𝜀1 > 𝑣0 + 𝜀0), where 𝜋1 is the probability that the respondent would choose alternative 

𝑗 = 1. The probability can be rearranged to show that it depends on the difference in utilities, 

𝜋1 = Pr(𝑣1 − 𝑣0 > 𝜀0 − 𝜀1), relative to the difference in error terms. 

If the indirect utility function is assumed to be linear-in-parameters, 𝑣 = 𝛽 + 𝛽𝑞𝑞 +

𝛽𝑦𝑦 + 𝜀, then the difference in utility for the first two trip scenarios (where quality is constant 

and the trip cost changes) is ∆𝑣 = 𝛽1 + 𝛽𝑞𝑞 + 𝛽𝑦(𝑦 − 𝑝 − 𝑐) − [𝛽0 + 𝛽𝑞𝑞 + 𝛽𝑦(𝑦 − 𝑝)] +

(𝜀1 − 𝜀0) and ∆𝑣 = 𝛽 − 𝛽𝑦𝑐 + 𝜀̃, where 𝛽 = 𝛽1 − 𝛽0, and 𝜀̃ = 𝜀1 − 𝜀0. Under the linear-in-

parameters structure, income and baseline trip cost (p) drop out of the differenced utility 

equation. The difference in utility for the third scenario where site quality changes is ∆𝑣 = 𝛽1 +

𝛽𝑞𝑞′ + 𝛽𝑦(𝑦 − 𝑝 − 𝑐) − [𝛽0 + 𝛽𝑞𝑞 + 𝛽𝑦(𝑦 − 𝑝)] + (𝜀1 − 𝜀0) and ∆𝑣 = 𝛽 + 𝛽𝑞(𝑞′ − 𝑞) −

𝛽𝑦𝑐 + 𝜀̃, where c is zero for the initial stated preference questions in each scenario.  

Estimation of the parameters is achieved by stacking the change in indirect utility 

functions considering the 𝑡 ≤ 9 observations (choice occasions) for each respondent, ∆𝑣it = 𝛽 +
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𝛽𝑦𝑐it + 𝛽𝑞𝑞𝑖𝑡 + 𝜀ĩt. Assuming 𝜀 are drawn from a joint logistic distribution, the probability that 

individual 𝑖 will choose to take the trip in occassion 𝑡 is   

(1) 𝑃𝑟(𝑥it = 1) =
1

1+𝑒𝑥𝑝(−∆𝑣𝑖𝑡)
 

The equality-constrained latent class (ECLC) model (Scarpa et al. 2009) assumes individuals fall 

into one of several discrete and latent classes, where each latent class is defined by which 

attributes are attended to.  The model assumes that across classes, utility difference parameters 

for the attributes that are attended to are equivalent. This contrasts with standard latent class logit 

models that allow the preference parameters to differ across classes. The ECLC model is referred 

to as an inferred ANA model since it gleans ANA behavior directly from the likelihood function 

and patterns in the choice data, without the aid of stated ANA information from the respondents.  

A single parameter vector is estimated in the ECLC model, and each latent class is differentiated 

by which parameters are constrained to be zero and assumed to be ignored. The probability of 

observing the individual i taking the trip at choice occasion t is: 

(2) 𝜋(𝑥it = 1) = ∑ [(
exp (𝜃𝑙)

∑ exp (𝜃𝑘)𝐾
𝑘=1

) ×
1

1+𝑒𝑥𝑝(−∆𝑣𝑖𝑡)
]𝐾

𝑘=1  

The left-most term in the right-hand side of the equation is the probability of membership in 

latent class 𝑙, where 𝜃𝑘 is a class-specific constant parameter to be estimated, 𝐾 is the number of 

classes and ∑
exp (𝜃𝑙)

∑ exp (𝜃𝑘)𝐾
𝑘=1

𝐾
𝑘=1  = 1.   

In general, if the estimated utility model is ∆𝑣 = 𝛽 − 𝛽𝑞𝑞 − 𝛽𝑦𝑐, where 𝑞 is a quality 

vector, 𝑞 = 𝑆, 𝑀, 𝑉, then the willingness to pay (WTP) for an overnight beach trip without 

degraded quality is 𝑊𝑇𝑃 = −𝛽 𝛽𝑐⁄ . This is the mean (and median) welfare estimate where 
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respondents are indifferent between taking the trip or not and can be found by solving for the 

price that leads to indifference, 𝜋(𝑥 = 1) = 0.50, in the logit (Hanemann 1984). Another 

welfare estimate involves truncating the portion of the logit curve with negative WTP and 

including the tail of the logit curve distribution in the calculation: 𝑊𝑇𝑃′ =
−1

𝛽𝑐
ln(1 + 𝑒𝑥𝑝(𝛽)) 

(Hanemann 1989). Considering this truncation, 𝑊𝑇𝑃’ > 𝑊𝑇𝑃 and the difference will be 

decreasing in the constant of the logit model. However, these differences are slight in our 

models. Nevertheless, we choose to present the truncated mean WTP estimate since it provides a 

more conservative estimate of some of the differences in WTP due to changes in drinking water 

quality.  

Results 

We first estimate a base case binary logit model with clustered standard errors at the 

individual level: Pr(𝑥𝑖𝑡 = 1) = 𝑓(𝐶𝑖𝑡, 𝑆𝑖𝑡, 𝑀𝑖𝑡 , 𝑉𝑖𝑡), where 𝑥 = 1 if the respondent would take the 

trip, 𝐶 is the added trip cost, 𝑆 =  1 if the salty taste is “slightly intense”, 𝑀 =  1 if the salty 

taste is “moderately intense” and 𝑉 =  1 if the salty taste is “very intense”. The baseline for the 

taste variables is no salty taste (𝑆 = 𝑀 = 𝑉 = 0), which reflects the drinking water quality at the 

time of the survey. This model is labeled as the naïve model because it assumes no ANA 

behavior (column 1, Table 5). The coefficient on the added trip cost variable is negative and 

statistically significant. The coefficients on the quality variables are negative and statistically 

significant. The quality coefficients are increasing (in absolute value) as salty taste becomes 
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more intense, but the differences in the coefficients on the moderately salty and very salty 

variables are not statistically different (𝜒2[1 𝑑𝑓] = 0.68). 

We then estimate two binary logit ANA models (Table 5). The first ANA model (column 

2, Table 5) is suggested by Malone and Lusk (2018) and is labeled M&L. For this approach a 2-

dimensional latent class logit model is estimated with a full preservation class (the attribute 

coefficients are estimated) and a full non-attendance class (all attribute coefficients are restricted 

to zero). The probability of a respondent being in the second class can be conceptualized as an 

estimate of likelihood that the respondent did not pay attention to the scenario attributes (in this 

case, cost and the saltiness of their drinking water).  

The M&L model is statistically superior to the naïve model with a lower AIC and higher 

model 𝜒2 statistics. The average estimate of non-attendance in the M&L model is 31%, 

suggesting that almost a third of respondents did not pay attention to scenario attributes. The 

coefficient on the added trip cost variable is negative and statistically significant and 133% larger 

in absolute value than the same coefficient in the naïve model. Thus, controlling for ANA 

significantly increases the estimate of marginal utility of income and sensitivity to cost changes, 

suggesting significant bias in the naïve model. The coefficients on the quality variables are 

negative, statistically significant and increasing (in absolute value) as the posited salty taste 

increases in intensity. The coefficients on the slightly, moderate and very salty tasting water 

variables are 313%, 207% and 173% larger in absolute value than the coefficients in the naïve 

model. Similar to the naïve model, the differences in the coefficients on the moderately salty and 

very salty variables are not statistically different (𝜒2[1 𝑑𝑓] = 0.19). The differences in the 

magnitudes of the coefficient estimates are as expected if ANA behavior is present. ANA 
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suggests that the cost and quality coefficients will be zero in the utility difference model. 

Ignoring ANA behavior biases the coefficient estimates towards zero. Note that it is difficult to 

disentangle ANA behavior from behavior associated with zero marginal utility parameters with 

the ECLC model. This is likely only a problem with the quality parameters because all 

households presumably do have a positive marginal utility of income. 

The second ANA model is the ECLC model (Scarpa et al. 2009). The ECLC model 

assumes that individuals fall into one of several latent classes, where each is defined by which 

attributes are attended to, or not. Coefficients for the attributes that are attended to are assumed 

to be the same across all classes. The ECLC model is statistically superior to the naïve and M&L 

models with a lower AIC and higher model 𝜒2 statistics (column 3, Table 5). We find that the 

probability that a survey respondent fully pays attention to each of the attributes is 40%. The 

probability that a survey respondent pays attention to none of the attributes is 24% (which is 

notably lower compared to the 31% estimated under the more restrictive M&L model). Eight 

percent of the sample is estimated to ignore only the cost attribute, and 29% of the sample 

ignores only the very salty taste attribute. In preliminary models we found no evidence of non-

attendance to the slightly or moderately salty taste attributes or any combination of the cost and 

quality attributes and drop these classes in the model presented in Table 5.  

The coefficient on the cost variable is negative and statistically significant. The cost 

coefficient in the naïve model is 37.5% of that in the ECLC model. The coefficients on the 

quality variables are negative, statistically significant, and increasing (in absolute value) as the 

posited saltiness of the water increases in intensity. In contrast to the naïve and M&L models, 

when ANA behavior is accounted for in the ECLC model the coefficients on the moderately and 
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very salty taste variables are statistically different (𝜒2[1 𝑑𝑓] = 6.05). The quality coefficients 

are increasing in magnitude from the naïve model to the M&L model to the ECLC model. The 

coefficients on the slightly, moderate and very salty tasting water variables are 42%, 21% and 

74% larger in absolute value than the same coefficients in the M&L model. These results are 

consistent with attribute non-attendance. Not accounting for ANA in the naïve model 

underestimates the effect of cost and quality attributes. Allowing for zero parameters for those 

subjects that appear most likely to have ignored particular attributes (ANA models) increases the 

estimated effect of cost and quality on choice probabilities. In our application, the ECLC model 

appears to do a better job of tailoring ANA to latent classes within the dataset.   

Willingness to Pay 

Holding water quality at the current baseline of no saltiness, if 𝛽𝑦 is biased towards zero 

in a naïve model where the researcher ignores ANA behavior, as found in both of the estimated 

ANA models, then the base case WTP estimate will be biased upwards in the naïve model. We 

find that the WTP for a trip is biased upwards in the naïve model. The WTP for an overnight trip 

is $1173 in the naïve model, $594 in the M&L model and $573 in the ECLC model. This upward 

bias in the naïve model can be observed in the logistic regression curves (Figure 1). The naïve 

model has a relatively flat curve with a fat tail that reaches only a 31% probability that the 

respondent would not take the trip with the highest trip cost increase included in the stated 

preference question. In contrast, the estimated probability at the highest cost amount is 1% in the 

M&L model and 0.5% in the ECLC model. In two-tailed tests, the M&L and ECLC WTP 

estimates are statistically different from the base case WTP estimate at the 𝑝 = 0.068 (𝑡 = 1.83) 
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and 𝑝 = 0.058 (𝑡 = 1.90) levels, respectively. The base case WTP estimates for the two ANA 

models are not statistically different (𝑝 = 0.57).  

The willingness to pay for a trip with a quality degradation is 𝑊𝑇𝑃𝑞
′ =

−1

𝛽𝑐
ln(1 +

exp(𝛽 + 𝛽𝑞)), and the difference in willingness to pay from a quality degradation is Δ𝑊𝑇𝑃𝑞
′ =

𝑊𝑇𝑃𝑏
′ − 𝑊𝑇𝑃𝑞

′, where 𝑏 is the base case. If 𝛽𝑞 is biased towards zero as the researcher ignores 

ANA behavior with the naïve model, then the impact is to bias the 𝑊𝑇𝑃𝑞 estimate downwards. 

Whether the overall difference is biased upwards or downwards depends on the relative effects 

of the bias in the numerator and denominator.  

The patterns that we find in the logit models translate to differences in welfare estimates 

for quality. The WTP estimates for a trip with slightly salty tasting drinking water are $1057 in 

the naïve model, $438 in the M&L model and $376 in the ECLC model (Table 6). The M&L and 

ECLC WTP estimates are statistically different from the base case WTP estimate at the 𝑝 =

0.053 (𝑡 = 1.95) and 𝑝 = 0.032 (𝑡 = 2.15) levels. The WTP estimates for the two ANA models 

are not statistically different (𝑝 = 0.42).  

The WTP estimates for a trip with moderately salty tasting drinking water are $870 in the 

naïve model, $325 in the M&L model and $284 in the ECLC model. The M&L and ECLC WTP 

estimates are statistically different from the base case WTP estimate at the 𝑝 = 0.05 (𝑡 = 1.94) 

and 𝑝 = 0.038 (𝑡 = 2.09) levels. The WTP estimates for the two ANA models are again not 

statistically different (𝑝 = 0.51).  

We find the biggest differences in welfare estimates for the most extreme scenario. The 

WTP estimates for a trip with very salty tasting drinking water are $784 in the naïve model, $304 
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in the M&L model, and $157 in the ECLC model. The M&L and ECLC WTP estimates are 

statistically different from the base case WTP estimate at the 𝑝 = 0.099 (𝑡 = 1.66) and 𝑝 =

0.032 (𝑡 = 2.15) levels. The WTP estimates for the two ANA models are statistically different 

at the 𝑝 = 0.003 level (𝑡 = 3.02). The difference in this last pair of estimates is driven by the 

ANA behavior detected in the very salty taste scenario by the ECLC model.  

The change in WTP for a trip with a slightly salty drinking water taste (relative to the 

base case WTP) is $115 in the naïve model, $156 in the M&L model, and $197 in the ECLC 

model (Table 6). The change in WTP for a trip with a moderately salty drinking water taste is 

$303 in the naïve model, $268 in the M&L model, and $288 in the ECLC model. None of these 

differences in WTP estimated across the models are statistically significant from each other. The 

change in WTP for a trip with a very salty drinking water taste is $388 in the naïve model, $289 

in the M&L model, and $415 in the ECLC model. Only the difference in the change in WTP 

estimates between the M&L and ECLC models are statistically different. This is at the 𝑝 =

0.017 (𝑡 = 2.40) level in a two-tailed test.  

In Figure 2 we illustrate the logistic regression curves for the naïve and ECLC models at 

different levels of water quality. The naïve model exhibits relatively small decreases in demand. 

The decrease in the probability of a trip averages 5.2%, 14.5% and 19.1% over the range of cost 

increases for trip demand with slightly, moderately, and very salty tastes. In contrast, the average 

decrease in the probability of a trip in the ECLC model is 13.0%, 19.1% and 27.6% for slightly, 

moderately, and very salty tasting drinking water.  

We investigated the sensitivity of our results to a number of sample selection decisions. 

When separately dropped the ex-post scenario data (t =1, 2, 3) and the follow-up WTP question 
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data (time = 3, 6). We find that the magnitudes of the non-attendance probabilities vary but the 

pattern is similar to what is presented above. We also find that WTP magnitudes differ slightly 

but the pattern of differences across models is the same. 

Policy Implications 

Fiori and Anderson (2022) studied the effects of SLR on the primary source of freshwater 

to the barrier-island aquifers of North Carolina. Using an analytical model based on low 

groundwater gradients, limited room for upward expansion of the water table, and applying SLR 

projections from the Intergovernmental Panel on Climate Change (IPCC, 2014) and NOAA 

(NOAA, 2020), the authors found decreasing viability of the state’s barrier-island aquifers with 

increasing SLR. Aquifer risk maps based on model output from this research show that most of 

the state’s coastal aquifers are under threat from SLR over the next 60 years, but also that 

narrower islands and/or high-permeability barrier-island aquifers in areas of faster SLR, such as 

along the northern North Carolina coast, are the most vulnerable. 

We use the model in Fiori and Anderson (2022) to develop estimates of five levels of 

drinking water quality for the years 2040, 2060 and 2080. The calculations for salt 

concentrations in the aquifer are based on island width, aquifer thickness, and hydraulic 

conductivity, and produce estimates of the position of the toe of the saltwater wedge under SLR 

scenarios (see Fiori and Anderson, 2022, for more detailed information on the model). We then 

take the model output data and calculate average aquifer salinities based on the ratio of the area 

of the saltwater wedge to the total area of the aquifer. This gives a salinity per unit length of 

aquifer. There are several important caveats regarding the calculated salinity values: the salinity 

calculated is based on the area ratio and does not include potential saltwater intrusion induced by 
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pumping, nor does it include the effects of tidal oscillations, wave action, or extreme storm 

events, including overwash.  

We consider 31 beaches in North Carolina for which survey respondents reported the 

destination of their next beach trip in 2022 (the trip frequencies and results of the salinity 

calculations for each beach can be found in the Appendix Tables). We estimate that in 2040, 

45% of these beaches will continue to experience freshwater in their aquifers, 23% will have 

slightly salty tasting water, 16% will experience moderately salty tasting water, 3% will suffer 

very salty tasting water, and 13% of the beaches will be left with no freshwater aquifer (Table 7). 

In 2060, the number of beaches with no salty taste falls to 39%, 32% have (slightly, moderately, 

or very) salty tasting water, and the number without an aquifer rises to 32%. Beaches with no 

salty tasting water falls to 6%, 39% have salty tasting water to some degree, and 55% have no 

aquifer in 2080.  

We next assign each beach its corresponding WTP for a beach trip from Table 7, based 

on baseline salinity levels (not salty), and then weight the WTP per beach by its visitation 

frequency (vf):  𝑊𝑇𝑃̅̅ ̅̅ ̅̅ ̅ = ∑ 𝑣𝑓𝑗
𝐽
𝑗=1 𝑊𝑇𝑃𝑞, where ∑ 𝑣𝑓𝑗

𝐽
𝑗=1 = 1 over 𝑗 = 1, … , 31 beaches. If the 

beach is predicted to lose its freshwater aquifer we assign it a willingness to pay equal to zero.  

We then repeat this exercise based on the beach-specific salinity levels projected for 2040, 2060, 

and 2080.  In other words, in this exercise we estimate the welfare losses that could occur if there 

was an instantaneous decrease in drinking water quality that corresponds to the projected levels 

for future years. Considering the naïve model, the weighted mean WTP for an overnight beach 

trip is $995 for the predicted salinity levels in 2040, $756 for the 2060 levels and $537 for the 

2080 levels. These represent welfare losses of 85%, 64% and 46%, respectively, relative to the 
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2022 no saltiness baseline. The weighted WTP estimates in the ECLC model are $430, $340, and 

$210 for the projected salinity levels for 2040, 2060 and 2080. The welfare losses that are 

estimated to occur if these higher salinity levels are experienced today correspond to a 75%, 59% 

and 37% loss, respectively.   

According to the State of NC’s tourism office (Visit North Carolina, 2023), there were 

9.8 million overnight trips taken to the NC coast in 2019 (pre-covid), ninety-five percent of 

which are for leisure. Among those overnight vacation trips, 51% originate from NC, of which 

60% are for the primary purpose of visiting the beach. Therefore, we aggregate our results over 

an estimated 2.86 million overnight beach trips taken by NC residents. We use frequency 

estimates of trip locations from the survey to create an estimate of the welfare loss of SLR-

induced drinking water quality degradation relative to a welfare baseline of $3.2 billion and $1.6 

billion in the naïve and ECLC models. Considering the naïve model, we estimate that the welfare 

loss will be 5% in 2040, 15% in 2060 and 22% in 2080 of the $3.2 billion base case welfare 

(Table 8). Aggregate losses are $490 million, $1.15 billion and $1.75 billion in 2040, 2060 and 

2080. With the ECLC model, the welfare loss estimate is 25% in 2040, 34% in 2060 and 42% in 

2080 of the $1.6 billion base case. Aggregate losses are $401 million, $656 million and $1.02 

billion in 2040, 2060 and 2080, respectively. While the welfare loss relative to the baseline is 

larger in the ECLC model, the magnitude of the losses are larger in the naïve model due to the 

larger baseline welfare estimate.  

The welfare exercise above presumes an instantaneous change where current salinity 

levels in drinking water increase to the levels that are projected for 2040, 2060, and 2080.  

Obviously, this increase in drinking water salinity will be more gradual, and it is possible that 
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drinking water technologies and regulations curb such degradation. A more optimistic scenario 

would involve an assumption of an improvement in drinking water technology that would leave 

drinking water quality at levels no worse than slightly salty. The weighted WTP associated with 

this assumption is $1118 in 2040, $1114 in 2060 and $1074 in 2080 in the naïve model, which 

corresponds to welfare losses of 4.7%, 5.1%, and 8%. Relative to the 2020 baseline salinity 

levels, aggregate losses are $152 million, $163 million and $271 million in 2040, 2060 and 2080, 

respectively. The weighted WTP estimates in the ECLC model are $478, $471, and $405 for the 

salinity levels projected for 2040, 2060 and 2080. The welfare losses relative to the 2022 

baseline are 16%, 18% and 29%. Aggregate losses are $266 million under the 2040 salinity 

levels scenario, $285 million for 2060 scenario, and $474 million for 2080.  

In the more optimistic case, the naïve model understates the welfare losses. This different 

outcome is because of the higher weight placed on the welfare loss associated with a slightly 

salty taste in the ECLC model ($197) relative to the naïve model where the difference is smaller 

($115). Of course, the cost of the new technology should be less than the difference between the 

pessimistic and optimistic measures of welfare for its adoption to make economic sense. The cost 

of any improvements in drinking water technology is unknown and not part of our welfare loss 

calculations.  

Conclusions 

In this paper we find that SLR effects on drinking water taste potentially have significant 

implications for consumer welfare and the tourist economy in North Carolina. Considering the 

preferred ECLC model, we estimate that North Carolina residents are less likely to take an 

overnight trip to NC beach towns if drinking water has a slightly (13%), moderately (19%), or 
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very intense (28%) salty taste. These trip decreases translate into an annual loss in welfare of 

$401 million, $656 million, and $1.02 billion in pessimistic scenarios where salinity levels in the 

drinking water increase to levels forecasted for in 2040, 2060 and 2080, respectively, due to SLR 

(with no new desalination technology and drinking water standards that allow higher salt 

concentrations).  

We have assessed the effect of attribute non-attendance in stated preference models of 

recreational trip-taking. Using latent class models we find a significant amount of inferred 

attribute non-attendance behavior in the data with only 40% to 69% of the sample fully engaged. 

The ANA behavior reduces the baseline willingness to pay estimates by 50%. This is due to the 

biased cost coefficient in the naïve model that does not consider ANA behavior. This bias could 

reflect well-known problems in stated preference data such as hypothetical bias or fat tails (Penn 

and Hu. 2023, Parsons and Myers 2016). We also find biased coefficients in the drinking water 

quality attributes. This bias is related to the problem of insensitivity to scope (Giguere et al. 

2020). Our results suggest that the influence of these stated preference behavioral anomalies on 

the results can be mitigated with ANA models.  

Accounting for ANA behavior significantly reduces aggregate losses in the pessimistic 

technology scenario. The annual welfare loss using the ECLC model is 34% lower for the 2040 

salinity levels, 57% lower for the 2060 levels, and 54% lower for the 2080 levels. These 

aggregate results do not account for all of the potential losses since we did not consider day trips 

and hold the number of overnight trips constant, only NC residents are included and these 

account for only 51% of all overnight trips to NC beaches, and we do not consider economic 

surplus losses on the producer side.  
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These results lead to at least two directions for future research with these data and other 

applications. First, we restricted our attention to the ECLC model. There are a large number of 

stated and inferred ANA models in the literature. Studies that have a focus on providing 

estimates for policy analysis should consider a broader range of models to determine the 

robustness of estimates from a single ANA approach. Second, our data is from an opt-in panel. 

Future research should compare attribute non-attendance models with opt-in and probability-

based samples to determine if data quality is a factor in studies like this. Finally, attention paid to 

ANA in SP studies is not widespread, despite a long history of evidence of ANA in the literature. 

Researchers should routinely consider the presence of ANA behavior in their data and, at the 

very least, estimate ANA models as a robustness check on standard models.  
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Figure 1. Logistic regression curves for three models and baseline water quality 
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Figure 2. Logistic regression curves for the Naïve and ECLC models with different levels of 

water quality 
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Table 1. Sample Demographics 

Variable Label Mean Std Dev 

Age age in years 46.38 15.43 

Female 1 if female, 0 otherwise 0.69 0.47 

House household size 2.74 1.20 

Children number of children 1.24 0.97 

Schooling years of schooling 14.25 2.17 

Income household income 79.11 55.63 

Sample size 

 

286 
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Table 2. Beach Trips 

  

Trips Over 

Previous 12 

Months 

Trips Over Next 

12 Months 

Variable Label Mean 

Std 

Dev Mean 

Std 

Dev 

Trips day or overnight trips  2.77 2.38 2.67 2.39 

Nights number of nights on most recent/next trip 3.09 1.60 3.03 1.57 

Party party size on most recent/next trip 3.94 1.31 3.99 1.39 

Spend spending on most recent/next trip 748.83 726.25 879.37 873.37 

Sample 

 

213 286 
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Table 3. Stated Preference Question Scenarios Data Summary 

 Scenario Question Sample 

size 

Yes Added 

Cost 

(mean) 

Slightly 

Salty 

Moderately 

Salty 

Very 

Salty 

1 

1 213 100% 0 0 0 0 

2 213 65% $569 0 0 0 

3 139 49% $1306 0 0 0 

2 

1 286 100% 0 0 0 0 

2 286 57% $560 0 0 0 

3 164 52% $1288 0 0 0 

3 

1 286 87% 0 45% 55% 0 

2 248 79% 0 0 0 100% 

3 196 50% $724 0 0 100% 
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Table 4. Stated Preference Question Yes Responses by Cost Amount 

 
Yes1 Yes1f Yes2 Yes2f Yes3f 

Cost Amount Yes Total %Yes Yes Total %Yes Yes Total %Yes Yes Total %Yes Yes Total %Yes 

100 19 19 100 
   

27 31 87 
   

13 18 72 

200 27 30 90 
   

17 26 65 
   

8 12 67 

300 8 14 57 
   

22 31 71 
   

9 12 75 

400 10 14 71 
   

13 20 65 
   

13 21 62 

500 12 18 67 
   

12 20 60 
   

10 13 77 

600 12 25 48 
   

24 38 63 
   

11 17 65 

700 14 23 61 
   

13 28 46 
   

4 15 27 

800 13 21 62 
   

17 32 53 
   

7 16 44 

900 9 24 38 
   

11 33 33 
   

4 11 36 

1000 15 25 60 
   

8 27 30 
   

5 15 33 

1100 
   

11 23 48 
   

18 34 53 3 9 33 

1200 
   

12 27 44 
   

20 37 54 1 4 25 

1300 
   

17 35 49 
   

23 39 59 3 11 27 

1400 
   

11 27 41 
   

11 22 50 3 11 27 

1500 
   

17 27 63 
   

14 32 44 5 11 45 

Total 139 213 65 68 139 49 164 286 57 86 164 52 99 196 51 

2(df) 30.92*** (9) 3.80 (4) 33.17*** (9) 1.73 (4) 26.94** (14) 

***p<0.01, **p<0.05 
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Table 5. Logistic regression model of overnight beach trips: Dependent variable is whether respondent would take a trip with higher 

cost and salty water 

 
Naïve M&L ECLC 

 
Coefficient SEa z Coefficient SE z Coefficient SE z 

Constant 2.369 0.444 5.34 2.872 0.131 21.97 3.171 0.163 19.45 

Cost -0.0021 0.0003 -7.06 -0.0049 0.0003 -20.01 -0.0056 0.0003 -17.83 

Slightly salty -0.268 0.106 -2.52 -0.837 0.333 -2.51 -1.192 0.341 -3.50 

Moderately salty -0.722 0.177 -4.08 -1.493 0.298 -5.01 -1.802 0.307 -5.86 

Very salty -0.939 0.207 -4.53 -1.625 0.194 -8.36 -2.822 0.400 -7.06 

AIC 1943.00 1594.10 1581.40 

Model 𝜒2 402.99 753.88 770.52 

Sample size 286 286 286 

Panel size 2031 2031 2031 

 Class probabilities 

Full Preservation 100% 69% 40% 

Full non-attendance 

 

31% 24% 

Cost non-attendance 

 

8% 

Very salty non-attendance 29% 

aClustered standard error. 
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Table 6. Truncated mean willingness to pay estimates 

 Naïve M&L ECLC 

 
Mean SE z Mean SE z Mean SE z 

Base case 1172.65 6.04 3.72 593.68 27.97 21.223 572.27 25.26 22.65 

WTP | Slightly 1057.30 313.09 3.38 437.56 58.46 7.48 375.55 50.72 7.40 

WTP | Moderate 869.55 277.26 3.14 325.31 46.49 7.00 284.30 40.28 7.06 

WTP | Very 784.48 288.65 2.72 304.19 26.84 11.33 157.25 40.53 3.88 

WTP | Slightly -115.35 47.04 -2.45 -156.11 59.49 -2.62 -196.71 51.67 -3.81 

WTP | Moderate -303.11 98.43 -3.08 -268.37 48.55 -5.53 -287.97 42.50 -6.78 

WTP | Very -388.17 74.44 -5.21 -289.49 33.26 -8.70 -415.01 40.44 -10.26 
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Table 7. Drinking water quality and weighted willingness to pay at North Carolina Beaches 

 Percent of Beaches 

Salty taste 2040 2060 2080 

Not Salty 45% 39% 6% 

Slightly Salty 23% 6% 29% 

Moderately Salty 16% 16% 10% 

Very Salty 3% 6% 0% 

No aquifer 13% 32% 55% 

 WTPa 

Naïve Model $995 $756 $537 

ECLC Model $430 $340 $210 

aWillingness to pay for an overnight beach trip weighted by salty taste and visitation 

frequency. 
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Table 8. Estimates of lost welfarea 

 Millions of 2021 Dollars 

Pessimistic Scenario 2040 2060 2080 

Naïve Model $490 $1,148 $1,752 

ECLC Model $401 $656 $1024 

 

Optimistic Scenario 2040 2060 2080 

Naïve Model $152 $163 $271 

ECLC Model $266 $285 $474 

aLosses are relative to baseline welfare of $3,232 million in the naïve model and $1,616 in the 

ECLC model. 
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Appendix 

Each location in Table A1 corresponds with a model location in Fiori and Anderson (2022) and 

overnight trips in our survey. In 2040, 45% of the model locations have viable fresh groundwater 

resources, but 13% have already lost a freshwater resource. By 2060, 32% of the model locations 

have lost their freshwater resource, while the percentage with fresh groundwater resources has 

dropped to 39%. By 2080, only those locations with low SLR rates and low to moderate 

permeability (e.g., Bald Head Island and Emerald Isle), or wide island widths and/or thicknesses 

and moderate to high SLR (e.g., Kitty Hawk, Buxton, and Ocracoke) retain their freshwater 

aquifers. Most other areas, an estimated 55%, are predicted to lose their groundwater resource. 

  



43 
 

 

Table A1. Modeled drinking water quality estimates based on Fiori and Anderson (2022) 

  Water Quality 

Beach Trip Frequency (%) 2040 2060 2080 

Corolla 8.04 Slightly Salty No Aquifer No Aquifer 

Duck 1.05 Slightly Salty Moderately Salty No Aquifer 

Kitty Hawk 4.55 Not Salty Not Salty Not Salty 

Kill Devil Hills 2.45 Slightly Salty Moderately Salty No Aquifer 

Nags Head 5.24 Moderately Salty No Aquifer No Aquifer 

Rodanthe 0.35 No Aquifer No Aquifer No Aquifer 

Waves 1.05 Very Salty No Aquifer No Aquifer 

Salvo 0 No Aquifer No Aquifer No Aquifer 

Avon 2.1 Moderately Salty No Aquifer No Aquifer 

Buxton 1.05 Not Salty Not Salty Slightly Salty 

Hatteras 3.85 Moderately Salty No Aquifer No Aquifer 

Ocracoke 2.45 Not Salty Not Salty Slightly Salty 

Fort Macon 0 Slightly Salty Very Salty No Aquifer 

Atlantic Beach 8.74 Slightly Salty Moderately Salty No Aquifer 

Pine Knoll Shores 2.1 Slightly Salty Moderately Salty No Aquifer 

Salter Path 0 Moderately Salty Very Salty No Aquifer 

Indian Beach 1.4 Moderately Salty No Aquifer No Aquifer 

Emerald Isle 10.14 Not Salty Not Salty Not Salty 

North Topsail Beach 2.8 Slightly Salty Moderately Salty No Aquifer 

Surf City 3.5 No Aquifer No Aquifer No Aquifer 

Topsail Beach 5.24 No Aquifer No Aquifer No Aquifer 

Wrightsville Beach 6.99 Not Salty Not Salty Slightly Salty 

Carolina Beach 12.94 Not Salty Not Salty Moderately Salty 

Kure Beach 1.75 Not Salty Slightly Salty Moderately Salty 

Fort Fisher 1.75 Not Salty Slightly Salty Moderately Salty 

Caswell Beach 0.7 Not Salty Not Salty Slightly Salty 

Yaupon Beach 0 Not Salty Not Salty Slightly Salty 

Long Beach 1.05 Not Salty Not Salty Slightly Salty 

Holden Beach 1.4 Not Salty Not Salty Slightly Salty 

Ocean Isle Beach 5.24 Not Salty Not Salty Slightly Salty 

Sunset Beach 2.1 Not Salty Not Salty Slightly Salty 
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