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ABSTRACT: This study provides step-by-step guidance for practitioners and local stakeholders 

on how to use existing study results to conduct benefit transfer, and ultimately make informed 

predictions of how improvements in lake water clarity may benefit surrounding communities. The 

procedures are demonstrated using a publicly available meta-dataset developed by the U.S. 

Environmental Protection Agency, and a subsequent meta-analysis that synthesizes the literature 

of how improvements in water clarity impacts home values. The benefit transfer procedures are 

demonstrated using a case study of 14 large lakes in Kosciusko County, Indiana. Lake-specific 

average increases in home values, as well as the value of the housing stock in aggregate, are 

calculated for illustrative improvements in lake water clarity. This analysis provides a critical 

bridge to better connect high-quality, academic research with real-world policy analysis, and 

ultimately serves to better equip local governments and stakeholders to make more informed policy 

and land use decisions.  

 

Keywords: benefit transfer; hedonic; meta-analysis; property value; lake; water clarity 

 

 

 

 

 

ACKNOWLEDGEMENTS 

The second author’s work on this research was supported by the Dean’s Club Summer Research Grant from the 

Walker College of Business at Appalachian State University. We thank Alex Hall for support early in the 

development of this project, and Nathan Bosch, Susan Cormier, Mike Elovitz, and Hale Thurston for providing 

helpful comments on earlier versions of this study. We are grateful to the Lilly Center at Grace College and Bill 

Holder at the Kosciusko County GIS Department for data support. The views expressed in this article are those of 

the authors and do not necessarily reflect the views or policies of the US Environmental Protection Agency. 



2 

 

INTRODUCTION 

When making decisions regarding land use, local infrastructure investments, and environmental 

policy, decision-makers are constrained by limited resources and competing needs.  As such, tools 

like benefit-cost analysis and economic impact analysis can help inform these decisions (see US 

EPA 2014). Such analyses can also inform the general public, which can be useful for outreach 

and in encouraging voluntary actions. At the same time, original studies on the environmental and 

economic benefits can be expensive, time-consuming, limited by data, and require technical 

expertise that may not be regularly accessible by all stakeholders.  

In lieu of original studies, benefit transfer can be used as a cost-effective way to inform benefit-

cost and economic impact analyses. Benefit transfer (BT) is when one takes the results of an 

existing economic benefits study for a specific location (i.e., the study site), and applies the results 

to estimate the benefits of a similar policy and location (i.e., the policy site). BT can be based on 

the results of one or several primary studies. Ideally, the study site and policy site would be as 

similar as possible. If no single study fits the policy site well, then practitioners may use meta-

analysis to synthesize and apply results across several studies (e.g., Stapler and Johnston, 2009; 

Schütt, 2022). A meta-analysis can use a variety of statistical approaches in order to draw 

conclusions, such as generating predicted values or estimating relevant effects, from the body of 

literature (Nelson and Kennedy, 2009; Stanley and Doucouliagos, 2012; Boyle and Wooldridge, 

2018). A meta-regression model is estimated using primary study observations and independent 

variables based on the study site characteristics, study design, and methodological choices to help 

explain variation in the values or relevant effects (Nelson and Kennedy, 2009; Stanley and 

Doucouliagos, 2012; Boyle and Wooldridge, 2018). Compiling results across numerous primary 

studies, formatting a meta-dataset, and estimating a defensible meta-analysis in and of itself can 

require a significant amount of technical expertise that may not always be available to agencies, 

advocacy groups, and other stakeholders. Nevertheless, meta-analyses are often conducted with 

the explicit goal of providing a tool that practitioners can directly apply to policies and locations 

of interest.   

In this applied case study, we provide an example and step-by-step guide of how practitioners can 

apply the results of a recent meta-analysis of studies examining how increases in water clarity 

impact home values (Guignet et al., 2022).1 Although the meta-analysis has already been 

conducted, the current study focuses on the technical elements for applying the results to policy. 

Changes in home values are often used to infer the social benefits from improvements in 

nonmarket goods, like local water quality, and impacts on housing stock values are sometimes of 

direct interest to decision-makers.  

Our illustrative example focuses on 14 large lakes in Kosciusko County, Indiana, which is in the 

Midwest region of the United States (see Figure 1). This case study is undertaken in collaboration 

with the Lilly Center for Lakes and Streams, which works with the local communities on lake and 

 

1 The underlying meta-data developed by Guignet et al. (2022) is publicly available and can be downloaded at  US 

EPA’s Environmental Dataset Gateway: “Data for property values and water quality”, 

https://doi.org/10.23719/1518489.  

https://doi.org/10.23719/1518489
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stream restoration and management issues.  The Lilly Center expressed interest in carrying out a 

BT exercise in order to better inform residents of how private and public actions that lead to 

improvements in lake water clarity may impact local home values.   

 

BACKGROUND 

Kosciusko County is in north central Indiana and is currently home to over 80,000 residents and 

thousands more visit the county each year for recreational activities. The county’s original 558 

square miles (1445 sq. km) were heavily forested in the southern portion and the northern sections 

consisted of large prairies - some tracts up to 10,000 acres (4046 hectares). Additionally, in both 

the northern and southern sections, there were many lowland areas that the early settlers labeled 

“wet prairies” (Royse 1919).  Much of the prairie area has since been converted to agricultural use. 

In 2017, the USDA (2017) reported that there are 261,647 acres (approximately 106,000 hectares) 

committed to agriculture - or approximately 73% of the county’s land area. 

Glaciation of the area led to the formation many natural lakes in the county. Many of these lakes 

are kettle lakes. One hundred and four lakes in the county are greater than five acres (Bosch et al. 

2019). The lakes are used for swimming, fishing, water sports as well as drinking water (Bosch et 

al. 2019). The largest lake, Lake Wawasee, measures 3,006 acres (1216.5 hectares). Kosciusko 

County lakes comprise over 10,700 acres (about 4330 hectares) of surface water. 

As displayed in Figure 1, 14 larger lakes (>75 acres or 30.35 hectares) were selected for this case 

study – Beaver Dam, Big Barbee, Big Chapman, Center, Dewart, James, Oswego, Pike, Syracuse, 

Tippecanoe, Wawasee, Webster, Winona, and Yellow Creek.  Twelve of the lakes are all-sport 

lakes that allow for wakeboarding, water skiing, and tubing. Consequently, they are some of the 

more popular lakes in the county for recreation and are desirable for residential and vacation 

homes. These lakes are the focus of research conducted by the Lilly Center at Grace College (Lilly 

Center, 2021). Water quality parameters and microcystin (blue-green algae toxin) have been 

monitored weekly at each of these 14 lakes during the summer season since 2015.  

The water quality of Kosciusko’s lakes and streams is influenced by the surrounding agricultural 

practices and other land use activities. Approximately 77% of Kosciusko County’s land area is 

designated as farmland (USDA 2021), with over 88% of that farmland allocated to a variety of 

crops (USDA 2017). Kosciusko County also has a large livestock operation and ranks fifth in the 

state for livestock cash receipts (USDA, 2021). A preliminary analysis by Daeger and Bosch 

suggests that most of the phosphorous loads contributing to many of the lakes in our analysis come 

from inflowing streams (Unpublished manuscript by A. Daeger and N. Bosch. 2021. Estimated 

2020 nutrient budgets for Winona Lake, the Tippecanoe Lake chain, and the Wawasee lake chain 

in Kosciusko County, IN. Lilly Center for Lakes and Streams). Although all the instream loading 

cannot be attributed to agriculture, it is likely a major contributor. Lawn runoff is also a large 

contributor of phosphorous into some of the lakes (Unpublished manuscript by A. Daeger and N. 

Bosch. 2021).  
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Lake communities in Kosciusko County are often densely populated with residential dwellings 

being located close to lakes. Private septic systems are the common wastewater treatment method 

used in these rural areas. While private septic systems can function for decades without issue, 

problems can arise due to the age of the system, quality of construction, size of the leach field, 

depth of the water table, and the type of soil. Groundwater in these areas often feed local lakes and 

failure of septic systems could be detrimental to water quality.  Studies conducted on the Barbee 

and Chapman Lake chains in the county revealed that the soils in these areas are not appropriate 

for septic systems (Richardson and Jones 2000; Giolitto and Jones 2001). As described by Giolitto 

and Jones (2001), Grant (1999) finds that this is typical of Indiana soils and suggested that 80% of 

the state’s soils are not suitable for a septic leach field. Grant (1999) also detected the presence of 

septic effluent on nearly all seven of the lakes on the Barbee chain (including Big Barbee Lake, 

which we analyze in this study). The infiltration of nutrients from septic tank effluent into 

waterways can promote excess growth of algae and macrophytes (Richardson and Jones 2000). 

Although most lakes in Kosciusko County have residences with aging private septic systems, 

public sewer systems have or are being installed at 11 of the 14 lakes included in this study. The 

installation of public sewer systems could lessen the potential impacts from failing septic systems.  

Plant and algae growth in many lakes is limited by nitrogen and phosphorus concentrations (Horne 

and Goldman 1994) and excessive amounts of these nutrients can lead to an overabundance of 

macrophyte or algae production. In summarizing other studies, Horne and Goldman (1994) 

indicated that in many lakes, the growth-limited nutrient was directly related to the maximum crop 

of phytoplankton. Phosphorus was statistically related to the maximum phytoplankton abundance 

in many temperate zone lakes. Although less common in temperate lakes, this relationship also 

applies to nitrogen and silica in lakes where these elements limit algal growth (Horne and Goldman 

1994). Consequently, limiting these nutrients would reduce algal blooms and increase water 

clarity. For instance, Painter et al. (1990) and Huser et al. (2016) demonstrated increases in water 

clarity using different treatments to reduce phosphorus loading into water bodies. Horne and 

Goldman (1994) reviewed studies that also showed marked improvements in water clarity after 

phosphorus reduction in sewage wastewater. 

 

METHODS 

To estimate changes in local home values due to improvement in lake water quality, and to provide 

others with the necessary information to perform their own analyses, we discuss the step-by-step 

procedures needed to conduct BT based on two approaches: unit value and function transfer.  A 

unit value approach transfers a point estimate or summary statistic. In contrast, a function transfer 

uses an estimated equation to quantitatively adjust the transferred value based on characteristics 

of a policy site, its population, etc. (e.g., see Rosenberger and Loomis, 2017; Johnston et al. 2017).  

The unit value approach is generally less onerous to implement, and so the decision of whether to 

use unit value or function transfer is often driven by the available data. That said, factors such as 

transfer accuracy and site-specific differences should be considered (see Results section for 

details).  
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As shown in Figure 2, the process for both unit value and function transfers is generally the same, 

except that a function transfer requires an initial step to predict the transfer estimate for the relevant 

outcome (additional details can be found in Rosenberger and Loomis, 2017). In this analysis, the 

transferred estimate is the price elasticity with respect to water clarity, where the elasticity 

represents the percentage change in home value due to a one-percent change in Secchi disk depth.2 

 

Step 1: Choose or predict relevant elasticity estimate from literature or meta-analysis.  

Benefit transfer based on unit values first requires one to select an appropriate estimate from a 

primary study that closely matches the policy site and context (e.g., similar type of lake, uses, 

surrounding population, etc.), and/or based on the results of a comparable meta-analysis.  In our 

context, we are using the results from a meta-analysis by Guignet et al. (2022).  Guignet et al. 

present two separate sets of unit value estimates – one for waterfront homes, and the other for non-

waterfront homes within 500 meters (⁓0.31 miles) of a waterbody (henceforth referred to as non-

waterfront homes).   

Let 𝜀𝑑̂ denote the elasticity estimate for a home in distance bin d, where the distance bin 

corresponds to either waterfront or non-waterfront homes (d=1 and d=2, respectively). For our 

unit value estimates, we choose the Random Effect Size Cluster-Adjusted (RESCA) weighted 

mean estimates from Guignet et al. (2022). These estimates are chosen because the calculations 

give more weight to more precise estimates, while also maintaining consideration of the clustered 

nature of the dataset (i.e., that there are multiple estimates for a single housing market (or cluster), 

and that dependence should be accounted for).3 As shown in Table 1, for waterfront homes the 

elasticity estimate is 𝜀1̂ = 0.109. This implies that a one-percent increase in Secchi disk depth 

leads to an average increase of 0.109% in the value of a waterfront home.  Similarly, the 𝜀2̂ =
0.026 for non-waterfront homes suggests a 0.026% increase in value for non-waterfront homes 

when a one-percent increase in Secchi disk depth is experienced.4  

Step 1 is slightly more complex when considering a function transfer approach.  This is because 

one can adjust the applied elasticity estimate to the policy site by plugging in values for the 

independent variables in a parameterized meta-regression model. Guignet et al. (2022) estimate a 

series of meta-regression models of the form: 

 

 

2 The basic elasticity formula is 𝜀 = (𝜕𝑝/𝜕𝑤𝑞)(𝑤𝑞/𝑝), where p is the home price and wq is a measure of water 

quality.  More information on the elasticity derivations can be found in the supplementary material from Guignet et 

al. (2022). 
3 See Guignet et al. (2022) for details. 
4 We demonstrate this unit value transfer approach based on aggregated estimates from the literature of how water 

clarity impacts home values, but note that Guignet et al. (2022) provide unit value estimates pertaining to the 

property value impacts associated with various other water quality measures, including chlorophyll a, fecal coliform 

counts, nutrient concentrations, etc. The same steps apply when conducting unit value transfers based on these other 

measures.  
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𝜀𝑑̂ = 𝛽0 + 𝜷𝟏𝒙𝒅 + 𝜷𝟐𝒛𝒅 + 𝑒𝑑       (1) 

 

where 𝜀𝑑̂ is estimated as a function of characteristics of the study area and waterbody (𝒙𝒅) and 

methodological variables characterizing the primary study and model assumptions (𝒛𝒅). The error 

term 𝑒𝑖𝑑𝑗 is assumed to be normally distributed. The parameters 𝛽0, 𝜷𝟏 and 𝜷𝟐 are unknown and 

are estimated by Guignet et al. (2022).   

Using the predicted parameter estimates 𝛽̂0, 𝜷̂𝟏 and 𝜷̂𝟐, one then plugs in “policy” site 

characteristics for 𝒙𝒅 and methodological attributes for 𝒛𝒅 in the meta-regression function. This 

allows one to predict elasticity estimates that are specific to the policy site. This is the main appeal 

of a function-based transfer approach over unit value transfer.  

For this function-transfer exercise, we apply the meta-regression results from the RESCA WLS 

Model 6 in Guignet et al. (2022). This is one of the most comprehensive meta-regression models 

in their paper, and they found this model to perform the best in terms of minimizing out-of-sample 

transfer errors. The meta-regression results are presented in Table 2. The positive and significant 

coefficient corresponding to waterfront suggests that the price elasticity with respect to an 

improvement in water clarity is higher among waterfront homes, which is in agreement when 

comparing the earlier waterfront and non-waterfront unit value elasticity estimates. The negative 

and significant coefficients corresponding to the three regional dummies (midwest, south, and 

west) suggest that an increase in water clarity is associated with smaller increases in the value of 

homes in these regions, compared to the northeast region.5 The positive 0.0601 coefficient 

corresponding to mean clarity suggests that a one-meter (3.3 ft) increase in baseline average Secchi 

disk depth corresponds to a 0.0601 increase in elasticity.  Put plainly, premiums for water clarity 

seem to be higher among waterbodies where the baseline average water clarity levels are higher.  

The remaining variables in Table 2 mainly reflect methodological choices of the primary studies, 

such as the statistical precision of the primary estimates (elasticity variance) and assumed 

functional forms (linear, linear-log, and log-linear; a double log specification is the omitted 

category).  One variable we see is largely influential later is the time trend. This assumed linear 

trend was meant to capture changes in empirical methods, data, and households’ tastes and 

preferences, and/or awareness of water quality over time (Rosenberger and Johnston, 2009). The 

positive and significant 0.0158 coefficient corresponding to the time trend suggests that the 

elasticities increase on average by 0.0158 percentage points every year. This positive trend could 

reflect any of the aforementioned factors, including advancements in methodological procedures 

and data practices, as well as changes in the environmental and housing market conditions.    

Let us expand the vectors in equation (1) and plug in the coefficient estimates from Table 2.  The 

parameterized transfer function is:  

 

5 Guignet et al. (2022) base their regions of the US on the US Census Bureau’s “Census Regions” 

(https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf, accessed 7 July 2023; see also Figure 

1 in Guignet et al., 2022). 
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𝜀𝑑̂ = 0.0034 + 0.0829(𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑜𝑛𝑡) − 0.1476(𝑚𝑖𝑑𝑤𝑒𝑠𝑡) − 0.2495(𝑠𝑜𝑢𝑡ℎ) 

 −0.4216(𝑤𝑒𝑠𝑡) + 0.0601(𝑚𝑒𝑎𝑛 𝑐𝑙𝑎𝑟𝑖𝑡𝑦) − 0.0317(𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑜𝑛𝑡 × 𝑚𝑒𝑎𝑛 𝑐𝑙𝑎𝑟𝑖𝑡𝑦) 

 +1.86 × 10−5(𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) + 0.0158(𝑡𝑖𝑚𝑒 𝑡𝑟𝑒𝑛𝑑) 

  −0.0953(𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑜𝑔) + 0.0493(𝑙𝑖𝑛𝑒𝑎𝑟) + −0.0001(𝑙𝑜𝑔𝑙𝑖𝑛𝑒𝑎𝑟)    (2) 

 

For the policy site and lake characteristics in the first two rows of equation (2), practitioners must 

simply plug in the relevant variables. Our benefit transfer application to lakes in Kosciusko 

County, Indiana, for example, imply that we will set midwest to one, but plug in a zero for the 

other region indicators (south and west).  The mean clarity variables will be based on each one of 

our 14 lakes, as described in the Data section and presented in Table 3. We plug in a value of one 

for waterfront when predicting elasticities for waterfront homes (𝜀1̂), and zero for non-waterfront 

homes (𝜀2̂).  

What values to plug in for the methodological variables in the last two rows of equation (2) can be 

a little trickier. For the methodological variables, practitioners should plug in values denoting “best 

practices” (Boyle and Wooldridge, 2018). Economic theory and simulation evidence suggest that 

assuming a linear hedonic price function is generally inappropriate (Bishop et al., 2020; Bockstael 

and McConnell, 2007). Hence, following this guidance, we set the linear specification indicator to 

zero. A similar motivation lends itself to setting the elasticity variance to zero (Stanley and 

Doucouliagos, 2012). When a “best practice” is not clear, Boyle and Wooldridge (2018) suggest 

using the average value across the literature. Therefore, based on the unweighted means among 

the remaining non-linear clarity elasticity observations in the meta-data, we recommend plugging 

in 32.0% and 23.2% for the linear-log and log-linear variables in equation (2).   

Finally, in order to infer an elasticity that is based on the most recent methods and data possible, 

the value for the time trend variable is set to 20 (which corresponds to 2014, the most recent year 

observed in the meta-dataset).  

The lake-specific elasticities are estimated for waterfront and non-waterfront homes around each 

of the 14 different Kosciusko County lakes analyzed. We present those results and further illustrate 

this estimation procedure in the Results section.   

 

Step 2: Calculate the dollar change in individual house prices. 

Whether the predicted elasticities for benefit-transfer are based on unit value or meta-regression 

estimates, the remaining steps are the same. After obtaining the estimated elasticities, the next step 

converts those elasticities to changes in the value of a property, measured in dollars. The estimated 

elasticities describe the percentage change in home price due to a one-percent change in Secchi 
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disk depth.  This can be re-arranged to show how the estimated change in price (∆𝑝) can be 

calculated by plugging the elasticity estimates (𝜀𝑑̂) into the following equation:  

 

∆𝑝𝑑 = 𝜀𝑑̂ × 𝑝𝑑
0 ×

∆𝑤𝑞

𝑤𝑞0         (3) 

 

To compute the change in price, the site-specific waterfront or non-waterfront elasticity (𝜀𝑑̂) is 

multiplied by the baseline house price for the waterfront and non-waterfront homes (𝑝𝑑
0).  This 

could be house-specific values based on available property assessment data or could be a 

corresponding average house price. This is then multiplied by the posited change in water clarity 

(∆𝑤𝑞), over the baseline water clarity levels (𝑤𝑞0). Lake-specific values for average 𝑝𝑑
0 and 𝑤𝑞0 

are displayed in Table 3, and discussed further in the Data and Results sections.   

 

Step 3: Extrapolate the results to all impacted houses.  

To calculate the total projected change in housing stock value, one must multiply the waterfront 

and non-waterfront price changes calculated in equation (3) by the number of impacted homes, 

and then sum the increase in value across waterfront and non-waterfront homes.  More formally, 

the total change in housing stock value (∆𝐻𝑆𝑉): 

∆𝐻𝑆𝑉 = (∆𝑝1 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑜𝑛𝑡 ℎ𝑜𝑚𝑒𝑠)  

     +(∆𝑝2 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑛𝑜𝑛𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑜𝑛𝑡 ℎ𝑜𝑚𝑒𝑠)    (4) 

 

Details on the number of waterfront and non-waterfront homes for each of the 14 Kosciusko 

County lakes analyzed are included in Table 3 and discussed next in the Data section.  

 

DATA 

Spatially explicit data on residential parcels were provided by the Kosciusko County Geographic 

Information Systems (GIS) Department. These data included baseline assessed home values and 

geographic coordinates. Distance to the nearest lake was then calculated. This BT analysis is of 

the 9,520 single-family and multi-family homes within 500 meters (⁓0.31 miles) of one of the 14 

lakes in our study.6 The majority of these homes (97%) are noted as single-family dwellings, which 

matches the common focus in the hedonic property value literature on single-family homes 

 

6 Residential properties classified as condos or mobile homes are excluded. We also excluded 61 properties where 

the property class description is not noted as a dwelling (i.e., is listed as “other residential structures” or “cash 

grain/general farm”). Nine additional properties were dropped because the total assessed value was listed as zero, 

leading to our final sample size of 9,520 residential parcels.  
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(Guignet et al., 2022). As described in the county data, 47% of these homes are located on the 

lakefront.   

The water quality variable examined in this case study is water clarity as measured by Secchi disk 

depth. A Secchi disk is a 20-cm weighted disk with alternating black and white quadrants that is 

lowered into the water. Depth is recorded at the point where the disk is no longer visible from the 

water’s surface.  These data are collected by the Lilly Center and the Indiana Division of Fish & 

Wildlife. Time frames vary by lake, but water clarity data are available at most of the 14 lakes 

from 1989-2021 or 1994-2021. Secchi depths are primarily measured in June, July, and August. 

There are a few samples from May and September.  There is a substantial amount of variability in 

the Secchi depths for each lake across the years.  Interquartile ranges averaged 3.0 ft and were 

spread from 0.6 ft at Pike Lake to 4.5 ft at Wawasee.  

 As shown in Table 3, there is noticeable variation across the lakes in terms of the number of 

homes, average assessed value of the homes, and baseline water clarity. Yellow Creek Lake has 

the smallest number of homes, with only 144 residences located within 500 meters (⁓0.31 miles). 

In contrast, Lake Wawasee has over 2,250 homes around it.  Assessed values of waterfront homes 

near these 14 lakes range from about $117k to $673k, on average. Non-waterfront home values 

are notably less, ranging from an average of $61,800 to just over $262k. Water clarity ranges from 

as little as just 32 inches (0.813 meters) in Pike Lake, to over 109 inches (2.77 meters) in Center 

Lake (see Table 3, as well as the map in Figure 1). These baseline water clarity levels were 

calculated as the average Secchi disk depth readings that the Lilly Center recorded for each lake 

from 2018 through 2021.7   

 

RESULTS 

The results of the unit value and function transfer estimates are for an illustrative, sustained 1-inch 

(2.54 centimeters) increase in average water clarity across all lakes. We then present an illustrative 

policy scenario that posits a 12-inch (0.3048 meter) sustained increase in average water clarity.  

 

Unit value transfer results.  

Table 4presents the results for all 14 lakes in our policy area (Kosciusko County), but we will 

focus on Lake Wawasee for purposes of discussion. Lake Wawasee is the largest natural lake in 

Indiana and one of the most popular lakes in Kosciusko County. Of the 14 lakes studied, it also 

has the greatest number of homes around it. To carry out the unit value transfer, we first follow 

Step 1 and take the estimated unit value elasticities from Table 1, which is 𝜀1̂ = 0.109 and  𝜀2̂ =

0.026 for waterfront and non-waterfront homes, respectively.  As can be seen by Table 4, the unit 

 

7 The Lilly Center provided the annual average for all readings for each lake, and we then averaged this across all 

four years.  We judged four years as a sufficient time period to reflect baseline clarity levels.  It captures more recent 

trends, while also trying to minimize the effect of any year-to-year fluctuations due to abnormal weather conditions 

or other natural processes.  
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value estimates of the elasticity (𝜀𝑑̂) are applied equally to each of the 14 lakes, regardless of 

differences in baseline water clarity levels.  

As per equation (3), we next take Step 2 and calculate the average change in home value by 

multiplying the estimated elasticities by the baseline home prices, and the percent change in water 

clarity. The latter values are all displayed in Table 3. Using Lake Wawasee as an example; the 

average waterfront home value is $652,447, and the baseline water clarity is a Secchi disk depth 

of 2.20 meters (86.5 inches). Converting our 1-inch increase in clarity to meters implies ∆𝑤𝑞 =

0.0254. Following equation (3), the average change in value for a waterfront home is: 

 

∆𝑝1 = 0.109 × 652,447 ×
0.0254

2.197
       (5) 

  = $822.20 

 

Note that to ease presentation we round some intermediate values in some equations. However, 

when displaying the final values for these illustrative calculations, we use the values derived 

directly from the programming code and that are presented in the results tables. Intermediate values 

are not rounded in the underlying calculations, even though some of the presented intermediate 

values in the example are rounded.  

Now turning to non-waterfront homes around Lake Wawasee, the baseline water clarity and 

change in water clarity values are the same, but the estimated unit value elasticity and baseline 

average home value differ; more specifically 𝜀2̂ = 0.026 and 𝑝2
0 = $148,502. The average change 

in price for non-waterfront homes around Lake Wawasee is calculated as:  

 

∆𝑝2 = 0.026 × 148,502 ×
0.0254

2.197
       (6) 

  = $44.60 

 

This estimate is substantially less due to the smaller elasticity (i.e., improvements to lake clarity 

impact homes farther from the waterfront less), as well as the lower baseline home values.  It is 

well established that waterfront properties are generally valued at a premium (e.g., Walsh et al. 

2011, Guignet et al. 2017, Wolf and Klaiber 2017), and that is reflected in our data as well.  

The estimated average change in home values for waterfront and non-waterfront homes around 

each of the 14 Kosciusko County lakes are presented in Table 4. The 95% confidence intervals 

presented in Table 4 are based on the same formulas, but use the corresponding upper and lower 

bounds of the elasticity estimates in Table 1.  

We next follow Step 3 and calculate the total change in housing stock value (∆𝐻𝑆𝑉) for each lake 

by applying the average change in value to all waterfront and non-waterfront homes, and then 



11 

 

summing across the two groups.  Following equation (4), we can calculate ∆𝐻𝑆𝑉 for Lake 

Wawasee, for example, as follows:  

 

  ∆𝐻𝑆𝑉 = (822.20 × 1500) + (44.60 × 757)     (7) 

 = $1,267,085  

 

where ∆𝑝1 = $822.20 and ∆𝑝1 = $44.60 come from equations (5) and (6), respectively, and the 

number of waterfront and non-waterfront homes around Lake Wawasee are from Table 3, and as 

discussed in the Data section, are based on GIS data from the Kosciusko County GIS Department. 

Overall, the unit value transfer projects that a sustained 1-inch increase in water clarity in Lake 

Wawasee would yield a total increase in housing stock value of $1.267 million. The results for the 

other lakes are presented in Table 4, and range anywhere from $22,728 at Center Lake to the 

$1.267 million in Lake Wawasee. These differences in projected increases in home values are 

largely driven by differences in the number of residential properties around these lakes, but 

variation in house prices and the composition of waterfront versus non-waterfront homes also play 

a role.  

 

Function transfer results.  

As before, we present the results for all 14 lakes in Kosciusko County but focus on Lake Wawasee 

for purposes of discussion.  As per Step 1, we first use the parameterized transfer function 

estimated by Guignet et al. (2022) and presented as equation (2) here, and then plug in policy site 

or lake-specific values.  As described in the methods section, we set 𝑚𝑖𝑑𝑤𝑒𝑠𝑡 = 1, and set the 

south and west regional indicators to zero. For Lake Wawasee, the mean baseline water clarity is  

𝑚𝑒𝑎𝑛 𝑐𝑙𝑎𝑟𝑖𝑡𝑦 = 86.5 inches (2.197 meters), as displayed in Table 3. Following Boyle and 

Wooldridge’s (2018) guidance for methodological variables, we set linear equal to zero, and plug 

in the corresponding proportions for the other functional forms in the literature based on Guignet 

et al.’s (2022) meta-dataset, more specifically 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑜𝑔 = 0.320 and 𝑙𝑜𝑔𝑙𝑖𝑛𝑒𝑎𝑟 = 0.232. For 

this function transfer, we also set 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 to zero (Stanley and Doucouliagos, 2012). 

In order to infer an elasticity that is based on the most recent methods and data possible, the value 

for the time trend variable is set to 20, which is the most recent year observed in the meta-dataset 

(2014). Plugging these values into equation (2), and for waterfront homes setting 𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑜𝑛𝑡 =

1 yields: 

 

𝜀1̂ = 0.0034 + 0.0829(1) − 0.1476(1) − 0.2495(0) 

 −0.4216(0) + 0.0601(2.197) − 0.0317(1 × 2.197) 

 +1.86 × 10−5(0) + 0.0158(20) 
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  −0.0953(0.320) + 0.0493(0) + −0.0001(0.232)     (8) 

  = 0.2867 

 

The elasticity calculation for non-waterfront homes around Lake Wawasee is similar, but now 

𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑜𝑛𝑡 = 0 is plugged in. Otherwise, the calculation is the same, as shown:  

 

𝜀2̂ = 0.0034 + 0.0829(0) − 0.1476(1) − 0.2495(0) 

 −0.4216(0) + 0.0601(2.197) − 0.0317(0 × 2.197) 

 +1.86 × 10−5(0) + 0.0158(20) 

  −0.0953(0.320) + 0.0493(0) + −0.0001(0.232)     (9) 

  = 0.2734 

 

Here we calculate the corresponding confidence intervals in Table 5 using the delta method 

(Greene, 2003, page 70),8 but one can also use Monte Carlo simulations (Hansen, 2022). The full 

variance-covariance matrix that is needed to derive a statistical confidence interval in either case 

is provided in the Appendix (Table A1).   

As depicted in Figure 2, the remaining function transfer steps are similar to that of a unit value 

transfer.  In Step 2, we again follow equation (3) and calculate the average change in the value of 

a home by multiplying the estimated elasticities by the baseline home prices, and the percent 

change in water clarity. Again, applying the illustrative 1-inch increase in water clarity (i.e., setting 

∆𝑤𝑞 = 0.0254 meters), and plugging in the baseline Secchi disk depth and of 2.20 meters (86.5 

inches) and average waterfront home value of $652,447, and $148,502 average non-waterfront 

home value, for Lake Wawasee yields the following waterfront and non-waterfront average 

changes in home value, respectively:  

 

∆𝑝1 = 0.2867 × 652,447 ×
0.0254

2.197
       (10) 

  = $2,162.94 

 

∆𝑝2 = 0.026 × 148,502 ×
0.0254

2.197
       (11) 

 

8 More specifically, we use the “nlcom” command in Stata 17.  
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  = $469.43 

 

Finally, as per Step 3 we calculate the total change in housing stock value (∆𝐻𝑆𝑉) for each lake. 

Applying equation (4) to the case of Lake Wawasee, and plugging the corresponding parcel counts 

from Table 3, as well as the estimates from equations (10) and (11), the final calculation of the 

function transfer is:  

 

  ∆𝐻𝑆𝑉 = (2,162.94 × 1500) + (469.43 × 757)     (12) 

 = $3,599,774  

 

And so, the total projected increase in home values around Lake Wawasee due to a one-inch 

increase in water clarity is almost $3.6 million. The results for the other lakes are presented in 

Table 4, and range anywhere from $109,773 at Yellow Creek Lake to the almost $3.6 million at 

Lake Wawasee.  

 

Comparison of unit value versus function transfer results.  

In general, comparison of Tables 3 and 4 demonstrate that estimated increases in home values 

based on the unit value transfers are substantially smaller. For example, comparison of the average 

increase in the value of a waterfront home at Lake Wawasee is $822 based on the unit value 

transfer, but $2,163 based on the function transfer. The total increase in housing stock value due 

to a 1-inch increase in water clarity is $1.267 million versus $3.600 million – a 184% difference.  

The literature is mixed as to whether unit value or function transfers provide more accurate transfer 

estimates.  The general motivation for function transfers is that they allow researchers to adjust the 

predicted estimates to a particular policy context, and therefore provide more accurate estimates 

(Johnston and Rosenberger, 2010; Rosenberger and Loomis, 2017).  Several empirical studies have 

found, however, that simpler unit value predictions perform better in practice (Barton 2002; 

Lindhjem and Navrud 2008; Johnston and Duke 2010; Bateman et al. 2011; Klemick et al. 2018).  

Guignet et al. (2022) found that the out-of-sample transfer performance was similar across the unit 

value estimates and the function transfer model used in the current study.   

One must be careful not to confuse similar out-of-sample prediction performance with yielding 

similar transferred estimates in practice.  In this study we find that the estimated increases in home 

values are substantially less from the unit value transfer versus the function transfer.  The much 

larger function transfer estimates are driven primarily by the time trend variable in the meta-

regression (see Table 2).  Recall that this linear trend variable was included to capture changes in 

empirical methods, data, and households’ tastes and preferences, and/or awareness of water quality 

over time (Rosenberger and Johnston, 2009). 
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In our benefit transfer exercise, we plug in a value of 20 to reflect the most recent year observed 

in the meta-dataset (2014), which is meant to ensure that the transferred values reflect the most 

recent study results. This trend may account for improved estimates due to better methodological 

and data practices, higher quality and more abundant data, as well as the more current situation in 

terms of preferences, income, market and environmental conditions, etc.  In contrast, the weights 

used in the unit value estimates do not distinguish between time periods, essentially treating old 

and new studies evenly. For this reason, we generally favor the function transfer approach.  

This exercise highlights that one must consider the implications of predicted benefit transfer results 

across different methods, and not just consider out-of-sample performance. Although both 

approaches developed by Guignet et al. (2022) suggested similar out-of-sample performance, we 

find that they can yield very different results when carrying out an actual benefit transfer exercise.   

 

An illustrative policy scenario: a 12-inch increase in water clarity.  

Studies of several different management options implemented at various lakes across the US have 

shown that an increase in Secchi depth in the range of 12 inches is plausible and could be 

accomplished in various ways. For example, in Shagawa Lake, Minnesota, phosphorus present in 

treated domestic wastewater entering the lake was reduced by 80%. This resulted in a 1-meter (3.3 

ft) improvement in water clarity three years post-treatment (Horne and Goldman 1994). Lake 

Washington in Seattle experienced a 2 to 3 meters (6.6 to 9.8 ft) improvement in water clarity after 

50% of the sewage entering the lake was diverted (Horne and Goldman 1994).  After removing 

common carp from Pickerel Lake, Minnesota, Huser et al. (2022) found a 600% increase in clarity 

from 0.2 to 1.2 meters (3.3 ft).   

The Lilly Center and other stakeholders in Kosciusko County are interested in illustrating the 

potential property value gains for a similar, sustained average increase of 12-inches in water clarity 

at the 14 lakes.  We do so here using a function transfer approach. The BT steps are the same. As 

can be seen in equation (3), one must simply set ∆𝑤𝑞 = 0.3048 meters (12 inches), instead of 

0.0245 meters (1 inch).  We also divide ∆𝐻𝑆𝑉 by the total number of waterfront and non-

waterfront homes within 500 meters (⁓0.31 miles) of each lake (see Table 3) to calculate an 

average per home increase in value for residences around each lake. Estimates of ∆𝐻𝑆𝑉 are 

displayed in Panel (A) of Figure 3 for each of the 14 lakes. Lake Wawasee clearly would 

experience the largest increase in total housing stock value under this scenario, suggesting home 

values would increase over $43 million. This result is largely driven by the greater number of 

homes around Lake Wawasee.  Panel (B) of Figure 3 shows that the average increase per home is 

similar across several of the lakes. For example, the average increase projected for homes around 

James Lake in this scenario is about $18,000 per home, which is just slightly below the average 

increase of about $19,140 projected for homes around Lake Wawasee.  At the same time, James 

Lake has significantly less homes around it, and so the projected increase in total housing stock 

value is projected to be much less ($3.1 million, compared to the $43.2 million projected for Lake 

Wawasee). Summing the ∆𝐻𝑆𝑉 estimates across all 14 lakes suggests that if an average sustained 

increase of 12 inches is achieved across all lakes, then Kosciusko County is projected to experience 



15 

 

a total increase in housing values of almost $122 million. This implies an average of $8.7 million 

per lake.  

 

CONCLUSION 

There are substantial uncertainties when projecting future scenarios. One can never perfectly 

forecast the future, and the same is true when performing benefit transfer (BT) like the unit value 

and function transfer approaches outlined. Nonetheless, BT and the approaches illustrated in our 

case study provide a useful benchmark to inform local policy, land use and management decisions; 

as well as inform residents, businesses, and other stakeholders. This study is meant as a step-by-

step guide to help local governments, advocacy groups, etc. to conduct their own BT exercises 

using a readily accessible public meta-dataset developed by the US EPA, and a subsequent meta-

analysis by Guignet et al. (2022).  Our hope is that making this tool more accessible to resource 

constrained communities and groups will help empower local stakeholders to make more optimal 

decisions.  The results of such BT exercises may reveal economic incentives to encourage lake 

residents to be better stewards of their property. Being able to demonstrate that increased water 

clarity can lead to higher property values may encourage lake homeowners to implement best 

management practices to improve water quality. If residents understand that protecting their 

shoreline from erosion, testing soil to minimize lawn fertilizer applications, and composting yard 

waste could result in increased property values, they may be more likely to participate in activities 

that improve lake health.  

A broader lesson that came out of our case study of Kosciusko County was that similar predictive 

performance across meta-analysis models and BT approaches does not necessarily imply similar 

projected benefits.  Although the unit value and function transfer approaches applied here were 

found to perform similarly in terms of out-of-sample prediction by Guignet et al. (2022), we see 

that the projected increases in home values are quite different. Perhaps practitioners should not 

rely solely on predictive performance when choosing an appropriate approach and model for BT. 

Sound and transparent rationale, and ideally economic theory, are also important when conducting 

BT. When in doubt, sensitivity analysis using multiple approaches and models is recommended.  
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FIGURES AND TABLES 

Figure 1. Kosciusko County and Average Baseline Water Clarity across 14 Larger Lakes. 

 
Note: Kosciusko County is depicted by the larger green polygon. Baseline Secchi disk depth is based on the average 

of the annual mean summertime measures from 2018 to 2021.  
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Figure 2. Benefit Transfer (BT) Steps for Unit Value versus Function-transfer Approaches. 
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Figure 3. Projected Increase in Home Values for a 12-inch Sustained Increase in Water Clarity. 
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Table 1. Unit value estimates of the price elasticity with respect to water clarity.  

  
Weighted Mean Elasticity 

  

   Waterfront 0.109*** 

 
[0.099, 0.118] 

   Non-waterfront w/in 500 m 0.026*** 

  [0.017, 0.034] 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Random Effect Size Cluster-

Adjusted (RESCA) weighted mean estimates of the price elasticity with 

respect to water clarity (i.e., Secchi disk depth). Taken from column (4) 

in Table 1 of Guignet et al. (2022). 95% confidence interval in brackets. 

95% confidence interval in brackets. 
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Table 2. Meta-regression model of price elasticity with respect to water clarity. 

VARIABLESa Meta-regression Model 6 

  

Waterfronta 0.0829** 

 (0.031) 

Midwesta -0.1476*** 

 (0.039) 

Southa -0.2495*** 

 (0.044) 

Westa -0.4216*** 

 (0.077) 

Mean clarity  0.0601*** 

 (0.022) 

Waterfront × mean clarity  -0.0317 

 (0.024) 

Elasticity variance 1.86E-05 

 (1.89E-05) 

Time trend 0.0158*** 

 (0.002) 

Linear-loga -0.0953* 

 (0.049) 

Lineara 0.0493 

 (0.052) 

Log-lineara -0.0001 

 (0.005) 

Constant 0.0034 

 (0.063) 

  

Observations 260 

Adjusted R-squared 0.222 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Random Effect Size 

Cluster-Adjusted (RESCA) Weighted Least Squares meta-

regression model. Taken from column (6) in Table 4 of 

Guignet et al. (2022). Clustered-robust standard errors in 

parentheses.  

(a) Independent variables that are dummy variables.  
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Table 3. Descriptive statistics by lake. 

  

Number of homes within 500 meters (⁓0.31 miles)  Average Home Value 

(𝑝𝑑
0) 

Baseline Water Clarity 

(𝑤𝑞0) 

Lake Waterfront Non-waterfront Total Waterfront ($) Non-waterfront ($) Inches Meters 

        

Beaver Dam Lake 112 118 230 117,274 61,805 40.3 1.024 

Big Barbee Lake 188 150 338 262,241 139,245 48.3 1.226 

Big Chapman Lake 384 289 673 308,728 194,029 93.1 2.364 

Center Lake 60 279 339 231,400 134,049 109.4 2.778 

Dewart Lake 254 244 498 276,695 129,394 105.7 2.684 

James Lake 69 108 177 599,913 263,552 69.3 1.759 

Lake Wawasee 1,500 757 2,257 652,447 148,502 86.5 2.197 

Oswego Lake 111 93 204 453,747 145,009 95.7 2.432 

Pike Lake 128 428 556 219,998 110,809 31.9 0.809 

Syracuse Lake 263 526 789 673,022 130,194 105.4 2.677 

Tippecanoe Lake 529 304 833 511,746 192,296 94.6 2.402 

Webster Lake 501 546 1,047 264,211 126,551 66.7 1.693 

Winona Lake 291 1,144 1,435 435,478 155,433 45.9 1.165 

Yellow Creek Lake 84 60 144 127,776 99,837 35.0 0.890 

 

 

 

 

 

 



25 

 

Table 4. Unit value transfer results for 1-inch (2.54 centimeters) increase in water clarity. 

  Waterfront Non-waterfront within 500 meters (⁓0.31 miles) Total 

  
Elasticity 

(𝜀1̂) 

Avg Increase in Value ($)  

(∆𝑝1) 

Elasticity 

(𝜀2̂) 

Avg Increase in Value ($) 

(∆𝑝2) 

Increase in Value ($) 

(∆𝐻𝑆𝑉) 

      

Beaver Dam Lake 0.109 317.08 0.026 39.86 40,216 

 [0.099 -0.118] [287.99 - 343.26] [0.017 - 0.034] [26.06 - 52.12] [35,330 - 55,595] 

Big Barbee Lake 0.109 592.20 0.026 75.01 122,585 

 [0.099 -0.118] [537.87 - 641.10] [0.017 - 0.034] [49.04 - 98.09] [108,476 - 135,240] 

Big Chapman Lake 0.109 361.57 0.026 54.20 154,506 

 [0.099 -0.118] [328.40 - 391.42] [0.017 - 0.034] [35.44 - 70.88] [136,346 - 170,790] 

Center Lake 0.109 230.62 0.026 31.87 22,728 

 [0.099 -0.118] [209.46 - 249.66] [0.017 - 0.034] [20.84 - 41.67] [18,381 - 26,606] 

Dewart Lake 0.109 285.42 0.026 31.84 80,264 

 [0.099 -0.118] [259.23 - 308.98] [0.017 - 0.034] [20.82 - 41.63] [70,924 - 88,640] 

James Lake 0.109 944.24 0.026 98.95 75,839 

 [0.099 -0.118] [857.61 - 1,022.21] [0.017 - 0.034] [64.70 - 129.39] [66,163 - 84,507] 

Lake Wawasee 0.109 822.20 0.026 44.64 1,267,085 

 [0.099 -0.118] [746.76 - 890.08] [0.017 - 0.034] [29.19 - 58.37] [1,142,241 - 1,379,314] 

Oswego Lake 0.109 516.55 0.026 39.38 60,999 

 [0.099 -0.118] [469.16 - 559.20] [0.017 - 0.034] [25.75 - 51.49] [54,471 - 66,860] 

Pike Lake 0.109 752.89 0.026 90.46 135,084 

 [0.099 -0.118] [683.81 - 815.05] [0.017 - 0.034] [59.14 - 118.29] [112,842 - 154,954] 

Syracuse Lake 0.109 696.05 0.026 32.12 199,956 

 [0.099 -0.118] [632.19 - 753.52] [0.017 - 0.034] [21.00 - 42.00] [177,313 - 220,269] 

Tippecanoe Lake 0.109 589.85 0.026 52.87 328,103 

 [0.099 -0.118] [535.74 - 638.55] [0.017 - 0.034] [34.57 - 69.14] [293,913 - 358,813] 

Webster Lake 0.109 432.07 0.026 49.36 243,420 

 [0.099 -0.118] [392.43 - 467.75] [0.017 - 0.034] [32.28 - 64.55] [214,231 - 269,587] 

Winona Lake 0.109 1,034.91 0.026 88.11 401,955 

 [0.099 -0.118] [939.96 - 1,120.36] [0.017 - 0.034] [57.61 - 115.22] [339,434 - 457,836] 

Yellow Creek Lake 0.109 397.48 0.026 74.08 37,834 

  [0.099 -0.118] [361.02 - 430.30] [0.017 - 0.034] [48.44 - 96.88] [33,232 - 41,958] 

Note: All estimates are statistically significant at conventional levels (p≤0.01). 95% confidence intervals displayed in brackets.  
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Table 5. Function transfer results for 1-inch (2.54 centimeters) increase in water clarity. 

  Waterfront Non-waterfront within 500 meters (⁓0.31 miles) Total 

  

Elasticity 

(𝜀1̂) 

Avg Increase in Value ($)  

(∆𝑝1) 

Elasticity 

(𝜀2̂) 

Avg Increase in Value ($) 

(∆𝑝2) 

Increase in Value ($) 

(∆𝐻𝑆𝑉) 

      
Beaver Dam Lake 0.2534 737.14 0.2029 311.12 119,272 

 [0.2104 - 0.2965] [611.92 - 862.37] [0.1580 - 0.2479] [242.21 - 380.02] [98,907 - 139,637] 

Big Barbee Lake 0.2591 1407.96 0.2151 620.47 357,766 

 [0.2184 - 0.2999] [1186.45 - 1629.47] [0.1659 - 0.2642] [478.63 - 762.30] [299,559 - 415,973] 

Big Chapman Lake 0.2915 966.92 0.2835 590.94 542,077 

 [0.2450 - 0.3380] [812.64 - 1,121.19] [0.1968 - 0.3701] [410.31 - 771.56] [443,751 - 640,403] 

Center Lake 0.3033 641.62 0.3083 377.91 143,934 

 [0.2484 - 0.3581] [525.55 - 757.69] [0.2056 - 0.4111] [251.96 - 503.86] [104,909 - 182,959] 

Dewart Lake 0.3006 787.09 0.3027 370.65 290,358 

 [0.2478 - 0.3534] [648.87 - 925.30] [0.2036 - 0.4017] [249.36 - 491.93] [234,194 - 346,521] 

James Lake 0.2743 2,376.16 0.2471 940.40 265,519 

 [0.2348 - 0.3138] [2,033.62 - 2,718.71] [0.1823 - 0.3119] [693.83 - 1,186.98] [219,833 - 311,205] 

Lake Wawasee 0.2867 2,162.94 0.2734 469.43 3,599,774 

 [0.2429 - 0.3306] [1,832.25 - 2,493.64] [0.1931 - 0.3538] [331.48 - 607.39] [3,036,347 - 4,163,202] 

Oswego Lake 0.2934 1,390.53 0.2875 435.48 194,848 

 [0.2457 - 0.3412] [1,164.35 - 1,616.71] [0.1983 - 0.3768] [300.32 - 570.64] [161,213 - 228,484] 

Pike Lake 0.2473 1,708.12 0.1900 661.09 501,585 

 [0.2009 - 0.2937] [1,387.92 - 2,028.32] [0.1480 - 0.2320] [514.92 - 807.26] [407,425 - 595,745] 

Syracuse Lake 0.3001 1,923.59 0.3017 374.05 702,652 

 [0.2477 - 0.3525] [1,587.59 - 2,259.58] [0.2033 - 0.4000] [252.06 - 496.03] [569,749 - 835,555] 

Tippecanoe Lake 0.2926 1,583.24 0.2857 581.04 1,014,172 

 [0.2454 - 0.3398] [1,327.93 - 1,838.56] [0.1976 - 0.3738] [401.91 - 760.17] [843,063 - 1,185,281] 

Webster Lake 0.2724 1,079.86 0.2431 461.63 793,062 

 [0.2331 - 0.3117] [924.10 - 1,235.62] [0.1805 - 0.3057] [342.76 - 580.50] [662,791 - 923,333] 

Winona Lake 0.2574 2.444.02 0.2114 716.44 1,530,817 

 [0.2160 - 0.2988] [2,051.28 - 2,837] [0.1636 - 0.2592] [554.58 - 878.30] [1,255,233 - 1,806,401] 

Yellow Creek Lake 0.2496 910.19 0.1949 555.29 109,773 

  [0.2046 - 0.2946] [746.04 - 1,074.35] [0.1520 - 0.2378] [433.03 - 677.54] [90,394 - 129,153] 

Note: All estimates are statistically significant at conventional levels (p≤0.01). 95% confidence intervals displayed in brackets.  
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ONLINE APPENDIX 

 

Table A1. Variance-Covariance Matrix for Meta-regression in Table 2 (Taken from Table E2 in 

Online Appendix of Guignet et al., 2022). 

 Waterfront 

Mean  

clarity  

Waterfront  

× mean clarity  
Midwest South West 

Waterfront 9.92E-04           

Mean clarity  4.62E-04 4.87E-04         

Waterfront × mean clarity  -6.22E-04 -4.04E-04 5.91E-04       

Midwest -4.36E-04 -1.33E-04 4.48E-04 1.54E-03     

South -2.43E-04 9.45E-05 3.03E-04 1.56E-03 1.90E-03   

West 8.42E-05 -4.39E-04 -3.54E-04 3.15E-04 7.71E-05 5.91E-03 

Elasticity variance -2.58E-09 -8.66E-09 6.56E-09 -3.78E-08 -4.70E-08 -3.84E-08 

Time trend 3.48E-05 4.14E-05 -3.20E-05 -1.22E-05 9.13E-06 -5.49E-05 

Linear-log 4.58E-04 1.30E-04 -7.40E-04 -3.23E-04 -2.95E-04 2.39E-03 

Linear -3.32E-04 -8.91E-05 2.34E-04 1.78E-04 1.15E-04 -1.78E-03 

Log-linear 2.95E-05 1.72E-05 -3.23E-06 1.98E-05 8.55E-05 -2.63E-05 

Constant -6.79E-04 -1.03E-03 4.54E-04 -1.31E-03 -1.97E-03 9.71E-04 

 

 

Elasticity  

variance 

Time  

trend 
Linear-log Linear Log-linear Constant 

Waterfront             

Mean clarity              

Waterfront × mean clarity              

Midwest             

South             

West             

Elasticity variance 3.57E-10           

Time trend -1.27E-09 4.20E-06         

Linear-log -2.52E-08 1.01E-05 2.44E-03       

Linear -4.37E-09 3.69E-06 -3.32E-04 2.67E-03     

Log-linear 1.97E-10 1.07E-06 -2.38E-05 -1.59E-05 2.25E-05   

Constant 7.35E-08 -9.36E-05 1.20E-04 -4.34E-05 -8.10E-05 4.02E-03 
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