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Property values, water quality, and benefit transfer: 
A nationwide meta-analysis 

 
 
 
 
 
 
 
 
 
 
 
ABSTRACT: We conduct a comprehensive meta-analysis of 36 studies that examine the effects 
of water quality on housing values in the United States. The meta-dataset includes 656 unique 
estimates, and entails a cluster structure that accounts for property price effects at different 
distances from a waterbody. Focusing on water clarity, we estimate meta-regressions that account 
for within-cluster dependence, statistical precision, housing market and waterbody heterogeneity, 
publication bias, and best methodological practices. While we find evidence of systematic 
heterogeneity, the median out-of-sample transfer errors are relatively large. We discuss the 
implications for benefit transfer and identify future work to improve transfer performance. 
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1. INTRODUCTION 

The hedonic literature examining the impacts of surface water quality on residential 

property values began over 50 years ago with David’s (1968) report. Since then this literature has 

evolved significantly. To assess this literature’s aptness for supporting water quality decisions, we 

use meta-analytic methods to synthesize and draw key conclusions from 36 unique studies in the 

United States (US). There are several existing meta-analyses of hedonic property value studies, 

including applications to air quality (Smith and Huang, 1993, 1995), contaminated sites (Messer 

et al., 2006; Kiel and Williams, 2007), open space (Mazzotta et al., 2014), and noise (Nelson, 

2004). However, to our knowledge this study is the first comprehensive and rigorous meta-analysis 

of the hedonic literature examining surface water quality.1  

The results from meta-analyses can help make predictions for benefit transfer – where an 

analyst uses the predicted outcomes to infer ex ante or ex post impacts of some policy action, in 

lieu of conducting a new original study.  Benefit analyses of public policies often rely on benefit 

transfer because original studies require a lot of time and money, or are infeasible due to data 

constraints. In fact, benefit transfer is one of the most common approaches used to complete 

benefit-cost analyses at the US Environmental Protection Agency (US EPA, 2010; Newbold et al. 

2018). Improving benefit transfer, as well as combining limited, but heterogeneous, information 

for surface water quality changes, remains a priority for policy makers (Newbold et al., 2018). 

Addressing this priority, our study aggregates this literature and systematically calculates 

comparable within- and cross-study elasticity estimates by accounting for differences in functional 

forms, assumed price-distance gradients, and baseline conditions. We convert the primary study 

coefficient estimates to common elasticity and semi-elasticity measures for both waterfront and 

near-waterfront homes, and use Monte Carlo simulations to estimate the corresponding standard 
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errors. Each study yields numerous meta-observations due to multiple study areas, water quality 

metrics, and model specifications, leading to a meta-dataset that contains over 650 unique 

observations. 

We find considerable differences across the studies in the meta-dataset in terms of how 

studies quantified water quality, the type of waterbody studied, and the region of the US examined. 

We often find it difficult to convert the disparate water quality measures to a common metric. The 

meta-regression models in this study focus on water clarity, where there are sufficient meta-

observations (n=260) for regression analysis. In the absence of clear guidance on the most 

appropriate estimation approach for meta-regressions, a variety of models are estimated.  These 

include weighted least squares (WLS), Random Effects (RE) Panel models, and the Mundlak 

(1978) regression model that was recently suggested by Boyle and Wooldridge (2018) as an 

alternative when estimating meta-regressions for benefit transfer.     

We test for systematic heterogeneity in the housing price elasticities across different 

regions and types of waterbodies, and account for best methodological practices and publication 

bias in the literature.  Benefit transfer performance across the different models are compared using 

an out-of-sample transfer error exercise. We find that the simple WLS meta-regression models 

yield the lowest transfer error.  

Along with recommendations to practitioners conducting benefit transfer, we provide brief 

guidance on combining our results with available data to assess local, regional, and national 

policies affecting water quality. We also highlight gaps in the literature regarding the types of 

waterbodies and regions covered, and the disconnect between the water quality metrics examined 

by economists versus those by water quality modelers and policy makers.  
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The remainder of the paper is organized as follows.  First, we describe the meta-dataset, 

including how we identified studies, our approach to format comparable elasticity estimates, and 

the mean elasticity estimates.  Section 3 describes the meta-regression models, and section 4 

presents the results.  We end with a discussion of the limitations of our analysis, implications for 

benefit transfer, and possible directions for future research.   

 

2. META-DATASET 

2.1 Identifying Candidate Studies and Inclusion Criteria 

In developing the meta-dataset, we followed the “Meta-Analysis of Economics Research 

Reporting Guidelines” for searching and compiling the hedonic literature (Stanley et al., 2013).2  

We focused on studies examining the relationship between residential property values and 

measures of surface water quality.3  In total, we identified 65 studies in the published and grey 

literature that were potentially relevant. To facilitate linkages between water quality models and 

economic valuation, and ultimately to perform more defensible benefit transfers for US policies, 

focus was drawn to the 36 unique primary studies that examined surface water quality in the US 

using objective water quality measures. More specifically, 29 studies were dropped after further 

screening because an objective water quality measure was not used, the study area was outside of 

the US, a working paper or other grey literature study became redundant with a later peer-reviewed 

publication that is in the meta-dataset, or the research was not a primary study (e.g., a literature 

review).  The remaining 36 studies were selected for inclusion in the final meta-dataset.4 Although 

it was published after the construction of the meta-dataset, the list of identified studies was 

compared to an extensive literature review by Nicholls and Crompton (2018), which provided 

additional assurance that our identified set of studies is comprehensive.  
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2.2 Meta-dataset Structure and Details 

From the selected 36 studies, 26 are published in peer-reviewed academic journals, three 

are working papers, three are Master’s or PhD theses, two are government reports, one is a 

presentation, and one is a book chapter.  The year of publication ranges from 1979-2017. The 

majority of primary studies examine freshwater lakes (24 studies), followed by estuaries (6 

studies), rivers (2 studies) and small rivers and streams (3 studies). One study examines both lakes 

and rivers. As shown in Figure 1, spatial coverage is limited in the southwest, west-central, and 

parts of the southern US, while the Northeast and some parts of the Midwest and South have the 

most studies (e.g., Maine, Maryland, and Ohio have four studies while Florida has five studies).   

The meta-dataset consists of a panel or cluster structure, where each study can contribute 

multiple unique observations. Individual studies may analyze multiple study areas, water quality 

metrics, and model specifications. Additionally, some hedonic studies examine how the property 

value effects vary with distance from the waterbody.  Therefore, distance can be an important 

factor when transferring the estimated capitalization effects to a new policy region. The 

incorporation of this distance dimension in our meta-dataset is a novel contribution (as described 

below).  

There are 30 different measures of water quality examined in the literature. To be fully 

transparent and provide the most information for practitioners to choose from when conducting 

benefit transfers, the meta-dataset includes all water quality measures. The pooling of estimates 

across different water quality measures, however, is not necessarily appropriate. Even when 

converted to elasticities, a one-percent change in Secchi disk depth means something very different 

than a one-percent change in fecal coliform counts, pH levels, or nitrogen concentrations, for 
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example. That said, when a valid approach could be found, the primary study estimates are 

converted to a common water quality measure.  Such a conversion is only undertaken for two 

hedonic studies where an appropriate conversion factor for the corresponding study area was 

available in the literature (Guignet et al., 2017; Walsh et al., 2017).  In these cases, the meta-dataset 

includes unique observations corresponding to the inferred water quality measure (Secchi disk 

depth), as well as the original measure (light attenuation). To our knowledge, valid conversion 

factors or other approaches are not currently available for other water quality measures and primary 

study areas included in the meta-dataset.  

 

2.3 Formatting Comparable Elasticity Estimates 

A key challenge in constructing any meta-dataset is to ensure that all the outcomes of 

interest are comparable across studies (Nelson and Kennedy, 2009). By focusing on a single 

methodology, the outcome of interest itself is always the same – capitalization effects on 

residential property values. However, we must still account for two other factors that would 

otherwise diminish the comparability of results across studies; both of which pertain to 

assumptions in the original hedonic regression models.   

The first form of cross-study differences is a common obstacle for meta-analysts. 

Differences in functional form lead to coefficient estimates that have slightly different 

interpretations.  In the hedonic literature, some studies estimate semi-log, double-log, and even 

linear models. Other primary studies include interaction terms between the water quality measure 

and various attributes of the waterbody (e.g., surface area) to model heterogeneity.  To address 

these differences, we convert the coefficient estimates from the primary studies to common 

elasticity and semi-elasticity estimates based on study specific model-by-model derivations, which 
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are carefully detailed in Appendix A. These calculations also sometimes include the mean 

transaction price and mean values of observed covariates, as reported in the primary study. Such 

variables sometimes enter the elasticity calculations due to interaction terms or other functional 

form assumptions in the primary study.   

The second form of cross-study differences involves how (and if) the home price impacts 

of water quality are allowed to vary with distance to the waterbody. In a recent meta-analysis of 

stated preference studies on water quality, Johnston et al. (2019) point out that no published meta-

regression studies in the valuation literature include a mechanism to incorporate the relationship 

between households’ values for an environmental commodity and distance to the resource.  

Johnston et al. account for this relationship by estimating the mean distance among the sample in 

each primary study, and then include that mean distance as a control variable in the right-hand side 

of their meta-regression models.   

We take a different approach that explicitly incorporates spatial heterogeneity into the 

structure of the meta-dataset itself. We include multiple unique observations from the same 

primary study, but that correspond to house price effects at different distances from the resource. 

The fine spatial resolution associated with hedonic property value methods compared to other non-

market valuation techniques makes this approach possible.  

In the hedonic literature, different primary studies make different functional form 

assumptions when it comes to the price-distance gradient with respect to water quality, including 

both discrete distance bins and continuous gradients (e.g., linear, inverse distance, polynomial).  

The consideration of how the outcome effects of interest vary with distance adds a unique and 

novel dimension to the cluster structure of our meta-dataset.  Except for internal meta-analyses by 

Klemick et al. (2018) and Guignet et al. (2018), our meta-analysis is the first to incorporate this 
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distance dimension into the meta-dataset.  In an internal meta-analysis, the researchers estimate 

the primary regressions themselves, and thus Klemick et al. (2018) and Guignet et al. (2018) had 

the luxury of assuming consistent functional forms and distance gradients in their initial hedonic 

models.  In the current meta-analysis, we do not have this luxury; and adapting the elasticity 

estimates to be comparable across different distance gradient specifications in different studies is 

a unique challenge.    

Although some studies have found that water quality impacts home values at slightly 

farther distances (e.g., Walsh et al., 2011; Netusil et al., 2014; Klemick et al., 2018; Kung et al., 

2019), 16 of the 36 studies in the literature exclusively analyze price impacts on waterfront homes.  

It is unknown whether some primary studies limited the spatial extent of the analysis because no 

significant price effects were found or believed to be present at farther distances, or because of 

other reasons (perhaps stakeholder interest, or to keep the analysis more tractable). The same 

reasoning applies to why other studies decided to limit the spatial extent of the analysis at a certain 

distance.  To minimize any potential sample selection bias corresponding to farther distances, we 

limit the meta-data and analysis to only price effects within 500 meters of a waterbody.  

To standardize the elasticities across different studies with different distance gradient 

functional form assumptions, we “discretize” distance into two bins – waterfront homes and non-

waterfront homes within 500 meters. This allows us to calculate elasticities in a consistent fashion, 

no matter the form of the price gradient assumed in the original hedonic regressions. If a primary 

study only examined waterfront homes, then it only contributes observations to the meta-dataset 

corresponding to the waterfront distance bin.  If a study examined both waterfront and non-

waterfront homes, then it contributes separate observations for each distance bin, even if the 

observations are derived from the same underlying regression coefficients.  
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For elasticity estimates corresponding to waterfront homes, when applicable, a distance of 

50 meters is plugged into the study-specific elasticity derivations. This assumed distance for a 

“representative” waterfront home is based on observed mean distances among waterfront homes 

across the primary studies. For non-waterfront homes within 0-500 meters, the midpoint of 250 

meters is plugged into the study-specific elasticity derivations, when applicable. Details are 

provided in Appendix A.  

Finally, meta-analysis often requires a measure of statistical precision around the outcome 

of interest, in our case the inferred elasticity estimates. To obtain the elasticity estimates of interest 

and the corresponding standard error of those estimates, we conduct Monte Carlo simulations.  The 

meta-dataset contains intermediate variables representing all relevant sample means, coefficient 

estimates, variances, and covariances from the primary studies. Often only the variance for the 

single coefficient entering the study-specific elasticity calculations is needed for these simulations, 

and it is fairly standard in the economics literature to report coefficient standard errors in the 

results.  However, some study-specific elasticity calculations include multiple coefficients, thus 

requiring both the variances and covariances among that set of coefficients.  Hedonic studies do 

not usually report the full variance-covariance matrix. When needed, we contacted the primary 

study authors to obtain the necessary covariance estimates required to conduct the Monte Carlo 

simulations.5  In the case of four studies, however, we assume the corresponding covariances are 

zero because we were unsuccessful in acquiring the information. 

Using the primary study coefficient, variance, and covariance estimates, the Monte Carlo 

simulations entail 100,000 random draws from the joint normal distributions estimated by each 

primary study.  The simulations are carried out separately for each observation in the meta-dataset. 

After each draw of the relevant coefficients, the inferred elasticity is re-calculated, resulting in an 
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empirical distribution from which we obtain the inferred elasticity mean and standard deviation 

for each observation in the meta-dataset. 

The set of 36 studies provide 665 unique observations for the meta-dataset. The number of 

observations from each study ranges from just two observations from a single study to over 224 

observations (see Appendix A). There is sufficient information to infer 656 unique estimates of 

the price elasticity and/or semi-elasticity with respect to a change in an objective water quality 

measure. The current meta-analysis examines primary study estimates of elasticity, which 

decreases the sample to 607. Nine additional observations are lost due to insufficient information 

in the primary study to estimate the standard error of the elasticity estimates, leaving a final dataset 

of 598 unique elasticity estimates. 

Water clarity is by far the most common water quality measure analyzed in the literature 

(with 260 unique elasticity estimates), followed by fecal coliform (56) and chlorophyll a (36).  

Several other water quality measures have been examined in the hedonic literature, and also 

contribute unique elasticity estimates to the meta-dataset (see Appendix B). 

 

2.4 Mean Elasticity Estimates 

Mean elasticity estimates provide useful summary measures, and can be utilized for benefit 

transfer when unit value transfers are deemed appropriate. Although the literature still generally 

finds function transfer approaches that explicitly account for various dimensions of heterogeneity 

preferable (Johnston and Rosenberger, 2010), simpler unit value transfers have performed better 

in some contexts (Barton, 2002; Lindhjem and Navrud, 2008; Johnston and Duke, 2010; Bateman 

et al., 2011; Klemick et al., 2018).  
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Column 1 of Table I displays the unweighted mean elasticity estimates for the three most 

common water quality measures examined in the literature – water clarity, chlorophyll a, and fecal 

coliform.6  We present separate mean elasticities for waterfront homes and non-waterfront homes 

within 500 meters of a waterbody. Unweighted mean elasticities for chlorophyll a are 

counterintuitive, and marginally significant at best, suggesting if anything that property values 

increase in response to an increase in the concentration of chlorophyll a.  

The unweighted mean elasticities with respect to fecal coliform counts are more in line 

with expectations, suggesting that a one-percent increase in fecal coliform corresponds to a 

statistically significant 0.018% and 0.020% decrease in the value of waterfront homes and non-

waterfront homes, respectively. Although the unweighted mean elasticity with respect to water 

clarity among waterfront homes is positive, it is surprising that it is statistically insignificant.  The 

estimated 0.028% increase in non-waterfront home prices for a one-percent increase in Secchi disk 

depth (i.e., how many meters you can see down into the water) is significant.  

The above unweighted mean elasticity calculations can be misleading, however, because 

of the clustered nature of the meta-data.  For example, a single primary study may include multiple 

regression specifications that are estimating the same underlying value, and so the weight given to 

those estimates must be reduced accordingly (Mrozek and Taylor, 2002). We define each cluster 

as a unique study and housing market combination. Meta-observations estimated from a common 

transaction dataset in terms of the study area and time period are really just different estimates of 

the same underlying “true” elasticity. No matter how many elasticity estimates are provided by a 

given study for a given location, each cluster as a whole is given the same overall weight. More 

formally, let 𝜀̂ௗ denote elasticity estimate i, at distance d, for cluster j, and  𝑘ௗ is the number of 
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elasticity estimates for distance bin d in each cluster j. The cluster weighted mean elasticity for 

each distance bin d is:  

𝜀ௗ̅ = ∑

భ

ೖೕ

∑ ∑
భ

ೖೕ

ೖೕ
సభ

಼
ೕసభ

𝜀̂ௗ

ୀଵ         (1) 

where the same 
ଵ

ೕ
 weight is given to each meta-observation i within cluster j.  The total number 

of clusters in the meta-dataset for distance bin d is 𝐾ௗ. The denominator of equation (1) normalizes 

the weights so that they sum to one.  

The cluster weighted mean elasticities are presented in column 2 of Table I. The results are 

generally similar, suggesting a counterintuitive increase in waterfront home values in response to 

an increase in the concentration of chlorophyll a, and again an insignificant effect on the value of 

non-waterfront homes. The negative price elasticity among waterfront homes with respect to fecal 

coliform is now insignificant.  The mean elasticity with respect to fecal coliform counts for non-

waterfront homes remains robust and is slightly larger in magnitude, suggesting a 0.059% decrease 

in value due to a one-percent increase in fecal coliform counts. The cluster weighted mean 

elasticities with respect to water clarity are similar to the unweighted means; suggesting a positive 

but insignificant effect on waterfront home prices, and a significant 0.042% increase in non-

waterfront home prices due to a one-percent increase in Secchi disk depth.  

Weights based on the inverse variance of the primary estimates are also often applied in 

meta-analyses in order to give more weight to more precise estimates (Nelson and Kennedy, 2009; 

Borenstein et al., 2010; Nelson, 2015). We propose an adjustment to the above cluster weights that 

re-distributes the weight given to each observation within a cluster based on the Random Effect 

Size (RES) weights commonly used in the meta-analysis literature (Nelson and Kennedy, 2009; 

Borenstein et al., 2010; Nelson, 2015).  Our proposed RES-adjusted cluster (RESAC) weights give 
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more weight to more precise primary study estimates, while also ensuring that equal influence is 

given to each study and housing market examined in the literature.   A similar weighting scheme 

was proposed by Van Houtven et al. (2007), but they were forced to use primary study sample size 

as a proxy for statistical precision due to a lack of information on the estimated variances in their 

meta-dataset. For our study, we observe (or are able to infer) the variance for virtually all elasticity 

observations in our metadata.  Weights based on the inverse variance or standard error are 

recommended over those based on the inverse of the study sample size (Van Houtven et al., 2007; 

Subroy et al., 2019).  

Let 𝑤ௗ
ோாௌ denote the commonly used Random Effect Size (RES) weights.7  The normalized 

RESAC weights are calculated as: 

𝜔𝑖𝑑𝑗 =

𝑤𝑖𝑑𝑗
𝑅𝐸𝑆

𝑘𝑑𝑗

∑ ∑ ൭
𝑤𝑖𝑑𝑗

𝑅𝐸𝑆

𝑘𝑑𝑗
൱

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

         (2) 

 The RESAC weighted mean elasticity for distance bin d is calculated as shown in equation (3), 

and the corresponding results are shown in column 3 of Table I.  

𝜀ௗ̿ = ∑ ∑ 𝜔ௗ
  𝜀̂ௗ

ೕ

ୀଵ

ୀଵ         (3) 

The RESAC mean elasticities generally have the expected sign.8  For example, in contrast to the 

earlier mean elasticity estimates, the RESAC mean elasticity with respect to chlorophyll a for 

waterfront homes is of the expected negative sign, suggesting a one-percent increase in chlorophyll 

a leads to a 0.026% decrease in home values.  The non-waterfront mean elasticity, however, now 

suggests a small but statistically significant 0.009% increase in home values. The RESAC mean 

elasticities with respect to fecal coliform counts match expectations, suggesting a one-percent 

increase in fecal coliform corresponds to a 0.00013% and 0.052% decrease in waterfront and non-

waterfront home values, respectively. 
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The estimated RESAC mean elasticities with respect to water clarity best match 

expectations. We now see a positive effect among waterfront homes, suggesting that a one-percent 

increase in Secchi disk depth leads to a 0.105% increase in value.  As expected among homes in 

closer proximity to the resource, this effect is larger than the corresponding 0.026% increase in the 

value of non-waterfront homes.  

 

2.5. Water Clarity: Descriptive Statistics and Publication Bias 

Water clarity is the most common water quality measure in the meta-dataset, with 260 

unique house price elasticity estimates, from 18 studies, covering 63 different housing markets. 

This relatively large sample allows us to estimate meta-regressions for purposes of function 

transfers, and go beyond providing simple mean elasticities for benefit transfer.   

Descriptive statistics of the elasticity observations with respect to water clarity are in Table 

II.  Of the 260 estimates, 56% correspond to water clarity in freshwater lakes or reservoirs, while 

the other 44% correspond to estuaries. About 68% of the observed elasticity estimates are for 

waterfront homes. The average of the mean baseline clarity levels reported in the primary studies 

is a Secchi disk depth of 2.34 meters. Of course, this varies by waterbody type. Estuaries have a 

mean Secchi disk depth of only 0.64 meters, whereas freshwater lakes have a mean Secchi disk 

depth of 3.68 meters. Most estimates correspond to the South (49%) or Northeast (29%) regions 

of the US, with the remainder corresponding to the Midwest (19%) or West (4%).9  

Socio-demographics of the primary study areas were obtained from the US Census Bureau 

by matching each observation to data for the corresponding jurisdiction and year of the decennial 

census. Median household income (2017$ USD) is, on average, $59,080 in the areas examined by 

these primary studies. Interestingly, the percent of the population with a college degree is fairly 
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low (only 13.7% on average), as is population density, suggesting an average of only 50 

households per square kilometer. These statistics suggest that homes near lakes and estuaries 

generally tend to be in more rural areas. Finally, mean house prices as reported in the primary 

studies were, on average, $211,314.  

In terms of methodological choices, the assumed functional form of the primary study 

hedonic regressions varies considerably. Most use double log specifications (43%), followed by 

linear-log (31%), log-linear (22%), and even linear (4%).  As can be seen by the “no spatial 

methods” variable, 38% of the elasticity estimates with respect to water clarity were derived from 

models that did not utilize econometric methods to account for spatial dependence (i.e., spatial 

fixed effects, spatial lag of neighboring house prices, and/or account for spatial autocorrelation via 

a formal spatial autocorrelation coefficient or cluster robust standard errors).  A time trend variable, 

as reflected by the last year of transaction data in the primary study, is also included, and ranges 

from 1994 to 2014. This is converted into an index representing the number of years since 1994, 

which corresponds to the first study in the meta-dataset. 

We were able to identify and include three unpublished hedonic studies examining water 

clarity (15% of the observations), but publication bias is still a concern given our goal of obtaining 

an accurate estimate of the true underlying capitalization effects for purposes of benefit transfer. 

As suggested by Stanley and Doucouliagos (2012), we first create “funnel plots” of the elasticity 

estimates against the inverse of the corresponding standard errors.  Visual inspection of these 

funnel plots suggests that the meta-data may suffer from publication bias (see Appendix B).  We 

next implement the more formal funnel-asymmetry test (FAT) and precision-effect test (PET) 

following Stanley and Doucouliagos (2012). We estimate the following FAT-PET weighted least 

squares regression 
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𝜀̂ௗ = 𝜃 + 𝜃ଵ𝑆𝐸ௗ + 𝑢ௗ        (4) 

where 𝜀̂ௗ is elasticity estimate i for distance bin d in cluster j.  𝑆𝐸ௗ is the standard error of that 

estimate, and the weights used are the inverse variance of 𝜀̂ௗ ൬
ଵ

௩ೕ
൰.   

The null hypothesis under FAT is 𝐻: 𝜃ଵ = 0, which would suggest no evidence of 

publication bias. As can be seen in column 1 of Table III, we reject the null hypothesis due to the 

statistically significant coefficient on the standard error term, suggesting that publication bias is in 

fact a concern with the meta-data collected from this literature. Nonetheless, the statistically 

significant constant implies that we fail to reject the PET null hypothesis 𝐻: 𝜃 = 0. In other 

words, even after adjusting for publication bias, we find evidence of a statistically significant true 

effect of water clarity on home values.  

Simulation studies have suggested that including the elasticity variances 𝑣ௗ on the 

righthand side of equation (4), instead of 𝑆𝐸ௗ provides a better estimate of the true empirical 

effect of interest (Stanley and Doucouliagos, 2012, 2014). Referred to as the precision-effect 

estimate with standard error (PEESE), 𝜃 can be interpreted as the true elasticity estimate purged 

of any selection bias. As shown in column 2 of Table III, the significant constant term or PEESE 

estimate reveals a significant and positive elasticity of 0.0237.  

With such tests, it is important to control for sources of high heterogeneity (Stanley and 

Doucouliagos, 2019). The model in column 3 includes a waterfront dummy denoting meta-

observations corresponding to homes in the closest waterfront distance bin, as opposed to non-

waterfront homes within 500 meters.  The constant term suggests a statistically significant and 

positive 0.0130 elasticity for non-waterfront homes, and the sum of the constant term and 
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waterfront coefficient suggest a significant and positive elasticity of 0.0386. Even after adjusting 

for publication bias, the literature suggests that a one-percent increase in Secchi disk depth (an 

average increase of 2.34 centimeters, or a little less than one inch) leads to an average increase in 

waterfront home values of 0.0386%, and an increase of 0.0130% in the value of non-waterfront 

homes within 500 meters.  

These estimates are noticeably smaller than the mean elasticity estimates presented earlier 

in Table I.  This is partly due to the publication-bias correction, but we caution against such a 

direct comparison because the publication corrected estimates in Table III do not account for the 

clustered nature of the meta-dataset.  The meta-regression models discussed next account for the 

clustered nature of the dataset, control for other potential sources of heterogeneity, and include the 

elasticity variances as a covariate to minimize publication bias.  

 

3. META-REGRESSION METHODOLOGY 

Function transfers based on meta-regressions can be a useful approach for benefit transfer 

(Nelson, 2015). The approach takes advantage of the full amount of information provided by the 

literature, while also accounting for key dimensions of heterogeneity in the outcome effect of 

interest.   Consider the following meta-regression model:  

𝜀̂ௗ = 𝛽 + 𝜷𝟏𝒙𝒊𝒅𝒋 + 𝜷𝟐𝒛𝒊𝒅𝒋 + 𝑒ௗ       (5) 

where the parameters to be estimated are 𝛽, 𝜷𝟏 and 𝜷𝟐. The right-hand side moderator variables 

include a vector of characteristics of the primary estimate, study area, and corresponding 

waterbody ൫𝒙ௗ൯, and a vector of methodological variables ൫𝒛ௗ൯, which describe attributes of 

the primary study and model assumptions. We discuss the error term 𝑒ௗ at the end of this section.  
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The vector 𝒙ௗ includes attributes like an indicator of whether the observed elasticity 

estimate corresponds to the value of homes on the waterfront (as opposed to non-waterfront 

homes), whether the elasticity estimate corresponds to water quality in an estuary (as opposed to 

freshwater lakes)10, and the mean baseline water clarity level corresponding to the respective 

waterbody, or portion of the waterbody.  The vector 𝒙ௗ also includes characteristics of the study 

area and housing market, such as median income, proportion of the population with a college 

degree, mean house prices, and a series of indicator variables denoting one of the four broad US 

regions – the Northeast, Midwest, South, or West.   

The vector 𝒛𝒊𝒅𝒋 is meant to capture differences in elasticities due to estimate quality and 

methodological choices made by the primary study authors. If particular values of 𝒛𝒊𝒅𝒋 denote 

better modelling choices, then such information can be exploited when predicting values for 

purposes of benefit transfer (Boyle and Wooldridge, 2018). The vector 𝒛𝒊𝒅𝒋 includes the variance 

of the corresponding elasticity estimate. The implicit assumption is that a better-quality estimate 

has a lower variance.  The “true” elasticity would not be an estimate, and thus have a variance of 

zero. Therefore, this attribute should be set to zero in any subsequent benefit transfer exercise 

(Stanley and Doucouliagos, 2012, 2014).  

In addition, 𝒛𝒊𝒅𝒋 includes indicator variables denoting unpublished studies, whether a study 

used assessed values (as opposed to data on actual transaction prices), and different functional 

forms.  Most importantly, an indicator is included that denotes when the corresponding primary 

study regression model did not account for spatial dependence among housing observations in the 

primary data. If a model did not include spatial fixed effects, a spatial lag of housing prices, nor 
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account for spatial autocorrelation in some fashion, then the no spatial methods indicator is set to 

one, and is zero otherwise.  

We also include a study year trend variable to reflect changes in empirical methods, data, 

tastes and preferences, and/or awareness of water quality over time (Rosenberger and Johnston, 

2009).   Time trends in meta-analyses of stated preference studies are typically based on the year 

the primary study survey was conducted, which is different from the year of publication (e.g., Van 

Houtven et al., 2007; Rosenberger and Johnston, 2009; Johnston et al. 2019). For a hedonic meta-

analysis, the choice is not as clear because the observed revealed preference data in a primary 

study often spans several years. To capture changes over time, we use the last year of transaction 

data in the primary study sample. This proxy is not without possible error, however. For example, 

Zhang et al. (2015) conduct a more recent analysis using older transaction data, and so our trend 

variable may not reflect methodological trends well in that case.   

When estimating equation (5), the observations are weighted according to the same 

RESAC weights, but an additional complication arises from the cluster structure of the meta-data.   

There may be cluster-specific effects associated with a particular housing market and the 

waterbodies examined in that housing market. Any residual cluster-specific effect 𝑐 would be 

reflected in the error term of equation (5), i.e., 𝑒ௗ = 𝑐 + 𝑢ௗ , where 𝑢ௗ is an independent and 

normally distributed error term. This implies that when estimating equation (5) the error terms 

൫𝑒ௗ൯ are correlated for observations pertaining to the same cluster.  

Conventional Random Effects (RE) Panel models are sometimes recommended in cases 

when a meta-regression model is estimated using multiple estimates from a primary study (Nelson 

and Kennedy, 2009). However, the cluster-specific effect 𝑐 could be correlated with observed 

right-hand side variables, which would lead to inconsistent estimates (Wooldridge, 2002). Stanley 
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and Doucouliagos (2012) point out that the necessary assumptions for consistent estimates in a RE 

Panel model will often be violated, especially when a measure of precision (e.g., estimate variance) 

is included on the right-hand side to control for publication bias. They recommend a simple 

weighted-least squares (WLS) meta-regression that allows for cluster-robust standard errors. We 

follow this recommendation in our base meta-regression analysis.  

A fixed effect (FE) panel meta-regression model to directly estimate 𝑐 and isolate it from 

the error term could also be implemented, but this is not a viable approach in the current context.  

First, the site-specific fixed effects would absorb much of the variation of interest. Many of the 

modifiers in the meta-regression do not vary within a cluster. Even when there is some within-

cluster variation, it is often only seen among a subset of the observations. A FE Panel model would 

thus disregard a lot of observations and variation of interest.  Second, out of sample inference for 

purposes of benefit transfer would not be valid because we cannot estimate the corresponding fixed 

effects for housing markets and waterbodies that are not in the current meta-dataset.  

When benefit transfer is the primary objective, Boyle and Wooldridge (2018) suggest 

estimating a regression model first proposed by Mundlak (1978). The Mundlak model 

parametrically estimates the cluster-specific effects by including the cluster average of the relevant 

modifier variables in the right-hand side of the meta-regression: 

𝜀̂ௗ = 𝛽 + 𝜷𝟏𝒙𝒊𝒅𝒋 + 𝜷𝟐𝒛𝒊𝒅𝒋 + 𝜸𝟏𝒙ഥ𝒋 + 𝜸𝟐𝒛ത𝒋 + 𝑒ௗ
∗     (6) 

The variables 𝒙ഥ𝒋 and 𝒛ത𝒋 are the cluster-specific means for the study area and methodological 

attributes, respectively.11   

A portion of the cluster-specific effect that was previously assumed to be random in 

equation (5) is now explicitly estimated in equation (6), as follows: 𝑒ௗ = 𝜸𝟏𝒙ഥ𝒋 + 𝜸𝟐𝒛ത𝒋 + 𝑒ௗ
∗ , 
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where 𝑒ௗ
∗ = 𝑐

∗ + 𝑢ௗ. The coefficients 𝜸𝟏 and 𝜸𝟐 capture the portion of the cluster-specific 

effects that are correlated with the other right-hand side modifier variables. The remaining portion 

of the cluster-specific effect 𝑐
∗ is assumed to be uncorrelated with the observed right-hand side 

variables and can thus be modelled as random.  The Mundlak model in equation (6) relaxes the 

assumption that 𝑐 be uncorrelated with observed right-hand side variables, as is the case with a 

conventional RE Panel model, and now only requires that 𝑐
∗ be uncorrelated. The model also has 

an advantage over a FE Panel model because it does not disregard variation with respect to cluster-

invariant variables, and allows for out-of-sample inference (Boyle and Wooldridge, 2018).    

A priori, the most appropriate meta-regression estimation approach remains unclear. In the 

next section we present estimation results first using a simple WLS meta-regression that allows 

for cluster-robust standard errors, and then using the Mundlak model. We then conduct an out-of-

sample prediction exercise to compare modelling approaches for benefit transfer.   

 

4. RESULTS 

4.1. Meta-regression Results 

We estimate the first set of meta-regressions as a series of simple Weighted Least Squares 

(WLS) models using the RESAC weights. As discussed above, this weighting scheme gives more 

within-cluster weight to more precise primary study estimates, and ensures that equal influence is 

given to each study and housing market examined in the literature.12 The clusters are defined 

according to the 63 unique study-housing market combinations. 

The WLS results are presented in Table IV. Model 1 includes key variables defining the 

elasticity estimate (e.g., waterfront), waterbody examined (e.g., estuary and mean clarity levels), 
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and the surrounding population (e.g., median income), as well as methodological attributes. As 

expected, and in line with the earlier unit value estimates, the price elasticity with respect to clearer 

waters is significantly higher among waterfront homes (0.0525 percentage points).  

The positive 0.0225 coefficient corresponding to baseline mean water clarity implies that 

homes surrounding waterbodies with already relatively clear waters experience larger increases in 

value in response to further clarity improvements. This “pristine premium” seems to be isolated to 

freshwater lakes, however; as suggested by the statistically insignificant -0.0294 (p=0.633) sum 

of the mean clarity and corresponding estuary interaction term coefficient estimates. Such a 

finding seems reasonable given that surrounding residents may not generally expect the water to 

be clear in estuaries because brackish waters are often naturally opaque.  

Median income of the primary study area and whether a waterbody is an estuary (as 

opposed to a freshwater lake, the omitted category), have no significant effect on the estimated 

elasticities.  The methodological variable coefficients are largely insignificant, including that 

corresponding to the elasticity variance, which is meant to account for potential publication bias. 

The unpublished dummy is marginally significant, however, suggesting that elasticity estimates 

from unpublished studies tend to be 0.0643 percentage points higher.13 

To illustrate the implications of the WLS model 1 results, consider the “average” elasticity 

observation, where we plug in the cluster weighted mean values for most of the covariates and use 

the estimated coefficients to predict an illustrative elasticity.14 With respect to elasticity variance, 

assessed values, and no spatial methods, we plug in zero to reflect best practices (Stanley and 

Doucouliagos, 2012; Boyle and Wooldridge, 2018). In order to infer an elasticity estimate that is 

based on the most recent methods and data possible, the value for the time trend index is set to 20 

(which corresponds to 2014, the most recent year observed in the metadata). The “average” 
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elasticity for waterfront homes is 0.1347, suggesting that a one-percent increase in Secchi disk 

depth (an increase of 2.34 centimeters, on average) leads to a 0.1347 percent increase in home 

values (p=0.002).  A slightly smaller 0.0821 elasticity is estimated for the “average” non-

waterfront home (p=0.058).  Overall, the literature yields plausible and statistically significant 

elasticity estimates of how water clarity is capitalized in surrounding home values, even after 

empirically controlling for key dimensions of heterogeneity, publication bias, and subpar empirical 

methods.    

Model 2 in Table IV includes indicator variables denoting each of the four regions of the 

US, with the Northeast being the omitted category. After accounting for heterogeneity across US 

regions in this fashion, we see that baseline mean clarity is no longer statistically significant, but 

the premium associated with waterfront homes is robust. The region coefficients suggest that 

housing price elasticities with respect to water clarity in the Midwest, South, and West tend to be 

significantly less than those in the Northeast. For example, a one-percent increase in water clarity 

for that “average” illustrative waterfront (non-waterfront) home in the Northeast would lead to a 

0.3635% (0.3170%) increase in value.  That same waterfront (non-waterfront) home would 

experience a 0.2129% (0.1664%) increase in value if it were in the Midwest, or a 0.1802% 

(0.1338%) increase in value if it were in the South, all else constant.  Although these “average” 

elasticity estimates for the Northeast, Midwest, and South are all statistically significant at the 

p=0.000 level, we find positive but statistically insignificant “average” elasticities corresponding 

to waterfront and non-waterfront homes in the West.  Together, these results suggest that regional 

heterogeneity must be accounted for in any benefit transfer exercise. The inclusion of the regional 

dummies in model 2 also leads to the positive time trend variable becoming significant; suggesting 

that elasticity estimates have been increasing over time, all else constant.  
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The waterfront premium, and highly significant regional indicators and time trend are 

robust to the inclusion of additional methodological attributes in model 3. The premium associated 

with mean baseline water clarity is again (marginally) significant after accounting for additional 

variation in specification choices made by the primary study authors. The largely insignificant 

coefficients for the methodological variables added in model 3 suggest no significant differences 

in estimated elasticities based on functional form assumptions, nor based on whether a study 

controlled for spatial dependence using neighborhood fixed effects, spatial lags, or by modelling 

spatial autocorrelation. The one exception is that models using a linear-log specification to define 

the relationship between house prices and water clarity tend to yield smaller elasticity estimates 

relative to a double-log specification.15  

We next compare our meta-regression results to the Mundlak model (Table V) suggested 

by Boyle and Wooldridge (2018). The positive and significant coefficient on the waterfront 

dummy reveals a similar finding to earlier models – an improvement in clarity leads to a 

statistically larger price increase among waterfront homes. The finding that price effect estimates 

for waterbodies and homes in the Midwest, South, and West tend to be lower than those for the 

Northeast is also robust. In agreement with the WLS models, Mundlak models 2 and 3 suggest a 

positive trend over time after controlling for regional heterogeneity. Otherwise, as before we find 

limited evidence of systematic variation in the elasticity estimates from this literature.  

The Mundlak models suggest no statistical differences in the estimated elasticities based 

on baseline water clarity levels, at least not when considering within or across cluster variation 

separately. In conjunction, however, model 1 suggests a 0.0327 elasticity premium when baseline 

Secchi disk depth is one meter greater (p=0.026).16 This result does not hold in the Mundlak 

variants of models 2 and 3, which suggest a statistically insignificant 0.0240 (p=0.132) and 0.0261 
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(p=0.120) increase in elasticity associated with a one meter increase in baseline water clarity. In 

that sense, we consistently find mixed evidence of a “pristine premium” when comparing within 

and across the WLS and Mundlak models.   

The overall elasticity predictions from the Mundlak model are similar to those from the 

WLS regressions. For example, after accounting for best methodological practices and publication 

bias, model 1 in Table V suggests a statistically significant 0.1391 and 0.0792 elasticity for the 

same illustrative “average” waterfront and non-waterfront home, respectively, compared to the 

WLS elasticity predictions of 0.1347 and 0.0821.17   

 

4.2. Best Performing Model for Benefit Transfer 

To examine out-of-sample transfer error, we iteratively leave out observations 

corresponding to each of the 63 housing market-study clusters, and then re-estimate the meta-

regression models using the remaining sample. The predicted elasticities are estimated for the 

excluded cluster. This is repeated by excluding each of the 63 clusters one at a time. After 

completing all 63 iterations we calculate the median absolute transfer error.  Similar out-of-sample 

transfer error exercises have been implemented in the literature (e.g., Lindhjem and Navrud, 2008; 

Stapler and Johnston, 2009). 

We carry out this out-of-sample transfer exercise in two ways. In the first approach, we 

construct a synthetic observation for each distance bin d, in cluster j, and then compare the 

elasticity value for this synthetic observation to the predicted elasticity from the meta-regression 

models. The synthetic observation is simply an inverse variance weighted mean across all elasticity 



26 
 

estimates for distance bin d in cluster j: 𝜀ௗ̂
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variables for the synthetic observations are calculated in the same fashion. Those variable values 

are then plugged into the estimated meta-regressions to yield a predicted elasticity 𝜀መ̂ௗ
௦  for houses 

in distance bin d of cluster j, which is then compared to the “actual” elasticity for each synthetic 

observation 𝜀ௗ̂
௦ . The transfer error is calculated as the absolute value of the percent difference: 
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ఌොೕ
ೞ ൰ × 100ฬ        (7) 

Our synthetic observation approach for measuring out-of-sample transfer error weights the 

“actual” observed elasticity estimates and the sample used to parameterize the meta-regression 

models in the same fashion.  When dealing with a panel- or cluster-structured meta-dataset, the 

more common practice of comparing predicted and observed elasticity estimates for all left out 

observations within each iteration (e.g., Londoño and Johnston, 2012; Fitzpatrick et al., 2017; 

Subroy et al., 2019) potentially inflates the transfer error. The parameterized meta-regressions, and 

hence the predicted elasticities 𝜀መ̂ௗ, would appropriately discount less precise estimates, but the 

excluded elasticity observations 𝜀̂ௗ that these are compared to in each iteration would all be 

treated equally.  This inconsistent weighting across the predicted and observed elasticities 

automatically puts the predictive performance of the meta-regression models at a disadvantage. 

We carry out the out-of-sample transfer error exercise using both approaches for comparison and 

find similar results.  

The median absolute transfer error results for each model are presented in Table VI.  The 

top row shows the median transfer errors using our out-of-sample synthetic observation approach. 
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The second row shows the median transfer errors when all excluded observations are treated 

equally and used for comparison. The results suggest a median absolute transfer error of 95% to 

131% under the synthetic comparison approach, versus 93% to 163% when comparing all 

excluded observations.18  

Although errors of this size are not unheard of, the transfer errors for this study are in the 

high range for function transfers.  In a recent study evaluating modeling decisions that affect 

benefit transfer errors, Kaul et al. (2013) examined 1,071 transfer errors reported by 31 studies and 

report that the absolute value of the transfer errors ranged from 0% to 7,496%, with a median of 

39%. Rosenberger (2015) summarized the results for 38 studies that statistically analyzed transfer 

errors, and reported a median transfer error of 36% for function transfers.  In their leave-one-study-

out transfer error analysis, Londoño and Johnston (2012) report a 59% median transfer error using 

all available studies.  Similar to our study, Subroy et al. (2019) used a leave-one-cluster-out 

approach, and estimated a median transfer error of 21% for non-market values of threatened 

species.   

Overall, we find that the simple WLS models slightly outperform the more complex 

Mundlak models that try to better account for cluster-specific effects. We favor the WLS model 2 

for purposes of function transfer because (i) the model accounts for regional heterogeneity, which 

was shown to be a large and significant predictor of elasticity, and (ii) it results in the lowest 

median transfer error (95%) under our preferred synthetic observation comparison.19 The 

additional methodological variables added in WLS model 3 do not improve predictive 

performance.   
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5. DISCUSSION 

A primary objective of this study is to help practitioners exploit the fairly large literature 

of hedonic property value studies examining surface water quality, and ultimately to facilitate ex 

ante and ex post assessments to better inform local, regional, and national policies impacting water 

quality. Based on the constructed meta-dataset, limited unit value transfers could be conducted to 

assess policies impacting one of several different water quality measures (e.g., chlorophyll a and 

fecal coliform). Given the limited number of studies on any one water quality measure, value 

transfers are often the only viable option for practitioners examining the property capitalization 

effects from changes in water quality.  

In the context of water clarity, a function transfer using meta-regression results can 

improve transfers by catering the estimates to a particular policy context, and by adjusting for best 

methodological practices and publication bias. Our WLS meta-regression results can be combined 

with spatially explicit data of the relevant surface waterbodies, housing locations, baseline housing 

values, and the number of homes, in order to project the total capitalization effects of a policy or 

project affecting water quality. Ideally, such a benefit transfer exercise can be carried out using 

detailed, high-resolution data on waterbodies and individual residential properties from local or 

state governments. In the absence of such data, one can combine our results with waterbody 

location data provided by the National Hydrography Dataset (NHD), along with aggregated data 

on housing and land cover, from the US Census Bureau and National Land Cover Dataset 

(NLCD).20  

As with any benefit transfer exercise, however, the results must be appropriately caveated. 

The out-of-sample transfer error of our meta-regressions is among the upper-end of errors found 
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in the meta-analytic literature valuing environmental commodities.  Despite our best attempts to 

parameterize systematic heterogeneity, many of our right-hand side moderator variables turned out 

to not provide much explanatory power. The capitalization of water quality changes in surrounding 

housing values is a very local phenomenon. Surely local unobserved factors remain that affect the 

accuracy of any transferred estimates.  

In future work we hope to expand this meta-dataset in two ways.  First, for tractability we 

decided early in the development of the meta-dataset to limit the distance bins to waterfront homes 

and non-waterfront homes within 500-meters of a waterbody.  But the hedonic literature has 

increasingly expanded this focus, finding significant impacts on home prices up to a few kilometers 

away (e.g., Walsh et al., 2011; Netusil et al., 2014; Klemick et al., 2018; Kung et al., 2019). Adding 

meta-observations that pertain to farther distance bins will provide a more comprehensive meta-

analysis in the future (although one must also consider the sample selection concerns discussed in 

section 2.3).   

Second, new studies should be periodically added to the meta-dataset as they emerge. 

When conducting new hedonic studies, we encourage researchers to consider some of the gaps in 

the current literature. Our review reveals limitations in the types of waterbodies studied and the 

geographic areas covered.  More hedonic studies examining surface water quality in the mountain 

states in the West, parts of the Midwest, and the South-central portions of the US are needed; as 

are studies examining how property values respond to water quality changes in estuaries, rivers, 

and streams. Such primary studies will facilitate truly nationwide coverage and ultimately more 

robust benefit transfers.   

Our review of the literature also highlights a critical disconnect between the water quality 

metrics used by economists and those by water quality modelers and policy makers.  Water clarity 
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is the most common metric in the hedonic literature. It is a convenient measure for non-market 

valuation because households are able to directly perceive and understand it.  In certain cases, it 

also can act as a reasonable proxy for other measures of water quality (e.g., nutrients or sediments).  

That said, water clarity is not a good measure of quality across all contexts (Keeler et al., 2012). 

For example, waters with low pH levels due to acid rain or acid mine drainage may be very clear, 

but of poor quality.  This disconnect between water clarity and quality is an issue in the non-market 

valuation literature more broadly (Abt Associates, 2016).  

Although the majority of hedonic studies focus on water clarity, water quality models, such 

as the Soil and Water Assessment Tool (SWAT), Hydrologic and Water Quality System 

(HAWQS), and SPAtially Referenced Regressions On Watershed Attributes (SPARROW), tend 

to focus on changes in nutrients, sediments, metals, dissolved oxygen, and organic chemicals 

(Tetra Tech, 2018).  There are some process-based water quality models and estimated conversion 

factors that can be used to calculate changes in Secchi disk depth, but such approaches require 

location-specific relationships and waterbody characteristics as an input (Hoyer et al., 2002; Wang 

et al. 2013; Park and Clough, 2018); thus deterring the broader application of these existing 

approaches to project water clarity changes resulting from a policy.   

Further research is necessary to improve the link between water quality and economic 

models, and ultimately to better inform policy decisions.  Closing this gap can entail one of two 

things, or some combination of both. First, when choosing the appropriate water quality metric, 

economists conducting future studies should keep the application of their results in mind. Doing 

so will allow economic results to be more readily used to monetize the quantified policy changes 

projected by water quality models.  It will also facilitate more robust transfer approaches by adding 

observations to our meta-dataset that focus on water quality measures other than water clarity. 
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Second, water quality modelers could develop models that directly project changes in water clarity, 

or perhaps develop more robust conversion factors. Such a call is not a new idea. Desvousges et 

al. (1992, p. 682) recommended that, at the very least, statistical analyses establish “… the 

correlation between policy variables and variables frequently used as indicators of water quality.” 

Developing such conversion factors would be challenging, and would likely need to be watershed, 

and perhaps even waterbody, specific. 

 

6. CONCLUSION 

Despite the large number of studies of the capitalization of local surface water quality into 

home values, this literature has not generally been used to inform decision-making in public policy. 

For example, hedonic property value studies have yet to be used in regulatory analyses of regional 

and nationwide water quality regulations enacted by the US Environmental Protection Agency. 

Heterogeneity in local housing markets, the types of waterbodies examined, the model 

specifications estimated, and the water quality metrics used, are key reasons why the results of 

these local studies have not been applied to broader policies. This meta-analysis overcame these 

obstacles through the meticulous development of a detailed and comprehensive meta-dataset.  

The relative out-of-sample transfer performance of our estimated meta-regressions 

suggests caution when conducting benefit transfers to inform water quality policy. The proper use 

of this study will depend on the relative accuracy necessary for decision-making (Bergstrom and 

Taylor, 2006).  Nonetheless, in the absence of resources for an original study, and if there is no 

single study that closely matches the policy context at hand, then this meta-analysis provides a 

path for practitioners to conduct benefit transfer, and assess how improvements in water quality 

from local, regional, and even national policies are capitalized into housing values.  
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TABLES 
 

Table I. Mean Elasticity Estimates of Three Most Frequently Examined Water Quality Measures. 

Water quality measure 

Unweighted 
Mean 

(1) 

Cluster  
Weighted Mean 

(2) 

RES-Adjusted 
Cluster (RESAC) 
Weighted Mean 

(3) n Studies 
Chlorophyll a (mg/L)   

   
   waterfront 0.737* 0.324* -0.026*** 18 3 

 
[-0.044, 1.517] [-0.036, 0.685] [-0.031, -0.021] 

  
   non-waterfront w/in 500 m 0.005 0.010 0.009*** 18 3 

 
[-0.201, 0.211] [-0.085, 0.105] [0.006, 0.012] 

  
Fecal coliform (count per 100 mL)   

   
   waterfront -0.018*** -0.037 -1.3E-4*** 36 4 

 
[-0.026, -0.011] [-0.088, 0.014] [-1.8E-4, -0.7E-4] 

  
   non-waterfront w/in 500 m -0.020*** -0.059* -0.052*** 20 3 

 
[-0.034, -0.006] [-0.090, -0.005] [-0.096, -0.008] 

  
Water clarity (Secchi disk depth, meters)   

   
   waterfront 0.155 0.182 0.105*** 177 18 

 
[-6.102, 6.413] [-17.398, 17.762] [0.095, 0.114] 

  
   non-waterfront w/in 500 m 0.028*** 0.042*** 0.026*** 83 6 

 
[0.020, 0.036] [0.025, 0.059] [0.017, 0.034] 

  
*** p<0.01, ** p<0.05, * p<0.1.  Confidence intervals at the 95% level are displayed in brackets. Only elasticity estimates pertaining to the 
three most commonly examined water quality measures in the hedonic literature are presented, but the full suite of mean elasticity 
estimates are presented in Appendix B.2. We present the respective units for each water quality measure in parentheses just as a reference 
but emphasize that the elasticity estimates presented in the table are unit-less. 
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Table II. Descriptive Statistics of Observations Pertaining to Water Clarity. 

Variable Mean Std. Dev. Min Max 

Dependent variable:     
Elasticity 0.1147 0.2549 -0.6499 1.7191 

Study area variables:     

Waterfronta 0.6808 0.4671 0 1 

Mean clarity (secchi disk depth, meters) 2.34 1.97 0.38 6.45 

Lake or Reservoira 0.5615 0.4972 0 1 

Estuarya 0.4385 0.4972 0 1 

Median income (thousands, 2017$) 59.080 14.142 37.865 91.174 

College degree (% population) 0.1367 0.0414 0.0768 0.2734 

Population density (households /sq. km.) 49.91 58.38 1.41 227.96 

Mean house price (thousands, nominal$) 211.314 131.341 31.287 675.364 

Northeasta 0.2885 0.4539 0 1 

Midwesta 0.1923 0.3949 0 1 

Southa 0.4846 0.5007 0 1 
Westa 0.0346 0.1832 0 1 

Methodological variables:     
Elasticity variance 1228.1590 18704.5200 9.03E-06 301448.5 

Unpublisheda 0.1500 0.3578 0 1 

Assessed valuesa 0.0538 0.2261 0 1 
Time Trend (0=1994 to 20=2014) 8.59 6.17 0 20 
No spatial methodsa 0.3808 0.4865 0 1 

Double-loga 0.4308 0.4961 0 1 

Linear-loga 0.3077 0.4624 0 1 

Lineara 0.0385 0.1927 0 1 

Log-lineara 0.2231 0.4171 0 1 

Unweighted descriptive statistics presented for n=260 unique elasticity estimates in meta-dataset pertaining to water 
clarity. Estimates based on 18 primary hedonic studies, corresponding to 63 unique study-housing markets clusters. All 
variables are dummy variables unless indicated otherwise. 
(a) Denotes independent variables that are dummy variables.  
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Table III. Simple Meta-regression Models Testing for Publication Bias.  

VARIABLES (1) (2) (3) 

        

Elasticity std error 1.5738***   

 (0.249)   
Elasticity variance  0.0001 0.0001 

  (0.006) (0.006) 

Waterfront   0.0256*** 

   (0.006) 

Constant 0.0088** 0.0237*** 0.0130*** 

 (0.004) (0.003) (0.004) 

    
Observations 260 260 260 

R-squared 0.135 0.000 0.064 

Dependent variable: home price elasticity with respect to water clarity (Secchi 
disk depth). *** p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. 
Weighted least squares estimated using the "regress" routine in Stata 14 and 
defining analytical weights equal to the inverse variance of each of the 
corresponding elasticity estimates.  
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Table IV. Weighted Least Squares (WLS) Meta-regression Results. 
VARIABLESa (1) (2) (3) 
        

Waterfronta 0.0525** 0.0465** 0.0574*** 

 (0.021) (0.021) (0.019) 
Mean clarity  0.0225** 0.0104 0.0292* 

 (0.010) (0.015) (0.017) 

Estuarya -0.0014 -0.0301 0.0057 

 (0.055) (0.044) (0.045) 
Mean clarity × estuary -0.0519 -0.0395 -0.0568 

 (0.063) (0.064) (0.063) 
Median income 0.0015 0.0015 0.0013 

 (0.001) (0.001) (0.001) 

Midwesta  -0.1506*** -0.1645*** 

  (0.043) (0.041) 

Southa  -0.1832*** -0.2544*** 

  (0.052) (0.069) 

Westa  -0.3055*** -0.4551*** 
  (0.067) (0.084) 

Elasticity variance 0.0000 0.0000 0.0000 

 (0.000) (0.000) (0.000) 

Unpublisheda 0.0643* 0.0548* 0.0104 

 (0.037) (0.029) (0.048) 

Assessed valuesa -0.0090 0.0491 0.0523* 

 (0.055) (0.047) (0.029) 
Time trend 0.0038 0.0137*** 0.0127*** 

 (0.004) (0.003) (0.002) 

No spatial methodsa   -0.0090 

   (0.015) 

Linear-loga   -0.1349** 

   (0.065) 

Lineara   0.0473 

   (0.058) 

Log-lineara   0.0016 

   (0.004) 
Constant -0.1215 -0.0461 0.0112 

 (0.075) (0.107) (0.105) 

    
Observations 260 260 260 
Adjusted R-squared 0.153 0.204 0.226 
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). *** 
p<0.01, ** p<0.05, * p<0.1.  Clustered-robust standard errors in parentheses; clustered according to 
the K=63 unique study-housing market combinations. Weighted least squares regressions estimated 
using the "regress" routine in Stata 14 and defining analytical weights equal to the RESAC weights 
(see equation 2 in section 2.4).  
(a) Denotes independent variables that are dummy variables.  
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Table V. Mundlak Model Meta-regression Results. 
VARIABLES (1) (2) (3) 

    

Waterfronta 0.0599*** 0.0613*** 0.0616*** 

 (0.019) (0.019) (0.019) 

Waterfront cluster mean -0.1122 -0.3344*** -0.3946* 

 (0.144) (0.101) (0.220) 

Mean clarity -0.0289 -0.0206 -0.0175 

 (0.066) (0.062) (0.061) 

Clarity cluster mean 0.0616 0.0446 0.0436 

 (0.069) (0.064) (0.064) 

Estuarya -0.0020 -0.0115 -0.0117 

 (0.062) (0.044) (0.046) 

Mean clarity × estuary -0.0616 -0.0510 -0.0516 

 (0.062) (0.061) (0.060) 

Median income 0.0014 0.0012 0.0011 

 (0.001) (0.001) (0.001) 

Midwesta  -0.1988*** -0.2144*** 

  (0.043) (0.056) 

Southa  -0.3173*** -0.2878*** 

  (0.064) (0.071) 

Westa  -0.3486*** -0.3987*** 

  (0.039) (0.099) 

Elasticity variance 0.0000 0.0000 0.0000 

 (0.000) (0.000) (0.000) 

Unpublisheda 0.0454 -0.0275 0.0018 

 (0.050) (0.044) (0.045) 

Assessed valuesa -0.0143 -0.0106 -0.0102 

 (0.009) (0.010) (0.010) 

Assessed values cluster mean 0.0067 0.0902* 0.0805* 

 (0.070) (0.047) (0.042) 

Time trend 0.0038 0.0151*** 0.0181*** 

 (0.004) (0.002) (0.005) 

No spatial methodsa   0.0128 

   (0.015) 

No spatial methods cluster mean   0.0160 

   (0.060) 

Linear-loga   0.0482 

   (0.128) 

Lineara   0.1195* 

   (0.067) 

Log-lineara   0.0011 

   (0.003) 
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Log-linear cluster mean   -0.0175 

   (0.044) 

Constant -0.0612 0.2271* 0.2011 

 (0.123) (0.122) (0.150) 

    
Observations 260 260 260 

ll 1.5529 1.6705 1.6846 
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). *** 
p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. Mundlak (1978) regressions estimated 
by first calculating cluster means for independent variables that vary within each of the K=63 
study-housing market clusters, and then by using the "mixed" routine in Stata 14 where the cluster-
specific residual is allowed to be correlated. Observations weighted following the RESAC weights 
(see equation 2 in section 2.4). If there is no within cluster variation for a given variable, then a 
companion cluster mean term is not included in the above results.  The one exception is the 
elasticity variance term, which does vary within clusters, but the corresponding cluster mean term 
was dropped by Stata due to multicollinearity.   
(a) Denotes independent variables that are dummy variables.  
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Table VI. Out-of-Sample Transfer Error: Median Absolute Value of the Percent Difference in 
Predicted Elasticities.  

WLS 1 WLS 2 WLS 3 Mundlak 1 Mundlak 2 Mundlak 3 
      

Comparison with Synthetic Observations for Excluded Cluster (n=82) 

101% 95% 103% 109% 102% 131% 
      

Comparison with Excluded Cluster Observations (n=260) 

93% 110% 116% 103% 94% 163% 
The out-of-sample transfer error is calculated by iteratively leaving out each of the K=63 clusters, 
estimating the model with the remaining clusters, and then calculating the predicted elasticities and 
resulting transfer error for the synthetic observation or the actual observations corresponding to the 
excluded cluster.  
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FIGURES 
 

Figure 1. Number of Water Quality Hedonic Studies in each State.  
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1 There are three notable unpublished studies.  In her Master’s thesis, Fath (2011) conducted a limited meta-analysis 
of 13 hedonic studies.  Ge et al. (2013) conducted a meta-analysis that combined contingent valuation, travel cost, 
and hedonic studies.  They also estimated one meta-regression using only hedonic studies (10 studies with 127 
observations) for comparison. Abt Associates (2015) estimated the capitalization effects of large-scale changes in 
water clarity of lakes using a simple weighted-average across nine hedonic studies.  Finally, we are aware of one 
recent published study that focused on urban rivers and property values, but it did not examine measures of surface 
water quality (Chen et al. 2019).    
2 The first author developed how the data would be coded with feedback from all authors.  The fourth author did 
most of the data entry with quality checks by all authors throughout the process.   
3 The search began with reviewing reports (e.g., Van Houtven et al., 2008; US EPA, 2016) or other literature 
reviews and meta-analyses on related topics (e.g., Crompton, 2004; Braden et al., 2011; Fath, 2011; Alvarez and 
Asci, 2014; Abt Associates, 2015).  The next step was to search a variety of databases and working paper series 
which included Google Scholar, Environmental Valuation Reference Inventory, JSTOR, AgEcon Search, EPA’s 
National Center for Environmental Economics Working Paper Series, Resources for the Future (RFF) Working 
Paper Series, Social Science Research Network (SSRN), and ScienceDirect, among many others.  Keywords when 
searching these databases included all combinations of the terms:  house, home, property, value, price, or hedonic 
with terms such as water quality, water clarity, Secchi disk, pH, aquatic, and sediment.  Requests also were 
submitted to ResEcon and Land and Resource Economics Network. Seven additional studies were provided from the 
first request on October 24, 2014. And one additional study was added from a second request on January 21, 2016. 
After this lengthy process, we attempted one final literature search through the US EPA’s internal library system.   
4 See Appendix A for the full list of included studies. No later than one year after publication of this manuscript, the 
meta-dataset will be made publicly available on the US EPA’s Environmental Dataset Gateway: 
https://edg.epa.gov/, “Metadata for property values and water quality”, DOI: 10.23719/1503693.  
5 We are extremely grateful and thank Okmyung Bin, Allen Klaiber, Tingting Liu, Patrick Walsh, and James Yoo 
for providing the variance-covariance estimates needed to complete the Monte Carlo simulations.  We also thank 
Kevin Boyle for providing details on the functional form assumptions in Michael et al. (2000).  
6 Mean elasticity estimates for all 30 water quality measures examined in the literature are provided in Appendix B.   
7 Details on the interpretation and derivation of the standard RES weights and our proposed RESAC weights are 
provided in Appendix B.   
8 The standard RES weighted mean elasticities are similar, and are presented in Appendix B.   
9 Regions of the US are displayed in Figure 1 and are defined following the US Census Bureau’s “Census Regions” 
(https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf, accessed 11 June 2019).  
10 Initially, a vector of dummy variables denoting different waterbody types was to be included in the meta-
regression.  As described in section 2.4, the meta-dataset includes price elasticities corresponding to freshwater 
lakes, estuaries, rivers, and small rivers and streams.  However, the primary hedonic studies in the current literature 
that examine water clarity focus solely on freshwater lakes and estuaries.  
11 The mean values for some attributes, by definition, do not vary within clusters (e.g., indicators denoting 
Northeast, South, Midwest, and West regions; whether a study is unpublished; study year trend;). The mean values 
for such attributes are excluded in the subsequent meta-regressions due to multicollinearity.  
12 Some of the WLS meta-regression results are not as robust when comparing across models that use the 

conventional cluster-based 
ଵ

ೕ
 weights (Mrozek and Taylor, 2002). See Table C1 in Appendix C for details.  When 

comparing across weighting schemes, the coefficient corresponding to the elasticity variance variable, which is 
intended to correct for publication bias (Stanley and Doucouliagos, 2012, 2014), becomes significant in the models 
using conventional cluster-based weights. This coefficient is insignificant in our main set of meta-regression models, 
however, suggesting that the RESAC weights in the main analysis help minimize selection bias.  
13 Models including the average transaction price reported in the primary study, population density, and percent of 
population with a college education revealed statistically insignificant results.  
14 The mean covariate values can be found in Appendix C, Table C2.  
15 As a robustness check, we compare the WLS models in Table IV to the corresponding set of RE Panel models. As 
described above, the necessary assumptions for consistent estimates from a RE Panel model are often violated in 
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practice (Stanley and Doucouliagos, 2012).  Nonetheless, we find virtually identical results (see Table C3 in Appendix 
C).  
16 This estimate is calculated as the sum of the mean clarity and mean clarity cluster average coefficient estimates. 
The standard error of 0.0147 is estimated via the delta method.  
17 These “average” elasticities were predicted using the same procedure as described for the WLS model 1 “average” 
home illustration.  The cluster-weighted average values for each attribute are plugged in (see Table C2 in appendix 
C). A value of zero is plugged in for the elasticity variance, assessed values, and no spatial methods variables, and a 
value of 20 is used for the time trend variable. The averages of the cluster means are also plugged in for the 
corresponding cluster average variables.  
18 The transfer error medians are reported, as opposed to the means, because the transfer error means are heavily 
influenced by a single outlier.  The mean transfer errors range from 3,508% to 11,955%, but this is greatly affected 
by a single observation that has a variance that is orders of magnitude larger than the rest of the sample. Although 
the meta-regression coefficient corresponding to the elasticity variance is very small and insignificant, the large 
variance corresponding to this single outlying observation pushes its predicted elasticity up considerably. Thanks to 
our RESAC weighting scheme, excluding this outlier from the estimating sample does not affect our main meta-
regression results. But excluding it from the mean transfer error calculation does make a substantial difference. 
Excluding this outlier results in a mean transfer error ranging from 255%% to 492%. For comparison, Kaul et al. 
(2013) find a mean transfer error of 172% across a variety of valuation methods, Stapler and Johnson (2009) report a 
best case mean of 80.5% (outliers removed), and Lindhjem and Navrud (2015) report means ranging from 26% to 
258% depending how their data were screened. 
19 One can use the coefficient estimates in Table IV for purposes of benefit transfer. The full variance-covariance 
matrix for WLS model 2 is presented in Appendix D. This is needed to derive the corresponding confidence 
intervals via the delta method (Greene, 2003, page 70) or Monte Carlo simulations. 
20 Website links to these publicly available data sources are as follows: National Hydrography Dataset (NHD), 
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/; US Census Bureau, 
https://www.census.gov/; National Land Cover Dataset (NLCD), https://www.mrlc.gov/ (accessed 20 Feb. 2019).   
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ONLINE APPENDICES 

Appendix A: Meta-dataset details and study specific description. 

The set of 36 studies in the hedonic property value literature examining surface water 

quality in the United States provides 665 unique observations for the meta-dataset.  Figure A1 

displays the number of observations from each study, which ranges from just two observations 

from a single study to over 224 observations.  

Figure A1. Number of Meta-dataset Observations by Study. 

 

 

This appendix provides a brief summary of each study in the meta-dataset and examples to 

illustrate the study-by-study derivations of the common elasticity and semi-elasticity estimates in 

the meta-dataset.  The final meta-dataset will be publicly available on the US EPA’s 
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Environmental Dataset Gateway no later than one year after publication of this manuscript.1 The 

below textbox introduces the standardized notation used. 

p = sales price (or alternative measure of house value) 

WQ = water quality variable of interest. If multiple water quality parameters are included, then 

they are denoted using subscripts. Letter subscripts denote differences in units (e.g., meters 

(m) versus feet (ft)). 

area = surface area of waterbody 

X = vector for all other variables not of primary interest 

distWF = waterfront dummy variable 

dist = continuous variable measuring distance to waterbody 

dist e-f= distance dummy variable ranging from e to f (e.g., distance buffer between zero and 

200 meters would be dist0-200) 

γ = coefficients on X 

β = coefficient on WQ  

D = coefficient on WQ dummy variable 

 

Ara (2007) 

This study examined water clarity and fecal coliform in Lake Erie.  The study used 

several clustering algorithms to define submarkets along Lake Erie.  This clustering led to eight 

submarkets for which hedonic price equations are estimated for Secchi disk depth and fecal 

coliform.  Equations are estimated for both waterfront and non-waterfront homes.  The authors 

 
1 US EPA, Environmental Dataset Gateway: https://edg.epa.gov/ , “Metadata for property values and water quality”, 
DOI: 10.23719/1503693. 
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estimated each model using both OLS and spatial error models.  The study contributed 60 

observations to the meta-dataset.   

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

All models have a double-log specification:    

ln (𝑝) = 𝛾𝑋 + 𝛽ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
డ

డௐொ
= 𝛽



ௐொ
 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow    

డ

డௐொ

ଵ


=

ఉ

ௐொ
            (2) 

డ

డௐொ

ௐொ


= 𝛽           (3) 

The relevant sample means for WQ are then plugged in as needed to calculate the estimated 

semi-elasticities. 

   

Bejranonda et al. (1999) 

This study examined sediment inflow rates for state park lakes and reservoirs within 

4,000 feet (1219.2 meters) of homes in Ohio.  The counties are not identifiable based on the 

information provided in the primary study.  The hedonic models examined the effect of 

sedimentation rates on property values for homes near lakes/reservoirs with regulations limiting 

boating horse-power to 10 (Limited HP) versus unlimited horse-power lakes (Unlimited HP).  
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The dependent variable is the annual rental value which is obtained from a transformation on the 

total assessed housing value.  The authors excluded homes near lakes that had a water surface 

area less than 100 acres (one acre equals 4046.86 square meters).  The study estimated two 

models (one for the Limited HP lakes and one for the Unlimited HP lakes) each yielding a 

waterfront and non-waterfront estimate. Therefore, four observations are included in the meta-

dataset.   

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model (1) as an example. 

ln (𝑝) = 𝛾𝑋 + 𝛽ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
డ

డௐொ
= 𝛽



ௐொ
 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


=

ఉ

ௐொ
            (2) 

డ

డௐொ

ௐொ


= 𝛽           (3) 

The relevant sample means for WQ are then plugged in as needed to calculate the estimated 

semi-elasticities.   
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Bin and Czajkowski (2013) 

This study examined a variety of water quality variables including visibility, salinity, pH, 

and dissolved oxygen (DO) in the St. Lucie River, St. Lucie Estuary, and Indian River Lagoon of 

Florida.  The study estimated eight hedonic regression models, but only four included an 

objective and usable set of water quality parameters (e.g., water visibility, pH, dissolved 

oxygen).  The four models not included used a subjective location-based grade to measure water 

quality.  The study contributed a total of 18 observations to the meta-dataset.  

For 12 observations, water quality variables were actual measures.  The derivation of our 

standardized elasticity and semi-elasticity estimates for these 12 observations is as follows.  

Consider a simplified representation of Table 3’s Model I as an example.  

ln(𝑝) = 𝛾𝑋 + 𝛽ଵ𝑊𝑄 + 𝛽ଶ𝑊𝑄ଶ  

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝛽ଵ𝑊𝑄 + 𝛽ଶ𝑊𝑄ଶ)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= exp(𝛾𝑋 + 𝛽ଵ𝑊𝑄 + 𝛽ଶ𝑊𝑄ଶ) ∙ (𝛽ଵ + 2𝛽ଶ𝑊𝑄) 

Substituting for in p from equation (1) yields:   
ப୮

ப୕
= 𝑝 ∙ (𝛽ଵ + 2𝛽ଶ𝑊𝑄) 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

 
డ

డௐொ

ଵ


= (𝛽ଵ + 2𝛽ଶ𝑊𝑄)         (2) 

 
డ

డௐொ

ௐொ


= (𝛽ଵ + 2𝛽ଶ𝑊𝑄) ∙ 𝑊𝑄        (3) 
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The relevant sample means for WQ are then plugged in as needed to calculate the estimated 

elasticities and semi-elasticities.   

Six observations are based on dummy variables for WQ.  The dummy variables were 

equal to one for water visibility fair, water visibility good, and salinity good. Consider a 

simplified representation of Model III in Table 3 of the primary study as an example.  

ln(𝑝) = 𝛾𝑋 + 𝐷𝑊𝑄  

Rearranging to isolate p on the left-hand side yields, 

𝑝 = exp (𝛾𝑋 + 𝐷𝑊𝑄) 

Let p0 denote the price when 𝑊𝑄 = 0, and p1 denote when 𝑊𝑄 = 1.  These can be written out, 

respectively, as:  

𝑝 = exp (𝛾𝑋) 

𝑝ଵ = exp (𝛾𝑋 + 𝐷) 

Because the functional form is log-linear, we use the transformation first outlined by Halvorsen 

and Palmquist (1980) for calculating the percent change in price: %∆𝑝 =
భିబ

బ
.  

Plugging in the above equations yields: 

 %∆𝑝 =
భିబ

బ
=

ୣ୶୮(ఊା)ିୣ୶୮(ఊ)

ୣ୶୮ (ఊ)
 

Some rearranging and simplification yields: 

%∆𝑝 =
ୣ୶୮(ఊ)ୣ୶୮ ()ିୣ୶୮(ఊ)

ୣ୶୮(ఊ)
  

%∆𝑝 = exp (𝐷) − 1            
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The relevant coefficient estimate for D is then plugged in as needed to calculate the percent 

change in price. The percent change in price enters the meta-dataset as a “semi-elasticity” 

estimate for observations like this, and the corresponding elasticity variables are not applicable 

and are left as null. 

 

Boyle and Taylor (2001) 

This study examined water clarity in 34 lakes of Maine that are divided into four groups.  

The study estimated four hedonic regression models based on the groupings and each model is 

estimated with two different datasets of property characteristics. The first was labeled as town 

data and utilized tax-assessor records, and the second used survey responses from buyers and 

sellers.  Each model contributed a waterfront estimate to the meta-dataset, yielding a total of 

eight observations.  Waterbody surface area was measured in acres in the original study (one acre 

equals 4046.86 square meters).  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Group 1, town data model as an example. 

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎௦ ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= ൬𝛽 ∙ 𝑎𝑟𝑒𝑎௦ ∙

1

𝑊𝑄
൰ 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


=

(ఉ∙ೌೝೞ)

ௐொ∙
          (2) 
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డ

డௐொ

ௐொ


=

(ఉ∙ೌೝೞ)


          (3) 

The relevant sample means for WQ, price, and area are then plugged in as needed in order to 

calculate the estimated elasticities and semi-elasticities.  Because Boyle and Taylor did not 

include lake area or the specific lakes that are used for the different groups, we use the 3,515 

mean acreage estimate (14,224,713 sq. meters) from Michael et al. (2000), who used a similar, 

but not the exact same, data set. 

 

Boyle et al. (1999) 

This study examined water clarity (secchi depth) of lakes in four different housing 

markets in Maine.  The study estimated four hedonic regression models, one for each market, 

and each yielding one observation for waterfront homes.  Therefore, the study contributed a total 

of four observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the linear-log model.  

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3) respectively: 

డ

డௐொ
= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

ଵ

ௐொ
  

డ

డௐொ

ଵ


= 𝛽 ∙



ௐொ∙
           (2) 
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డ

డௐொ

ௐொ


= 𝛽 ∙




           (3) 

One complication for the study is only the mean implicit prices ቀ
డ

డௐொ
ቁ are reported, not the 

actual regression coefficients 𝛽 (see Table 1 in Boyle et al., 1999).  Therefore, we back out the 

relevant elasticities and semi-elasticities using the available estimates and the implicit price 

equation preceding equation (2) above.  In addition, the relevant sample means for WQ and p are 

plugged in as needed for each of the four study areas in order to calculate the estimated 

elasticities and semi-elasticities.   

 

Brashares (1985) 

This study examined the effect of turbidity and fecal coliform on lakeshore home values 

in southeast Michigan.  The study estimated several hedonic price functions each using different 

subsets of the data. One model examined homes with lake frontage only, one with lake or canal 

frontage, and one with selected homes on lakes with public access.  With three different subsets 

of the housing data and two water quality variables, this study contributed 6 observations to the 

meta-dataset.  All the models followed a log-quadratic specification, where the water quality 

variables entered as squared values of the mean.    

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.   

All models have the following log-quadratic specification:    

ln(𝑝) = 𝛾𝑋 + 𝛽𝑊𝑄ଶ          (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  
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డ

డௐொ
= 2𝛽𝑊𝑄 ∙ 𝑝 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= 2𝛽𝑊𝑄            (2) 

డ

డௐொ

ௐொ


= 2𝛽𝑊𝑄ଶ          (3) 

Elasticities and semi-elasticities are then computed using the summer mean values for the water 

quality variables as reported in table v.3 of the primary study. 

 

Cho et al. (2011) 

This study examined impairment in streams and the river in the Pigeon River Watershed 

of North Carolina and Tennessee.  The impairment source was identified as a paper mill.  The 

study estimated six hedonic regression models (four for NC and two for TN), each yielding a 

waterfront and non-waterfront estimate for two impairment dummy variables.  Therefore, the 

study contributed a total of 24 observations to the meta-dataset.  

The derivation of our standardized semi-elasticity estimates is as follows.  Consider a 

simplified representation of the North Carolina Thiessen Polygon (TP) model as an example, 

where 𝑊𝑄௩ and 𝑊𝑄௦௧௦ are dummy variables denoting that the nearby river 

and contributing streams, respectively, are considered impaired.  

ln(𝑝) = 𝛾𝑋 + 𝐷ଵ𝑊𝑄௩ + 𝐷ଶ𝑊𝑄௦௧௦  

Rearranging for p, 
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𝑝 = exp (𝛾𝑋 + 𝐷ଵ𝑊𝑄௩ + 𝐷ଶ𝑊𝑄௦௧௦)     (1) 

Because the functional form is log-linear, we use the Halvorsen and Palmquist (1980) equation 

for calculating the percent change in price which can then be expressed as %∆𝑝 =
భିబ

బ
.  

As an example, the percent change in price due to a river being classified as impaired is 

expressed as follows.  Let p0 denote the price when the dummy variable is turned off, and p1 

denote when it is turned on.  These can be written out, respectively, as:  

𝑝 = exp (𝛾𝑋) 

𝑝ଵ = exp (𝛾𝑋 + 𝐷ଵ) 

Plugging in the above equations yields: 

 %∆𝑝 =
భିబ

బ
=

ୣ୶୮(ఊାభ)ିୣ୶୮(ఊ)

ୣ୶୮ (ఊ)
 

Some rearranging and simplification produces: 

%∆𝑝 =
ୣ୶୮(ఊ)ୣ୶୮ (భ)ିୣ୶୮(ఊ)

ୣ୶୮(ఊ)
  

%∆𝑝 = exp (𝐷ଵ) − 1            

The relevant coefficient estimate for D1 is then plugged in as needed to calculate the percent 

change in price.   The percent change in price enters the meta-dataset as a “semi-elasticity” 

estimate for observations like this, and the corresponding elasticity variables are not applicable 

and are left as null. 
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Epp and Al-Ani (1979) 

This study examined pH levels in small rivers and streams in Pennsylvania.  The study 

estimated four hedonic regression models, but only three included an objective water quality 

parameter for waterfront properties.  The excluded model focused on a subjective water quality 

measure based on property owners’ perceptions.  Therefore, the study contributed a total of three 

observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model 1 as an example.  

ln(𝑝) = 𝛾𝑋 + 𝛽ଵ ln(𝑊𝑄) + 𝛽ଶ[ln(𝑊𝑄) 𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]  

ln(𝑝) = 𝛾𝑋 + [𝛽ଵ + 𝛽ଶ𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]ln (𝑊𝑄) 

where popchange denotes the change in population in that area.  Rearranging for p, 

𝑝 =  𝑒ఊ [ఉభାఉమ]୪୬ (ௐொ)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= 𝑒ఊା[ఉభାఉమ ]୪୬ (ௐொ) ∙  [𝛽ଵ + 𝛽ଶ𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]

1

𝑊𝑄
 

Substituting for p from equation (1) yields:   
ப୮

பௐ
= 𝑝 ∙  [𝛽ଵ + 𝛽ଶ𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]

ଵ

ௐொ
 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= [𝛽ଵ + 𝛽ଶ𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]

ଵ

ௐொ
         (2) 

డ

డௐொ

ௐொ


= [𝛽ଵ + 𝛽ଶ𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]        (3) 



13 
 

The relevant sample means for pH and population change are then plugged in as needed in order 

to calculate the estimated elasticities and semi-elasticities.   

 

Feather et al. (1992) 

This study examined the effect of water quality -- as proxied by a trophic status index 

(TSI) -- on the sale of vacant lots on lakes in Orange County, Florida between 1982-84.  TSI 

theoretically ranges from 0 (good water quality) to 100 (very poor).  The study estimated two 

hedonic regression models. The first used a linear model specification for waterfront properties 

only and the second model, for both waterfront and non-waterfront properties, was log-linear 

based on Box-Cox procedures for estimating functional form.  Therefore, the study contributed a 

total of three observations to the meta-dataset. 

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Table V-4 as an example. 

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄          (1) 

Taking the partial derivative of equation (1) with respect to WQ yields: 

𝜕𝑝

𝜕𝑊𝑄
= 𝛽 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= 𝛽

ଵ


           (2) 

డ

డௐொ

ௐொ


= 𝛽

ௐொ


          (3) 
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For the log-linear specification, consider the simplified representation of the model in Table V-8 

of the primary study.   

ln(𝑝) = 𝛾𝑋 + 𝛽𝑊𝑄           (1) 

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝛽𝑊𝑄)  

Taking the partial derivative with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= exp(𝛾𝑋 + 𝛽𝑊𝑄) ∙ 𝛽 

Substituting in for p yields:   
ப୮

ப୕
= 𝑝𝛽 

The semi-elasticity and elasticity are respectively: 

డ

డௐொ

ଵ


= 𝛽            (2) 

డ

డௐொ

ௐொ


= 𝛽𝑊𝑄          (3) 

The relevant sample means for TSI and price are then plugged in as needed in order to calculate 

the estimated elasticities and semi-elasticities. 

 

Gibbs et al. (2002) 

This study examined water clarity (secchi depth) of lakes in four different housing 

markets in New Hampshire.  The study estimated four hedonic regression models, one for each 

market, and each yielding one observation for waterfront homes.  Therefore, the study 
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contributed a total of four observations to the meta-dataset. The derivation of our standardized 

elasticity and semi-elasticity estimates is similar to that reported for Boyle et al. (1999) in this 

appendix. Consider a simplified representation of the linear-log model.  

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3) respectively: 

డ

డௐொ
= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

ଵ

ௐொ
  

డ

డௐொ

ଵ


= 𝛽 ∙



ௐொ∙
           (2) 

డ

డௐொ

ௐொ


= 𝛽 ∙




           (3) 

The relevant sample means for lake area, Secchi disk depth, and price are then plugged in as 

needed in order to calculate the estimated elasticities and semi-elasticities.   

 

Guignet et al. (2017) 

This study examined water clarity (light attenuation coefficient) in the Chesapeake Bay.  

The study estimated several hedonic regression models but only one included a water quality 

parameter of interest, yielding a waterfront and non-waterfront observation. Two additional 

observations are derived from the same regression results by converting the estimates to 

correspond to Secchi disk depth (instead of the light attenuation coefficient). Therefore, the study 

contributed a total of four observations to the meta-dataset. The derivation of our standardized 
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elasticity and semi-elasticity estimates is as follows.  Consider a simplified representation of 

model 2.C as an example.  

ln (𝑝) = 𝛾𝑋 + 𝛽ଵ(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡ௐி) + 𝛽ଶ(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡ିଶ)  

   +𝛽ଷ(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡ଶିହ)  

where 𝑑𝑖𝑠𝑡ௐி is a dummy variable equal to one for waterfront homes, 𝑑𝑖𝑠𝑡ିଶ is a dummy 

variable equal to one for non-waterfront homes within 0-200 meters of the water, and 

𝑑𝑖𝑠𝑡ଶିହ is a dummy variable equal to one for non-waterfront homes within 200-500 meters 

of the water. The above equation can be simplified to: 

𝑝 = 𝑒ఊା(ఉభௗ௦௧ೈಷାఉమௗ௦௧బషమబబାఉయௗ௦௧మబబషఱబబ) ୪୬(ௐொ಼ವ)       

Calculating the elasticities and semi-elasticities with respect to the light attenuation 

coefficient (𝑊𝑄) is straight forward and follows similar derivation as that below.  Here we 

focus on converting those estimates to secchi depth in meters (𝑊𝑄), using the following 

inverse relationship estimated for this particular study area and referenced in the primary study: 

𝑊𝑄 = 1.45/𝑊𝑄. Plugging this into the above hedonic regression yields:  

𝑝 = 𝑒
ఊ (ఉభௗ௦௧ೈಷାఉమௗ௦௧బషమబబାఉయௗ௦௧మబబషఱబబ) ୪୬ቀ

భ.రఱ

ೈೂ
ቁ
      (1) 

To calculate the semi-elasticity and elasticity estimates (equations 2 and 3 below, respectively), 

we take the derivative with respect to 𝑊𝑄 and then do some slight rearranging: 

డ

డௐொ
= 𝑒

ఊା(ఉభௗ௦௧ೈಷାఉమௗ௦௧బషమబబାఉయௗ௦௧మబబషఱబబ) ୪୬ቀ
భ.రఱ

ೈೂ
ቁ
  

∙ −(𝛽ଵ𝑑𝑖𝑠𝑡ௐி + 𝛽ଶ𝑑𝑖𝑠𝑡ିଶ + 𝛽ଷ𝑑𝑖𝑠𝑡ଶିହ)
ௐொ

ଵ.ସହ
(1.45)𝑊𝑄

ିଶ  
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డ

డௐொ
= −



ௐொ
(𝛽ଵ𝑑𝑖𝑠𝑡ௐி + 𝛽ଶ𝑑𝑖𝑠𝑡ିଶ + 𝛽ଷ𝑑𝑖𝑠𝑡ଶିହ )  

డ

డௐொ

ଵ


= −

ଵ

ௐொ
(𝛽ଵ𝑑𝑖𝑠𝑡ௐி + 𝛽ଶ𝑑𝑖𝑠𝑡ିଶ + 𝛽ଷ𝑑𝑖𝑠𝑡ଶିହ)     (2) 

డ

డௐொ

ௐொ


= −(𝛽ଵ𝑑𝑖𝑠𝑡ௐி + 𝛽ଶ𝑑𝑖𝑠𝑡ିଶ + 𝛽ଷ𝑑𝑖𝑠𝑡ଶିହ )     (3) 

After plugging in the appropriate value of zero or one for the corresponding distance bin dummy 

variables, the elasticities and semi-elasticities for waterfront homes are simply −𝛽ଵand −
ఉభ

ௐொ
, 

respectively. For non-waterfront observations, the representative non-waterfront home distance 

of 250 meters is assumed, and so 𝑑𝑖𝑠𝑡ିଶ = 0 and 𝑑𝑖𝑠𝑡ଶିହ = 1 is plugged in. The 

corresponding elasticities and semi-elasticities are −𝛽ଷ and −
ఉయ

ௐொ
. The relevant sample mean 

for 𝑊𝑄 is then plugged in as needed in order to calculate the estimated semi-elasticities.   

 

Horsch and Lewis (2009) 

Although the authors’ primary focus was on Eurasian milfoil (an invasive aquatic 

vegetation), this study also examined water clarity (secchi depth) of lakes in Vilas County, 

Wisconsin.  The study estimated nine hedonic regression models, five of which included water 

clarity.  Each model only used waterfront homes in the estimations.  Therefore, the study 

contributed a total of five observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the primary study’s linear model.  

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄௧  
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The primary study WQ is expressed in terms of Secchi disk depth in feet, which we re-express as 

Secchi depth in meters using the following conversion factor: 𝑊𝑄௧ = 𝑊𝑄 ∙
ଷ.ଶ଼଼ସ ௧ 

ଵ 
. 

Plugging this into the hedonic regression yields: 

𝑝 = 𝛾𝑋 + 𝛽(𝑊𝑄 ∙ 3.28084)        (1) 

Taking the partial derivative with respect to 𝑊𝑄 and then multiplying both sides by 1 𝑝ൗ  and 

𝑊𝑄
𝑝ൗ  yields the semi-elasticity and elasticity calculations, respectively.  

డ

డௐொ

ଵ


=

ఉ


∙ 3.28084          (2) 

డ

డௐொ

ௐொ


= 𝛽 ∙ 3.28084 ∙

ௐொ


         (3) 

The relevant sample means for price and the converted mean Secchi depth in meters are then 

plugged in as needed.   

 

Hsu (2000) 

This study examined the effect of lake water clarity and aquatic plants on lakefront 

property values across twenty lakes grouped into three distinct markets in Vermont.  The 

metadata includes seven observations from this study.  Three of the observations are from model 

specifications which exclude the aquatic plant variables and include only water clarity.  The 

other four observations on water clarity come from model specifications that include the aquatic 

plant variables.   All of the water clarity variables are specified as the interaction of the natural 

log of the minimum water clarity in the year the property was sold multiplied by the total lake 

surface area.  The derivation of the standardized elasticity and semi-elasticity is as follows. 
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The lin-log specification can generally be expressed as:    

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
డ

డௐொ
= ቀ𝛽 ∙



ௐொ
ቁ 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= ቀ𝛽 ∙



ௐொ
ቁ ∙

ଵ


           (2) 

డ

డௐொ

ௐொ


= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

ଵ


          (3) 

The relevant sample means for lake area, water clarity, and price are then plugged in as needed 

in order to calculate the estimated elasticities and semi-elasticities. 

 

Kashian et al. (2006) 

This study examined water clarity in the lake community of Delavan, Wisconsin.  The 

study estimated three hedonic models, but only one included a water quality parameter, yielding 

a waterfront and a non-waterfront observation. Therefore, the study contributed a total of two 

observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model 3 from the primary study as an example.  

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄          (1) 

In this case, WQ is expressed in terms of Secchi disk depth in feet, which we re-express as 
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Secchi depth in meters using the following conversion factor: 𝑊𝑄௧ = 𝑊𝑄 ∙
ଷ.ଶ଼଼ସ ௧ 

ଵ 
. 

Substituting this conversion into equation (1), we have 

𝑝 = 𝛾𝑋 + 𝛽(𝑊𝑄 ∙ 3.28084) 

Taking the partial derivative with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= 𝛽 ∙ 3.28084 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐ 

ଵ


=

ఉ


∙ 3.28084          (2) 

డ

డௐொ

ௐொ


= 𝛽 ∙ 3.28084 ∙

ௐொ


         (3) 

The relevant sample means for WQm and price are then plugged in as needed in order to calculate 

the estimated elasticities and semi-elasticities.   

 

Krysel et al. (2003) 

This study examined the effect of lake water clarity on lakefront property values across 

thirty-seven lakes grouped into six distinct markets in Minnesota.  There are two estimates based 

on different model specifications for five of the groups and one estimate for the Bemidji group.  

Thus, this study contributes 11 observations to the meta-dataset.  The water quality variable used 

in the study is the natural log of water clarity multiplied by lake size.   

The lin-log specification can generally be expressed as:    
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𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
డ

డௐொ
= ቀ𝛽 ∙



ௐொ
ቁ 

Rearranging produces the formulas for the semi-elasticity equation (2) and elasticity equation 

(3). 

డ

డௐொ

ଵ


= 𝛽 ∙



ௐொ
∙

ଵ


           (2) 

డ

డௐொ

ௐொ


= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

ଵ


          (3) 

The relevant sample means for WQ, p, and area are then plugged in as needed in order to 

calculate the estimated elasticities and semi-elasticities. 

 

Leggett and Bockstael (2000) 

This study examined fecal coliform counts in the Chesapeake Bay.  The study estimated 

20 different hedonic regression models, all of which focused on waterfront homes in Anne 

Arundel county, Maryland, and each yielded one observation.  Therefore, the study contributed a 

total of 20 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

The primary study considered several different functional forms, but the fecal coliform count 

variable of interest (WQ) always entered linearly.  Consider a simplified representation Leggett 

and Bockstael’s linear model as an example.  
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𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄           (1) 

Taking the derivative and dividing by p yields the semi-elasticity: 

డ

డௐொ

ଵ


=

ఉ


           (2) 

The elasticity can then be expressed by taking equation (2) and multiplying by WQ, as follows: 

డ

డௐொ

ௐொ


=

ఉௐொ


           (3) 

The relevant sample means for WQ and price from Table I of the primary study are then plugged 

in as needed in order to calculate the estimated elasticities and semi-elasticities.   

 

Liao et al. (2016) 

This study examined water clarity in the Coeur d’Alene Lake, Idaho.  The study 

estimated six hedonic regression models, but only four included an objective water quality 

parameter of interest for waterfront properties.  Two of the hedonic models include two water 

quality parameters (one for northern division of the lake and one for southern division of the 

lake).  Therefore, the study contributed a total of six observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model 1 in Table 2 of the primary study as an example.  

The hedonic double-log specification can generally be specified as: 

ln (𝑝) = 𝛾𝑋 + 𝛽 ln(𝑊𝑄)  

Rearranging for p,  
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p = exp (𝛾𝑋 + 𝛽 ln(𝑊𝑄))          (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

ப୮

డௐொ
= exp (𝛾𝑋 + 𝛽 ln(𝑊𝑄)) 

ఉ

ௐொ
  

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

ப୮

డௐொ

ଵ


=

ఉ

ௐொ
            (2) 

ப୮

డௐொ

ௐொ


= 𝛽           (3) 

The relevant coefficient and sample means for WQ are then plugged in as needed in order to 

calculate the estimated elasticities and semi-elasticities.   

 

Liu et al. (2014) 

This working paper examined sediment loads, dissolved oxygen, nitrogen and 

phosphorous levels, and Secchi disk depth in the Hoover Reservoir, as well as nitrogen and 

phosphorous in rivers, focusing on the Upper Big Walnut Creek watershed in Ohio. The study 

estimated a single hedonic regression model, that included interaction terms for each specific 

water quality measure and waterbody combination listed above, yielding seven observations 

corresponding to waterfront homes and seven corresponding to non-waterfront homes. 

Therefore, the study contributed a total of 14 observations to the meta-dataset. Only eight of 

these observations, however, can be included in any subsequent meta-analysis.  Standard errors 

for all the relevant coefficient estimates in the other six cases lacked the necessary number of 

significant digits and were essentially listed as zero.  This prevented us from simulating the 
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corresponding standard errors associated with our standardized elasticity and semi-elasticity 

estimates.2   

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the model that focuses on nitrogen levels in the Hoover 

Reservoir as an example. Note that although numerous water quality measures are included in 

the single hedonic regression from this study, they will cancel out when taking the partial 

derivative with respect to each water quality measure of interest.  The hedonic regression can be 

represented as: 

ln(𝑝) = 𝛾𝑋 + 𝛽ଵ𝑊𝑄 + 𝛽ଶ(𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡௦)   

where 𝑑𝑖𝑠𝑡௦ is distance to the Hoover Reservoir, measured in miles. Since the distances for 

the standardized waterfront and non-waterfront estimates in the meta-dataset are noted in meters, 

we must convert the distance measure by applying the following conversion factor: 𝑑𝑖𝑠𝑡௦ =

𝑑𝑖𝑠𝑡
1609.34ൗ . Plugging this into the hedonic equation yields: 

ln(𝑝) = 𝛾𝑋 + 𝛽ଵ𝑊𝑄 + 𝛽ଶ ቀ𝑊𝑄 ∙
ௗ௦௧

ଵଽ.ଷସ
ቁ         (1) 

Taking the partial derivative and rearranging yields the semi-elasticity and elasticity calculations 

(equations (2) and (3) below, respectively).  

డ

డௐொ

ଵ


= 𝛽ଵ + 𝛽ଶ

ௗ௦௧

ଵଽ.ଷସ
         (2) 

డ

డௐொ

ௐொ


= ቀ𝛽ଵ + 𝛽ଶ

ௗ௦௧

ଵଽ.ଷସ
ቁ 𝑊𝑄        (3) 

 
2 Subsequent correspondence with the primary study authors to obtain the necessary estimates, as well as the 
covariances, were unsuccessful as the available working paper was said to be undergoing revisions.  
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The relevant sample means for WQ are then plugged in as needed in order to calculate the 

estimated elasticity and semi-elasticities.  The mean distance for waterfront homes was not 

reported, and so in calculating the waterfront estimates a distance of 50 meters was assumed (as 

done for other studies where such information was needed but unavailable), and an assumed 250 

meters was used for the representative non-waterfront home.  

 

Liu et al. (2017) 

This study examined chlorophyll in Narragansett Bay, Rhode Island.  The study 

estimated 13 hedonic regression models, each yielding a waterfront and non-waterfront estimate.  

Therefore, the study contributed a total of 26 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

As an example, consider a simplified representation of the “well-informed” model for waterfront 

properties, which used the 99th percentile for chlorophyll concentration as the relevant water 

quality measure.  

ln(𝑝) = 𝛾𝑋 + 𝛽ଵ𝑊𝑄 + 𝛽ଶ𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡ିଵ     

Rearranging for p, 

𝑝 = exp(𝛾𝑋 + 𝛽ଵ𝑊𝑄 + 𝛽ଶ𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡ିଵ )      (1) 

In this case, WQ is expressed in terms of micrograms per liter, which we re-express as 

milligrams per liter using the following conversion factor: 𝑊𝑄ఓ
ൗ = 𝑊𝑄

ൗ ∙
ଵఓ 

ଵ 
.  

𝑑𝑖𝑠𝑡ିଵ  is a dummy variable representing waterfront properties within 100m of the Bay. 
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Substituting this conversion into equation (1), we have 

𝑝 = exp(𝛾𝑋 + 𝛽ଵ𝑊𝑄
ൗ ∙ 1000 + 𝛽ଶ𝑊𝑄

ൗ ∙ 1000 ∙ 𝑑𝑖𝑠𝑡ିଵ )  

Taking the partial derivative with respect to WQ yields:  

డ

డௐொ
= exp(𝛾𝑋 + 𝛽ଵ𝑊𝑄

ൗ ∙ 1000 + 𝛽ଶ𝑊𝑄
ൗ ∙ 1000 ∙ 𝑑𝑖𝑠𝑡ିଵ)(𝛽ଵ ∙ 1000 + 𝛽ଶ ∙ 1000 ∙

𝑑𝑖𝑠𝑡ିଵ)  

Plugging in p from equation (1) yields:  

డ

డௐொ
= 𝑝 ∙ (𝛽ଵ ∙ 1000 + 𝛽ଶ ∙ 1000 ∙ 𝑑𝑖𝑠𝑡ିଵ)  

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= 1000(𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ିଵ)         (2) 

డ

డௐொ

ௐொ


= 𝑊𝑄

ൗ ∙ 1000(𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ିଵ)       (3) 

For waterfront properties, we set 𝑑𝑖𝑠𝑡ିଵ = 1.  The relevant coefficients and sample means 

for WQ are then plugged in as needed in order to calculate the estimated elasticities and semi-

elasticities. 

 

Michael et al. (2000) 

This study examined water clarity in 22 lakes of Maine that are divided into three groups.  

The study estimated nine hedonic regression models per group, each yielding one waterfront 

observation.  Therefore, the study contributed a total of 27 observations to the meta-dataset.  
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The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Group 1’s CMIN model as an example.  CMIN 

represents the minimum water clarity for the year the property was sold. 

The lin-log specification can generally be expressed as:   

𝑝 = 𝛾𝑋 + 𝛽ln (𝑊𝑄)           (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
డ

డௐ
= ቀ𝛽

ଵ

ௐொ
ቁ 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= ቀ𝛽

ଵ

ௐொ
ቁ

ଵ


          (2) 

డ

డௐொ

ௐொ


= ቀ𝛽

ଵ


ቁ          (3) 

The relevant coefficient and sample means for WQ and price are then plugged in as needed in 

order to calculate the estimated elasticities and semi-elasticities.   

The functional form of WQ varied across specifications. Table 4 in Michael et al. presents 

CMAX/CMIN or CMAX/CMIN% as additional water clarity specifications.  However, in Table 

7, the specification is presented as CMIN/CMAX and CMIN/CMAX%.  For models 6 and 7, we 

estimate the elasticities as presented in Table 4, as suggested by the primary study authors.3 

As an example, Model 6 from the primary study has the following form:  

 
3 Personal communication with K. Boyle, December 8, 2017.  
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𝑝 = 𝛾𝑋 + 𝛽
୪୬ (ெ)

୪୬ (ௐொ)
           (1) 

where ln(CMAX) is an interaction term. 

Taking the partial derivative of equation (1) with respect to WQ yields:  

డ

డௐொ
= - 𝛽 ቀ

୪୬ (ெ)

ௐொ∙୪୬ (ௐொ)మ
ቁ 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= − 𝛽 ቀ

୪୬ (ெ)

ௐொ∙୪୬ (ௐொ)మ
ቁ ∙

ଵ


         (2) 

డ

డௐொ

ௐொ


= − 𝛽 ቀ

୪୬(ெ)

୪୬(ௐொ)మ
ቁ ∙

ଵ


         (3) 

 

As another example, Model 7 from the primary study has the following form: 

𝑝 = 𝛾𝑋 + 𝛽
୪୬(ெ)ି୪୬ (ௐொ)

୪୬ (ெ)
          (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= ൬

− 𝛽

𝑊𝑄 ∙ ln (𝐶𝑀𝐴𝑋)
൰ 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= ቀ

ି ఉ

ௐொ∙୪୬ (ெ)
ቁ ∙

ଵ


         (2) 

డ

డௐொ

ௐொ


=

ି ఉ

୪୬ (ெ)
∙

ଵ


          (3) 
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Netusil et al. (2014) 

This study examined a variety of water quality parameters including dissolved oxygen, E. 

coli, fecal coliform, pH, temperature, and total suspended solids in Johnson Creek, Oregon, and 

Burnt Bridge Creek, Washington.  The study estimated five hedonic regression models for 

Johnson Creek and one model for Burnt Bridge Creek, each yielding five water quality measures 

for waterfront and non-waterfront properties.  For this study, the dummy variable, dist0-0.25, 

representing properties within a 0.25 mile (402.34 meters) of the creeks includes both waterfront 

and non-waterfront homes. Therefore, the study contributed a total of 60 observations to the 

meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the Johnson Creek (Dry) OLS model from the primary 

study as an example.  

ln (𝑝) = 𝛾𝑋 + 𝛽𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡ି.ଶହ  

𝑝 = exp (𝛾𝑋 + 𝛽𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡ି.ଶହ)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

డ

డௐொ
= exp (𝛾𝑋 + 𝛽𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡ି.ଶହ) 𝛽 ∙ 𝑑𝑖𝑠𝑡ି.ଶହ  

Substituting in p from equation (1), the formulas for the semi-elasticity equation (2) and 

elasticity equation (3) follow   

డ

డௐொ

ଵ


= 𝛽 ∙ 𝑑𝑖𝑠𝑡ି.ଶହ          (2) 

డ

డௐொ

ௐொ


= 𝛽𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡ି.ଶହ         (3) 
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For both waterfront and non-waterfront properties, we set 𝑑𝑖𝑠𝑡ି.ଶହ=1.  The relevant coefficient 

and sample means for WQ are then plugged in as needed in order to calculate the estimated 

elasticities and semi-elasticities. 

 

Olden and Tamayo (2014) 

This study examined water clarity in lakes located in King County, Washington.  The 

study estimated three hedonic regression models, each yielding a waterfront observation.  

Therefore, the study contributed a total of three observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Model 1 from the primary study as an example. 

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄          (1) 

Taking the partial derivative with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= 𝛽 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


=

ఉ


           (2) 

డ

డௐொ

ௐொ


= 𝛽

ௐொ


           (3) 

The relevant sample means for WQ and p are then plugged in as needed in order to calculate the 

estimated elasticities and semi-elasticities.   
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Poor et al. (2001) 

This study estimated several hedonic regression models that included both objective and 

subjective measures of water clarity (i.e., Secchi disk depth) in lakes in Maine.  The meta-dataset 

focuses solely on objective measures of water quality, and so we examine the four hedonic 

regression models that included objective Secchi disk depth measurements as an explanatory 

variable. Each model corresponded to one of four different housing markets in Maine and 

provided one waterfront observation.  Therefore, the study contributed a total of four 

observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is similar to 

Boyle et al. (1999) and is briefly re-summarized here.  Consider a simplified representation of 

the linear-log model presented in the primary study.  

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3) respectively: 

డ

డௐொ
= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

ଵ

ௐொ
  

డ

డௐொ

ଵ


= 𝛽 ∙



ௐொ∙
           (2) 

డ

డௐொ

ௐொ


= 𝛽 ∙




           (3) 

The relevant sample means for WQ, area, and p are plugged in as needed for each of the four 

study areas in order to calculate the estimated elasticities and semi-elasticities.   
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Poor et al. (2007) 

This study examined concentrations of total suspended solids and dissolved inorganic 

nitrogen in rivers throughout the St. Mary’s watershed in Maryland.  The study presented two 

hedonic regression models, one for each of the two water quality measures.  The focus was on 

ambient water quality, and so the sample encompassed both waterfront and non-waterfront 

homes (although the distance gradient with respect to water quality was essentially assumed to 

be flat).  Therefore, each model contributed a waterfront and non-waterfront observation, 

implying that the study provided a total of four observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the model as follows:  

ln (𝑝) = 𝛾𝑋 + 𝛽𝑊𝑄  

𝑝 = 𝑒ఊାఉௐொ            (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3), respectively: 

డ

డௐொ

ଵ


= 𝛽           (2) 

డ

డௐொ

ௐொ


= 𝛽𝑊𝑄          (3) 

The relevant sample means for WQ (either total suspended solids or dissolved inorganic nitrogen 

depending on the model) are then plugged in as needed in order to calculate the estimated 

elasticities and semi-elasticities.   
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Ramachandran (2015) 

This study examined nitrogen concentrations in the Three Bays area of Cape Cod, 

Massachusetts. The study estimated and presented four hedonic regression models, but only three 

of these models included the relevant water quality measure as a control variable.  Each model 

yielded a waterfront and non-waterfront observation. Therefore, the study contributed a total of 

six observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates from the 

double-log specification in the primary study is as follows.   

ln (𝑝) = 𝛾𝑋 + 𝛽ln (𝑊𝑄)  

𝑝 = 𝑒ఊାఉ୪  (ௐொ)            (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3) respectively: 

డ

డௐொ

ଵ


=

ఉ

ௐொ
            (2) 

డ

డௐொ

ௐொ


= 𝛽           (3)  

The relevant sample mean for WQ is then plugged in as needed in order to calculate the 

estimated elasticities and semi-elasticities.   

 

Steinnes (1992) 

This study examined the effect of water clarity across 53 lakes in Northern 

Minnesota.  The study used several measures of the appraised value of land as the dependent 
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variable in the hedonic price equation.  However, the study did not report the average price nor 

the summary statistics for the water clarity variable so neither the elasticity nor the semi-

elasticity are computed for this study.  

 

Tuttle and Heintzelman (2015) 

This study examined numerous ecological and water quality measures in lakes in the 

Adirondacks Park in New York, including the presence of milfoil (an invasive species), loons (an 

aquatic bird and indicator species of ecological health), and lake acidity (i.e., pH levels). The 

only objective measure of water quality for inclusion in this meta-dataset is lake acidity, which is 

measured as an indicator equal to one if pH levels are below 6.5.  The study estimated and 

presented four hedonic regression models that included the poor pH indicator as a control 

variable.  Two of these models included only lakefront homes, and thus contributed only a single 

observation each to the meta-dataset.  The other two models included waterfront and non-

waterfront homes in the estimating sample and thus provided two observations each.  This study 

contributed a total of six observations to the meta-dataset.  

The relevant water quality measures are binary indicator variables in this case, and so the 

percent change in price (%∆𝑝) is calculated for the “semi-elasticity” variable in the meta-

dataset. The elasticity estimates are not applicable and are left as null. Consider a simplified 

representation of Tuttle and Heintzelman’s hedonic model. 

ln (𝑝) = 𝛾𝑋 + 𝐷𝑊𝑄   

𝑝 = 𝑒ఊାௐொ            (1) 
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where 𝐷 is the coefficient of interest corresponding to the poor pH dummy variable. Note that 

the distance gradient with respect to water quality was assumed to be flat in this study, and so, 

when appropriate, the calculations for waterfront and non-waterfront %∆𝑝 are the same. Let the 

price for a representative home when the nearest lake does not and does have poor pH be 

denoted as p0 and p1, respectively. These can be expressed as:   

𝑝 = exp (𝛾𝑋) 

𝑝ଵ = exp (𝛾𝑋 + 𝐷) 

Plugging the above two equations into the percent change in price calculation yields: 

 %∆𝑝 =
భିబ

బ
=

ୣ୶୮(ఊା)ିୣ୶୮(ఊ)

ୣ୶୮ (ఊ)
 

And with some rearranging and simplification yields: 

%∆𝑝 =
ୣ୶୮(ఊ)ୣ୶୮ ()ିୣ୶୮(ఊ)

ୣ୶୮(ఊ)
  

%∆𝑝 = exp (𝐷) − 1  

The relevant coefficient estimate for 𝐷 is then plugged in as needed to calculate the percent 

change in price. 

 

Walsh and Milon (2016) 

This study examined the effect of nutrients on properties on and/or near lakes in Orange 

County, Florida. The study estimated several singular indicators of nutrients including Total 

Nitrogen (TN), Total Phosphorus (TP), and chlorophyll a (CHLA).  The study also examined 
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several composite indicators – the trophic status index (TSI) and what the authors label as the 

one-out, all-out (OOAO) indicator that equals one if all the US EPA criteria for TN, TP, and 

CHLA are achieved.  Each model yields a waterfront and non-waterfront observation which 

contributes ten observations, plus an additional model which includes TN, TP, and CHLA in a 

single model yielding six more observations for a total of 16 observations from this study. 

The derivation of the standardized elasticity and semi-elasticity estimates is as follows.  

Consider simplified version of the basic specification used (see EQ1 on pg. 647 of the primary 

study):  

ln(𝑝) = 𝛾𝑋 + 𝛽𝑑𝑖𝑠𝑡ௐி + 𝛽ଵ ln(𝑊𝑄) + 𝛽ଶ(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡ௐி) + 𝛽ଷ(ln(𝑊𝑄) ∙ ln(𝑑𝑖𝑠𝑡)) +

𝛽ସ(ln(𝑊𝑄) ∙ ln(𝑎𝑟𝑒𝑎)) + 𝛽ହ(ln(𝑊𝑄) ∙ 𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤)        

where ClearLow is a dummy variable indicating that a lake is considered a clear lake with low 

alkalinity. This equation can be simplified to: 

ln (𝑝) = 𝛾𝑋 + 𝛽𝑑𝑖𝑠𝑡ௐி + [𝛽ଵ + 𝛽ଶ 𝑑𝑖𝑠𝑡ௐி + 𝛽ଷ ln(𝑑𝑖𝑠𝑡) + 𝛽ସ ln(𝑎𝑟𝑒𝑎) +

𝛽ହ𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤] ln(𝑊𝑄)  

 𝑝 = exp ( 𝛾𝑋 + 𝛽𝑑𝑖𝑠𝑡ௐி + [𝛽ଵ + 𝛽ଶ 𝑑𝑖𝑠𝑡ௐி + 𝛽ଷ ln(𝑑𝑖𝑠𝑡) + 𝛽ସ ln(𝑎𝑟𝑒𝑎) +

𝛽ହ𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤] ln(𝑊𝑄))         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields: 

𝜕𝑝

𝜕𝑊𝑄
= exp ( 𝛾𝑋 + 𝛽𝑑𝑖𝑠𝑡ௐி

+ [𝛽ଵ + 𝛽ଶ 𝑑𝑖𝑠𝑡ௐி + 𝛽ଷ ln(𝑑𝑖𝑠𝑡) + 𝛽ସ ln(𝑎𝑟𝑒𝑎) + 𝛽ହ𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤] ln(𝑊𝑄))

∙  [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷ ln(𝑑𝑖𝑠𝑡) + 𝛽ସ ln(𝑎𝑟𝑒𝑎) + 𝛽ହ𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤] ∙
1

𝑊𝑄
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Plugging in p from equation (1), and then rearranging yields the formulas for the semi-elasticity 

and elasticity estimates, equations (2) and (3), respectively.  

డ

డௐொ
= 𝑝[𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷ ln(𝑑𝑖𝑠𝑡) + 𝛽ସ ln(𝑎𝑟𝑒𝑎) + 𝛽ହ𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤]

ଵ

ௐொ
     

డ

డௐ 

ଵ


= [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷ ln(𝑑𝑖𝑠𝑡) + 𝛽ସ ln(𝑎𝑟𝑒𝑎) + 𝛽ହ𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤]

ଵ

ௐொ
  (2) 

డ

డௐொ

ௐொ


= [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷ ln(𝑑𝑖𝑠𝑡) + 𝛽ସ ln(𝑎𝑟𝑒𝑎) + 𝛽ହ𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤]  (3) 

For waterfront observations, the relevant sample mean values for area are plugged in to 

equations (2) and (3), the representative waterfront home distance of 50 meters is plugged in for 

dist, and distWF is set equal to one. For non-waterfront observations, the corresponding sample 

mean values are plugged in, but distWF is set equal to zero and the representative non-waterfront 

home distance of 250 meters is plugged in for dist.  The dummy variable ClearLow indicates 

clear lakes with low alkalinity is set to one for model specifications that include that variable. 

 

Walsh et al. (2011a) 

This study examined water clarity (secchi depth) in lakes in Orange County, Florida.  The 

study estimated six hedonic regression models that varied in terms of the independent variables 

and how they address spatial dependence. Each model yields a waterfront and a non-waterfront 

observation.  Therefore, the study contributed a total of 12 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation model 3 or 3S in the primary study as an example.  

ln (𝑝) = 𝛾𝑋 + 𝛽ଵ ln൫𝑊𝑄௧൯ + 𝛽ଶ൫ln൫𝑊𝑄௧൯ ∙ 𝑑𝑖𝑠𝑡ௐி൯ + 𝛽ଷ൫ln൫𝑊𝑄௧൯ ∙ ln (𝑑𝑖𝑠𝑡)൯ +
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𝛽ସ൫ln (𝑎𝑟𝑒𝑎) ∙ ln (𝑊𝑄௧)൯  

which can be simplified to: 

ln (𝑝) = 𝛾𝑋 + [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)] ln൫𝑊𝑄௧൯       

In this case, WQ is expressed in terms of Secchi disk depth in feet, which we re-express as 

Secchi depth in meters using the following conversion factor: 𝑊𝑄௧ = 𝑊𝑄 ∙
ଷ.ଶ଼଼ସ ௧ 

ଵ 
. 

Plugging the conversion factor into the hedonic price function and re-arranging so that p is on the 

on the left-hand side yields:  

𝑝 = eఊା[ఉభାఉమௗ௦௧ೈಷାఉయ୪୬ (ௗ௦௧)ାఉర୪୬ ()] ୪୬(ௐொ∙ଷ.ଶ଼଼ସ)      (1) 

Taking the partial derivative of equation (1) with respect to WQ yields: 

డ

డௐ 
= eఊା[ఉభାఉమௗ௦௧ೈಷାఉయ ୪୬(ௗ௦௧)ାఉర ୪୬()] ୪୬(ௐொ∙ଷ.ଶ଼଼ସ)  

∙ [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)]
ଵ

ௐொ∙ଷ.ଶ଼଼ସ
∙ 3.28084  

Notice that the re-scaling factor of 3.28084 will cancel out in the derivative. Plugging in p from 

equation (1), and then rearranging yields the formulas for the semi-elasticity and elasticity 

estimates, equations (2) and (3), respectively.  

డ

డௐொ
= 𝑝[𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)]

ଵ

ௐொ
  

డ

డௐொ

ଵ


= [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)]

ଵ

ௐொ
     (2) 

డ

డௐொ

ௐொ


= [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)]    (3) 
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For waterfront observations, the relevant sample mean value for area is plugged into equations 

(2) and (3), the representative waterfront home distance of 50 meters is plugged in for dist, and 

𝑑𝑖𝑠𝑡ௐி is set equal to one.  The mean water quality value (from table 2 of the primary study) is 

converted to meters and plugged in for WQm. For non-waterfront observations, the 

corresponding sample mean values are plugged in, but 𝑑𝑖𝑠𝑡ௐி is set equal to zero and the 

representative non-waterfront home distance of 250 meters is plugged in for dist.  

 

Walsh et al. (2011b) 

This study examined four water quality measures (chlorophyll a, nitrogen, phosphorous, 

and a trophic state index) for lakes in Orange County, Florida.  The study estimated 12 hedonic 

regression models, three for each of the four water quality measures, which varied in terms of 

how the functional form accounted for spatial dependence.  Each model yielded two 

observations, one for waterfront homes and another for non-waterfront homes.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the Walsh et al.’s double-log hedonic model.  

ln (𝑝) = 𝛾𝑋 + 𝛽ଵ ln(𝑊𝑄) + 𝛽ଶ(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡ௐி) + 𝛽ଷ(ln(𝑊𝑄) ∙ ln (𝑑𝑖𝑠𝑡)) +

𝛽ସ(ln (𝑎𝑟𝑒𝑎) ∙ ln (𝑊𝑄))  

Which can be simplified to: 

ln (𝑝) = 𝛾𝑋 + [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)] ln(𝑊𝑄)     (1) 

where WQ denotes the corresponding measure of interest.  

Taking the partial derivative of equation (1) with respect to WQ yields: 
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డ

డௐொ
= eఊା[ఉభାఉమௗ௦௧ೈಷାఉయ ୪୬(ௗ௦௧)ାఉర ୪୬()] ୪୬(ௐொ)  

∙ [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)]
ଵ

ௐொ
  

Plugging in p from equation (1), and then rearranging yields the formulas for the semi-elasticity 

and elasticity estimates, equations (2) and (3), respectively.  

డ

డௐொ
= 𝑝[𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)]

ଵ

ௐொ
  

డ

డௐொ

ଵ


= [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)]

ଵ

ௐொ
      (2) 

డ

డௐொ

ௐொ


= [𝛽ଵ + 𝛽ଶ𝑑𝑖𝑠𝑡ௐி + 𝛽ଷln (𝑑𝑖𝑠𝑡) + 𝛽ସln (𝑎𝑟𝑒𝑎)]     (3) 

For waterfront observations, the relevant sample mean value for area is plugged in to equations 

(2) and (3), the representative waterfront home distance of 50 meters is plugged in for dist, and 

𝑑𝑖𝑠𝑡ௐி is set equal to one.  The corresponding mean water quality values are plugged in for WQ. 

For non-waterfront observations, the corresponding sample mean values are plugged in, but 

𝑑𝑖𝑠𝑡ௐி is set equal to zero and the representative non-waterfront home distance of 250 meters is 

plugged in for dist.  

 

Walsh et al. (2017) 

This study examined water clarity (light attenuation coefficient) in the Chesapeake Bay 

tidal waters for 14 adjacent counties in Maryland.  The study estimated 56 separate hedonic 

regression models; four for each county, where the functional form (double-log versus semi-log) 

and period for which the water quality measure is averaged over (one versus three years) varied.  
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Each model in turn yields a waterfront and non-waterfront estimate, implying 112 observations. 

Furthermore, an additional 112 observations are derived from the same regression results by 

converting the estimates to correspond to Secchi disk depth (instead of the light attenuation 

coefficient). Therefore, the study contributed a total of 224 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Walsh et al.’s double-log models as an example.  

ln (𝑝) = 𝛾𝑋 + 𝛽ଵ(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡ௐி) + 𝛽ଶ(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡ିହ)  

   +𝛽ଷ(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡ହିଵ)  

where 𝑑𝑖𝑠𝑡ௐி is a dummy variable equal to one for waterfront homes, 𝑑𝑖𝑠𝑡ିହ is a dummy 

variable equal to one for non-waterfront homes within 0-500 meters of the water, and 

𝑑𝑖𝑠𝑡ହିଵ is a dummy variable equal to one for non-waterfront homes within 500-1000 

meters of the water. The above equation can be simplified to: 

𝑝 = 𝑒ఊା(ఉభௗ௦௧ೈಷାఉమௗ௦௧బషఱబబାఉయௗ௦௧ఱబబషభబబబ) ୪୬(ௐொ಼ವ)       

Calculating the elasticities and semi-elasticities with respect to the light attenuation 

coefficient (WQKD) is straight forward and follows similar derivation as that below.  Here we 

focus on converting those estimates to Secchi depth in meters (WQm), using the following 

inverse relationship estimated for this particular study area and noted in the primary study: 

𝑊𝑄 = 1.45/𝑊𝑄. Plugging this into the above hedonic regression yields:  

𝑝 = 𝑒
ఊା(ఉభௗ௦௧ೈಷାఉమௗ௦௧బషఱబబାఉయௗ௦௧ఱబబషభబబబ) ୪୬ቀ

భ.రఱ

ೈೂ
ቁ
     (1) 

To calculate the semi-elasticity and elasticity estimates (equations 2 and 3, respectively), we take 

the derivative with respect to WQm and then do some slight rearranging: 
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డ

డௐொ
= 𝑒

ఊ (ఉభௗ௦௧ೈಷାఉమௗ௦௧బషఱబబାఉయௗ௦௧ఱబబషభబబబ) ୪୬ቀ
భ.రఱ

ೈೂ
ቁ
  

∙ −(𝛽ଵ𝑑𝑖𝑠𝑡ௐி + 𝛽ଶ𝑑𝑖𝑠𝑡ିହ + 𝛽ଷ𝑑𝑖𝑠𝑡ହିଵ)
ௐொ

ଵ.ସହ
(1.45)𝑊𝑄

ିଶ  

 

డ

డௐொ
= −



ௐொ
(𝛽ଵ𝑑𝑖𝑠𝑡ௐி + 𝛽ଶ𝑑𝑖𝑠𝑡ିହ + 𝛽ଷ𝑑𝑖𝑠𝑡ହିଵ)  

 

డ

డௐொ

ଵ


= −

ଵ

ௐொ
(𝛽ଵ𝑑𝑖𝑠𝑡ௐி + 𝛽ଶ𝑑𝑖𝑠𝑡ିହ + 𝛽ଷ𝑑𝑖𝑠𝑡ହିଵ)     (2) 

డ

డௐொ

ௐொ


= −(𝛽ଵ𝑑𝑖𝑠𝑡ௐி + 𝛽ଶ𝑑𝑖𝑠𝑡ିହ + 𝛽ଷ𝑑𝑖𝑠𝑡ହିଵ)     (3) 

After plugging in the appropriate value of zero or one for the corresponding dummy variables, 

the elasticities and semi-elasticities for waterfront homes are simply −𝛽ଵand −
ఉభ

ௐொ
, 

respectively. For non-waterfront observations, representative non-waterfront home distance of 

250 meters is plugged in for dist, and so the corresponding elasticities and semi-elasticities are 

−𝛽ଶ and −
ఉమ

ௐொ
. The relevant county specific sample means for WQm and p are then plugged in 

as needed in order to calculate the estimated semi-elasticities.   

 

Williamson et al. (2008) 

This study examined acid mine drainage impairment in the Cheat River Watershed in 

West Virginia.  The study estimated one hedonic regression model, yielding a waterfront and 

non-waterfront observation.  For this study, the dummy variable, WQimpair0.25 representing 
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properties within a 0.25 mile (i.e., 402.34 meters) of the acid mine drainage impaired stream 

includes both waterfront and non-waterfront.   Therefore, the study contributed a total of two 

observations to the meta-dataset.  

Consider a simplified representation of Table 3 as an example. 

ln(𝑝) = 𝛾𝑋 + 𝐷ଵ𝑊𝑄.ଶହ + 𝐷ଶ𝑊𝑄.ହ       (1) 

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝐷ଵ𝑊𝑄.ଶହ + 𝐷ଶ𝑊𝑄.ହ) 

Because the functional form is log-linear, we use the following equation for calculating the 

percent change in price, as first outlined by Halvorsen and Palmquist (1980):  %∆𝑝 =
భିబ

బ
.  

Estimating the percent change for impaired river, let p0 denote the price when the dummy 

variable is turned off, and p1 denote when it is turned on.  These can be written out, respectively, 

as:  

𝑝 = exp (𝛾𝑋) 

𝑝ଵ = exp (𝛾𝑋 + 𝐷ଵ) 

Plugging in the above equations yields: 

 %∆𝑝 =
భିబ

బ
=

ୣ୶୮(ఊାభ)ିୣ୶୮(ఊ)

ୣ୶୮ (ఊ)
 

Some rearranging and simplification yields: 

%∆𝑝 =
ୣ୶୮(ఊ)ୣ୶୮ (భ)ିୣ୶୮(ఊ)

ୣ୶୮(ఊ)
  

%∆𝑝 = exp (𝐷ଵ) − 1  
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The relevant coefficient for D1 is then plugged in as needed to calculate the percent change in 

price.   

 

Wolf and Klaiber (2017) 

This study examined the effect of the density of harmful algae (as proxied by microsystin 

concentrations) on properties across six counties surrounding four inland lakes in Ohio.  The 

study estimated nine hedonic models, each yielding a waterfront and non-waterfront estimate.  

Therefore, the study contributed a total of 18 observations to the meta-dataset. The algae 

concentrations are converted to a binary water quality dummy variable (Algae) that is set equal 

to one when the algae density is above the World Health Organization’s standard of 1ug/L for 

drinking water for a period of time matching individual housing transactions data. 

The derivation of the standardized elasticity and semi-elasticity estimates is as follows.  

Consider simplified version of the basic specification used. 

ln(𝑝) = 𝛾𝑋 + 𝐷ଵ𝐴𝑙𝑔𝑎𝑒 + 𝐷ଶ൫𝐴𝑙𝑔𝑎𝑒 ∙ (𝑑𝑖𝑠𝑡ିଶ + 𝑑𝑖𝑠𝑡ଶି)൯ + 𝐷ଷ(𝐴𝑙𝑔𝑎𝑒 ∙ 𝑑𝑖𝑠𝑡) 

This can then be rewritten as:  

𝑝 = exp (𝛾𝑋 + 𝐷ଵ𝐴𝑙𝑔𝑎𝑒 +  𝐷ଶ൫𝐴𝑙𝑔𝑎𝑒 ∙ (𝑑𝑖𝑠𝑡ିଶ + 𝑑𝑖𝑠𝑡ଶି )൯ + 𝐷ଷ(𝐴𝑙𝑔𝑎𝑒 ∙ 𝑑𝑖𝑠𝑡)) (1) 

Let p0 denote the price when the algae dummy is turned off, and p1 denote when it is turned on.  

These can be written out, respectively, as:  

𝑝 = 𝑒ఊ  

𝑝ଵ = 𝑒ఊାభାమାయ(ௗ௦௧)  
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The percent change in price can then be expressed as %∆𝑝 =
భିబ

బ
. Plugging in the above 

equations yields: 

 %∆𝑝 =
భିబ

బ
=

ംశವభశವమశವయ(ೞ)ିം

ം
 

Some rearranging and simplification yields: 

%∆𝑝 =
ംವభశವమశವయ(ೞ)ିം

ം
  

%∆𝑝 = 𝑒భାమାయ(ௗ௦௧) − 1  

The relevant coefficients and the appropriate representative home distance for dist (50 meters for 

waterfront homes, 250 meters for non-waterfront homes) are then plugged in as needed in order 

to calculate the estimated percent change in price. 

 

Yoo et al. (2014) 

This study examined the effect of sediment loads on five lakes in Arizona.  The sediment 

loading observations are derived from a watershed level sediment delivery model.  The sediment 

load is interacted with the travel time from each property to the nearest lake in all models.  Three 

semi-log model specifications are estimated – OLS, spatial lag model, and spatial error model – 

for both waterfront and non-waterfront homes.  There are six observations from this study.  

Derivation of the elasticity and semi-elasticity is as follows – recall that WQ in this study is 

measured as sediment load.  The primary study WQ is expressed in terms of tons/acre, which we 

re-express as kg/sq. meters using the following conversion factor: 𝑊𝑄ೞ

ೌೝ

= 𝑊𝑄 ೖ

ೞ

∙ 4.461. 

Plugging this into the hedonic regression yields: 
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  ln(𝑝) = 𝛾𝑋 + 𝛽ଵ𝑊𝑄 ೖ

ೞ

∙ 4.461 + 𝛽ଶ𝑊𝑄 ೖ

ೞ

∙ 4.461 ∙ 𝑇𝑖𝑚𝑒 + 𝛽ଷ𝑊𝑄 ೖ

ೞ

∙ 4.461 ∙ 𝑇𝑖𝑚𝑒ଶ 

which is rewritten as: 

p = exp (𝛾𝑋 + 𝛽ଵ𝑊𝑄 ೖ

ೞ

∙ 4.461 + 𝛽ଶ𝑊𝑄 ೖ

ೞ

∙ 4.461 ∙ 𝑇𝑖𝑚𝑒 + 𝛽ଷ𝑊𝑄 ೖ

ೞ

∙ 4.461 ∙ 𝑇𝑖𝑚𝑒ଶ) 

            (1) 

Now, the derivative with respect to WQ is: 

ௗ

ௗௐொ
= 𝑝 ∙ (𝛽ଵ ∙ 4.461 + 𝛽ଶ ∙ 4.461 ∙ 𝑇𝑖𝑚𝑒 + 𝛽ଷ ∙ 4.461 ∙ 𝑇𝑖𝑚𝑒ଶ) 

and the semi-elasticity (equation 2) and elasticity (equation 3) are given by:  

ௗ

ௗௐொ

ଵ


= 4.461(𝛽ଵ + 𝛽ଶ ∙ 𝑇𝑖𝑚𝑒 + 𝛽ଷ ∙ 𝑇𝑖𝑚𝑒ଶ)      (2) 

ௗ

ௗௐொ

ௐொ


= 𝑊𝑄 ೖ

ೞ

∙ 4.461(𝛽ଵ + 𝛽ଶ ∙ 𝑇𝑖𝑚𝑒 + 𝛽ଷ ∙ 𝑇𝑖𝑚𝑒ଶ)     (3) 

The relevant sample means for WQ and Time are then plugged in as needed in order to calculate 

the estimated elasticities and semi-elasticities.   

 

Zhang and Boyle (2010) 

This study examined the interaction of water clarity and surface area of waterbody in the 

four lakes and one pond in Rutland County, Vermont.  The study estimated ten hedonic 

regression models, but only six included a water quality parameter.  These six models focused 

only on waterfront homes, and therefore the study contributed a total of six observations to the 

meta-dataset.   Waterbody surface area was measured in acres in the original study (one acre 

equals 4046.86 square meters). 
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The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model Total Macrophytes-Quadratic as an example. 

The hedonic double-log specification can generally be specified as: 

ln (𝑝) = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎௦ ∙ ln(𝑊𝑄)         

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎௦ ∙ ln(𝑊𝑄))       (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

∂p

𝜕𝑊𝑄
= exp (𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎௦ ∙ ln(𝑊𝑄)) ∙ (𝛽 ∙ 𝑎𝑟𝑒𝑎௦)

1

𝑊𝑄
 

Substituting in p from equation (1) and rearranging, the formulas for the semi-elasticity equation 

(2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


=

(ఉ∙ೌೝೞ)

ௐொ
   (2) 

డ

డௐொ

ௐொ


= (𝛽 ∙ 𝑎𝑟𝑒𝑎௦)  (3) 

The relevant sample means for WQ and area are then plugged in as needed in order to calculate 

the estimated elasticities and semi-elasticities.   

 

Zhang et al. (2015) 

This study examined the effect of water clarity on lakefront homes across 15 markets in 

Maine, Vermont, and New Hampshire.   The water quality variable used in the study is the 
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natural log of water clarity multiplied by lake size.  There is one observation per market, thus 

this study contributed 15 observations to the meta-dataset. 

The specification used in all the models is:    

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of the price equation with respect to 𝑊𝑄 yields:  

 
డ

డௐொ
= ቀ𝛽 ∙



ௐொ
ቁ 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

డ

డௐொ

ଵ


= 𝛽 ∙



ௐொ
∙

ଵ


           (2) 

డ

డௐொ

ௐொ


= 𝛽 ∙




           (3) 

The relevant sample means for WQ, price, and area are then plugged in as needed in order to 
calculate the estimated elasticities and semi-elasticities.  
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Appendix B: Meta-analytic Weights, Mean Elasticity Calculations, and Funnel Plots of 

Publication Bias. 

Appendix B.1: Meta-analytic Weights 

When calculating the mean values in a meta-analyses, researchers often wish to account 

for the clustered nature of the meta-data (Mrozek and Taylor, 2002).  As in this study, meta-

datasets often contain multiple meta-observations from the same study and dataset. If such 

dependence is not accounted for, meta-observations would be unduly weighted, counting as a 

single observation when they should be discounted appropriately because there are multiple 

observed estimates of the same unobserved “true” value. We define each cluster as a unique study 

and “housing market” combination. Meta-observations estimated in the same study and from a 

common transaction dataset in terms of the study area and time period are in fact estimates of the 

same underlying elasticity.  

Let 𝜀̂ௗ denote elasticity estimate i, for homes at distance d, in cluster or housing market j 

൫𝜀̂ௗ൯. The number of elasticity estimates in each cluster j is denoted by  𝑘ௗ. The cluster weighted 

mean elasticity for each distance bin d is calculated as:  

𝜀ௗ̅ = ∑

భ

ೖೕ

∑ ∑
భ

ೖೕ

ೖೕ
సభ

಼
ೕసభ

𝜀̂ௗ

ୀଵ         (B1) 

where the same 
ଵ

ೕ
 weight is given to each meta-observation i within cluster j. The denominator 

of equation (1) normalizes the weights so that they sum to one. The inner summation in the 

denominator sums to one for each cluster, and then the outer summation sums to the total number 

of clusters in the meta-dataset for distance bin d (𝐾ௗ). Under this weighting scheme, no matter 
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how many elasticity estimates are provided in the literature, each cluster as a whole is given the 

same weight.  

Weights based on the inverse variance of the primary estimates are also often applied in 

meta-analyses in order to give more weight to more precise estimates (Nelson, 2015; Borenstein 

et al., 2010; Nelson and Kennedy, 2009). In particular, we re-distribute the weight given to each 

observation within a cluster based on the Random Effect Size (RES) weights commonly used in 

the meta-analysis literature (Nelson and Kennedy, 2009; Borenstein et al., 2010; and Nelson, 

2015). Estimates from each cluster are still given the same overall weight, but more precise 

estimates of the underlying “true” elasticity for that cluster are given more weight than less precise 

estimates.  

Before presenting our RES-adjusted cluster (RESAC) weights, we review the two 

conventional precision-based weighting schemes commonly used in meta-analyses. The first is the 

Fixed Effect Size (FES) model.4  Under the FES framework each meta-observation is considered 

a draw from the same underlying population distribution (even if from different studies examining 

different areas), and the estimated weighted mean is interpreted as an estimate of the average from 

that single true distribution. In other words, under the FES framework sampling error is the only 

driver of differences in the observed estimates across studies. The FES weight for elasticity 

estimate i, at distance d, in cluster j ൫𝜀̂ௗ൯ is:  

𝑤ௗ
ிாௌ =

ଵ

௩ೕ
          (B2) 

where 𝑣ௗ is the variance of the estimate 𝜀̂ௗ from the primary study. Note that these weights are 

not yet normalized to sum to one.    

 
4 The FES weighting scheme is also sometimes called a fixed effects model. We use the FES terminology to avoid 
confusion with the frequently used fixed effects model in panel data analysis.  
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The second weighting scheme is a variant of the above and is sometimes referred to as the 

Random Effects Size (RES) model. The RES weighting scheme is preferred if the meta-

observations are believed to be estimates of different “true” elasticities from different distributions 

(Harris et al. 2008, Borenstein et al. 2010, Nelson 2015). In the RES framework the weighted mean 

is interpreted as an estimate of the average of the different average elasticities across the different 

distributions.  There is no reason to suspect that the true home price elasticities with respect to 

water quality are the same at different waterbodies in different housing markets. These waterbodies 

differ in size, baseline water quality levels, and the provision of recreational, aesthetic and 

ecosystem services, among other things. The housing bundles, and preferences and income of 

buyers and sellers, are heterogeneous as well.   Therefore, weights based on the RES model are 

applied in this meta-analysis.  

The conventional RES weights are calculated as:  

𝑤ௗ
ோாௌ =

ଵ

௩ೕା்మ
         (B3) 

where 𝑇ଶ is the between study variance, and is calculated as: 

𝑇ଶ =
ொି(ିଵ)

∑ ௪ೕ
ಷಶೄ

సభ ିቌ
∑ ቀೢೕ

ಷಶೄቁ
మ

సభ

∑ ೢೕ
ಷಶೄ

సభ

ቍ

         (B4) 

The numerator of 𝑇ଶ entails the weighted sum of squares of the elasticity estimates around the 

FES mean, denoted as Q, minus the available degrees of freedom (i.e., the number or meta-

observations minus one). Q is calculated as: 

𝑄 = ∑
൫ఌොೕିఌത

ಷಶೄ൯
మ

௩ೕ


ୀଵ           (B5) 

The conventional RES weighted means are thus calculated as  

𝜀ௗ̅
ோாௌ = ∑

௪ೕ
ೃಶೄ

∑ ௪ೕ
ೃಶೄ

సభ

𝜀̂ௗ

ୀଵ          (B6) 
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where n is the number of observed estimates in the meta-dataset for distance bin d and the water 

quality measure of interest. The between-study variance is estimated via the DerSimonian and 

Laird (1986) method using the inverse variance weights ൫𝑤
ிாௌ൯ and the FES mean elasticity 

estimate 𝜀ௗ̅
ிாௌ. Following Borenstein et al. (2010), the between study variance 𝑇ଶ is set to zero for 

a few observations where it was originally negative.5  

The normalized RESAC weights that we use in this study are calculated as: 

𝜔𝑖𝑑𝑗 =

𝑤𝑖𝑑𝑗
𝑅𝐸𝑆

𝑘𝑑𝑗

∑ ∑ ൭
𝑤𝑖𝑑𝑗

𝑅𝐸𝑆

𝑘𝑑𝑗
൱

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

         (B7) 

These weights re-distribute the influence given to each observation within a cluster based on the 

RES weights such that each cluster (study-housing market combination) is still given the same 

overall weight, but that more precise estimates of the underlying “true” elasticity for that cluster 

are given more weight than less precise estimates in that cluster. The RESAC weighted mean 

elasticity for distance bin d is calculated as:  

𝜀ௗ̿ = ∑ ∑ 𝜔ௗ
  𝜀̂ௗ

ೕ

ୀଵ

ୀଵ         (B8) 

Appendix B.2: Mean Elasticities 

Table BI displays the unweighted mean elasticity estimates, as well as the cluster-adjusted, 

standard RES, and RESAC weighted mean elasticity estimates, for all water quality measures 

examined in the hedonic property value literature. When represented in the literature, separate 

mean elasticity estimates are provided for two distances bins – waterfront homes and non-

waterfront homes within 500 meters of a water body.  The number of observations and contributing 

studies for each water quality measure are displayed in the rightmost columns. 

 
5 Any such instances in the current meta-datset seem reasonable because they always entail just a single study (and 
so there is no between study variation).   
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Appendix B.2: Mean Elasticities 

Table BI. Unit value mean elasticity estimates. 

Water quality measure 

Unweighted 
Mean 

(1) 

Cluster  
Weighted Mean 

(2) 

Standard 
RES Mean 

(3) 

RES-Adjusted 
Cluster 

(RESAC) 
Weighted  

(4) n # studies 

Chlorophyll a       
   waterfront 0.737* 0.324* -0.022*** -0.026*** 18 3 

 (-0.044, 1.517) (-0.036, 0.685) (-0.031, -0.013) (-0.031, -0.021)   
   non-waterfront w/in 500 m 0.005 0.010 0.001 0.009*** 18 3 

 (-0.201, 0.211) (-0.085, 0.105) (-0.006, 0.009) (0.006, 0.012)   
Dissolved oxygen       
   waterfront 0.089 -0.014 0.098 -0.010 10 2 

 (-0.207, 0.384) (-0.262, 0.235) (-0.669, 0.865) (-0.257, 0.237)   
   non-waterfront w/in 500 m 1.063*** 0.666*** 0.992*** 0.642*** 6 1 

 (0.708, 1.419) (0.395, 0.937) (0.343, 1.641) (0.374, 0.910)   
E-coli       
   waterfront -0.073*** -0.073*** -0.089*** -0.081*** 5 1 

 (-0.124, -0.021) (-0.124, -0.021) (-0.147, -0.031) (-0.129, -0.032)   
   non-waterfront w/in 500 m -0.073*** -0.073*** -0.089*** -0.081*** 5 1 

 (-0.125, -0.022) (-0.125, -0.022) (-0.147, -0.031) (-0.129, -0.033)   
Fecal coliform       
   waterfront -0.018*** -0.037 -0.2E-4 -1.3E-4*** 36 4 

 (-0.026, -0.011) (-0.088, 0.014) (-0.6E-4, 0.1E-4) (-1.8E-4, -0.7E-4)   
   non-waterfront w/in 500 m -0.020*** -0.059* -0.024*** -0.052*** 20 3 

 (-0.034, -0.006) (-0.090, -0.005) (-0.036, -0.011) (-0.096, -0.008)   
Lake trophic state index       
   waterfront -0.920*** -0.920*** -0.797*** -0.797*** 2 1 

 (-1.545, -0.295) (-1.545, -0.295) (-1.330, -0.264) (-1.330, -0.264)   
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   non-waterfront w/in 500 m -0.682** -0.682** -0.682** -0.682** 1 1 

 (-1.296, -0.068) (-1.296, -0.068) (-1.296, -0.068) (-1.296, -0.068)   
Light attenuation       
   waterfront -0.086*** -0.086*** -0.070*** -0.082*** 57 2 

 (-0.099, -0.073) (-0.099, -0.074) (-0.076, -0.063) (-0.093, -0.070)   
   non-waterfront w/in 500 m -0.014*** -0.014*** -0.011 -0.013*** 57 2 

 (-0.022, -0.006) (-0.022, -0.006) (-0.014, -0.007) (-0.020, -0.006)   
Nitrogen       
   waterfront -0.292*** -0.242*** -0.245*** -0.220*** 10 5 

 (-0.326, -0.257) (-0.271, -0.215) (-0.321, -0.170) (-0.244, -0.196)   
   non-waterfront w/in 500 m -0.221*** -0.184*** -0.130*** -0.136*** 10 5 

 (-0.254, -0.187) (-0.210, -0.157) (-0.184, -0.077) (-0.156, -0.116)   
Percent Water Visibility       
   waterfront -1.655*** -1.655*** -1.659*** -1.659*** 2 1 

 (-1.896, -1.414) (-1.896, -1.414) (-1.900, -1.418) (-1.900, -1.418)   
   non-waterfront w/in 500 m - - - - 0 0 

       
Phosphorous       
   waterfront -0.115*** -0.107*** -0.114*** -0.107*** 6 3 

 (-0.130, -0.100) (-0.123, -0.092) (-0.154, -0.074) (-0.122, -0.092)   
   non-waterfront w/in 500 m -0.016** -0.019*** -0.002 -0.005 6 3 

 (-0.029, -0.003) (-0.032, -0.005) (-0.015, 0.010) (-0.012, 0.003)   
Salinity       
   waterfront 0.553*** 0.553*** 0.552*** 0.552*** 2 1 

 (0.281, 0.826) (0.281, 0.826) (0.279, 0.824) (0.279, 0.824)   
   non-waterfront w/in 500 m - - - - 0 0 

       
Sediment       
   waterfront -0.018 -0.012 4.9E-6** -0.003 4 2 

 (-0.088, 0.052) (-0.059, 0.035) (0.2E-6, 9.7E-6) (-0.008, 0.001)   
   non-waterfront w/in 500 m -0.018 -0.012 4.9E-6** -0.006 4 2 
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 (-0.088, 0.052) (-0.059, 0.035) (0.2E-6, 9.7E-6) (-0.014, 0.003)   
Sedimentation Rate       
   waterfront -0.132*** -0.132*** -0.113*** -0.113*** 2 1 

 (-0.183, -0.082) (-0.183, -0.082) (-0.134, -0.091) (-0.134, -0.091)   
   non-waterfront w/in 500 m -0.132*** -0.132*** -0.113*** -0.113*** 2 1 

 (-0.183, -0.082) (-0.183, -0.082) (-0.134, -0.091) (-0.134, -0.091)   
Temperature       
   waterfront 0.138 -0.177 -0.164 -0.164 6 1 

 (-0.240, 0.516) (-0.720, 0.366) (-0.226, 0.533) (-0.688, 0.361)   
   non-waterfront w/in 500 m 0.137 -0.177 -0.164 -0.164 6 1 

 (-0.240, 0.515) (-0.719, 0.365) (-0.226, 0.532) (-0.687, 0.360)   
Total Suspended Solids       
   waterfront 0.002 -0.026 -0.013 -0.032** 7 2 

 (-0.31, 0.036) (-0.057, 0.005) (-0.055, 0.029) (-0.064, -0.000)   
   non-waterfront w/in 500 m 0.002 -0.026 -0.013 -0.032** 7 2 

 (-0.31, 0.036) (-0.057, 0.005) (-0.055, 0.029) (-0.064, -0.000)   
Turbidity       
   waterfront -0.036*** -0.036*** -0.036*** -0.036*** 2 1 

 (-0.057, -0.016) (-0.057, -0.016) (-0.057, -0.016) (-0.057, -0.016)   
   non-waterfront w/in 500 m - - - - 0 0 

       
 
Water clarity       
   waterfront 0.155 0.182 0.090*** 0.105*** 177 18 

 (-6.102, 6.413) (-17.398, 17.762) (0.078, 0.102) (0.095, 0.114)   
   non-waterfront w/in 500 m 0.028*** 0.042*** 0.018*** 0.026*** 83 6 

 (0.020, 0.036) (0.025, 0.059) (0.008, 0.028) (0.017, 0.034)   
pH       
   waterfront 2.173*** 1.986*** 0.424 0.779** 13 3 

 (1.015, 3.331) (-.840, 3.133) (-0.285, 1.133) (0.019, 1.540)   
   non-waterfront w/in 500 m -0.334 0.008 -0.379 -0.188 6 1 

 (-1.126, 0.457) (-1.405, 1.422) (-1.084, 0.326) (-1.086, 0.711)   
Trophic state index       
   waterfront -0.181*** -1.60*** -0.177*** -0.158*** 4 2 
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 (-0.209, -0.154) (-0.184, -0.137) (-0.229, -0.124) (-0.181, -0.136)   
   non-waterfront w/in 500 m 0.029*** 0.018** 0.022 0.015** 4 2 

  (0.007, 0.050) (0.003, 0.034) (-0.007, 0.051) (0.001, 0.029)     
*** p<0.01, ** p<0.05, * p<0.1.  Confidence intervals at the 95% level are displayed in parentheses.  
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Appendix B.3: Funnel Plots of Publication Bias 

As a first step to examine possible selection concerns, we create a “funnel plot” of the 

elasticity estimates with respect to water clarity against the inverse of the corresponding standard 

errors.  If the plot exhibits a symmetric inverted funnel shape, then this provides an informal signal 

that the meta-data does not suffer from publication bias (Stanley and Doucouliagos, 2012).  As 

can be seen in Figure B1, the funnel plots of the price elasticity estimates with respect to water 

clarity for waterfront and non-waterfront homes exhibit some asymmetries. The left funnel plot 

(panel (a)) suggests that lower precision elasticity estimates for waterfront homes tend to be 

positive, and in some cases rather large. This suggests that publication selection or some other 

mechanism is causing an upward bias in the meta-data.  The right funnel plot (panel (b)) suggests 

a similar, but less pronounced, selection among the non-waterfront elasticity observations. We 

provide formal tests and correction methods to address this possible selection bias in Section 2.5 

of the main text.  
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Figure B1. Funnel Plots of Housing Price Elasticities with respect to Water Clarity (Secchi disk depth).  
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Appendix C: Supplemental meta-regression results and descriptive statistics. 

Table C1. WLS Meta-regression Results using Conventional Cluster-Based Weights. 

VARIABLESa (1) (2) (3) 

        
Waterfronta 0.0555* 0.0354 0.0325 

 (0.030) (0.025) (0.027) 

Mean clarity 0.0054 -0.0347 -0.0345 

 (0.026) (0.044) (0.046) 

Estuarya -0.0777 -0.0843 -0.0853 

 (0.106) (0.072) (0.082) 

Mean clarity × estuary -0.0470 -0.0058 -0.0034 
 (0.082) (0.090) (0.090) 

Median income 0.0026 0.0025 0.0022 
 (0.002) (0.002) (0.002) 

Midwesta  -0.3312*** -0.3045** 
  (0.120) (0.126) 

Southa  -0.4367*** -0.3101 
  (0.152) (0.209) 

Westa  -0.4354*** -0.3194 
  (0.118) (0.259) 

Elasticity variance -0.0000*** -0.0000*** -0.0000** 
 (0.000) (0.000) (0.000) 

Unpublisheda 0.0022 -0.0127 0.0743 
 (0.081) (0.055) (0.120) 

Assessed valuesa 0.0285 0.1649* 0.1195 
 (0.100) (0.093) (0.084) 

Time trend -0.0061 0.0094* 0.0102 
 (0.008) (0.005) (0.007) 

No spatial methodsa   -0.0638 
   (0.103) 

Linear-loga   0.1916 
   (0.219) 

Lineara   0.1908 
   (0.161) 

Log-lineara   -0.0007 
   (0.007) 

Constant 0.0280 0.2664 0.1471 
 (0.193) (0.296) (0.312) 
    

Observations 260 260 260 
Adjusted R-squared 0.110 0.155 0.153 
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). *** 
p<0.01, ** p<0.05, * p<0.1.  Clustered-robust standard errors in parentheses; clustered according 
to the K=63 unique study-housing market combinations. Weighted least squares regressions 
estimated using the "regress" routine in Stata 14 and defining analytical weights according to the 
inverse of the number of primary estimates from the corresponding study-housing market cluster.  
(a) Denotes independent variables that are dummy variables.  
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Table C2. Cluster-weighted Descriptive Statistics 

Variable Mean Std. Dev. Min Max 

Dependent variable:     
Elasticity 0.1113 0.2595 -0.6499 1.7191 

Study area variables:     

Waterfronta 0.4961 0.5009 0 1 

Mean clarity (secchi disk depth, meters) 2.16 1.92 0.38 6.45 

Estuarya 0.5160 0.5007 0 1 

Median income (thousands, 2017$) 61.446 14.567 37.865 91.174 

College degree (% population) 0.1455 0.0406 0.0768 0.2734 

Population density (households /sq. km.) 54.70 63.59 1.41 227.96 

Mean house price (thousands, nominal$) 222.789 120.383 31.287 675.364 

Midwesta 0.1662 0.3730 0 1 

Southa 0.5504 0.4984 0 1 

Westa 0.0157 0.1247 0 1 

Methodological variables:     
Elasticity variance 2514.3190 26702.0700 9.03E-06 301448.5 

Unpublisheda 0.0924 0.2902 0 1 

Assessed valuesa 0.0738 0.2619 0 1 

Time Trend (0=1994 to 20=2014) 9.64 5.980 0 20 

No spatial methodsa 0.3448 0.4762 0 1 

Linear-loga 0.3150 0.4654 0 1 

Lineara 0.0501 0.2187 0 1 

Log-lineara 0.2752 0.4475 0 1 

Last year of transaction data 2003.64 5.98 1994 2014 

Cluster weighted descriptive statistics for n=260 unique elasticity estimates in meta-dataset pertaining to water clarity. 
Weighted by study-housing market clusters (K=63).   
(a) Denotes independent variables that are dummy variables.  
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Table C3. Random Effects (RE) Panel Meta-regression Results. 

VARIABLESa (1) (2) (3) 
        

Waterfronta 0.0525** 0.0465** 0.0574*** 

 (0.021) (0.021) (0.019) 
Mean clarity 0.0225** 0.0104 0.0292* 

 (0.010) (0.015) (0.016) 

Estuarya -0.0014 -0.0301 0.0057 

 (0.054) (0.043) (0.044) 
Mean clarity × estuary -0.0519 -0.0395 -0.0568 

 (0.062) (0.062) (0.061) 
Median income 0.0015 0.0015 0.0013 

 (0.001) (0.001) (0.001) 

Midwesta  -0.1506*** -0.1645*** 

  (0.042) (0.040) 

Southa  -0.1832*** -0.2544*** 

  (0.051) (0.067) 

Westa  -0.3055*** -0.4551*** 

  (0.065) (0.081) 
Elasticity variance 0.0000 0.0000 0.0000 

 (0.000) (0.000) (0.000) 

Unpublisheda 0.0643* 0.0548* 0.0104 

 (0.037) (0.029) (0.047) 

Assessed valuesa -0.0090 0.0491 0.0523* 

 (0.054) (0.046) (0.028) 
Time trend 0.0038 0.0137*** 0.0127*** 

 (0.004) (0.003) (0.001) 

No spatial methodsa   -0.0090 

   (0.014) 

Linear-loga   -0.1349** 

   (0.063) 

Lineara   0.0473 

   (0.056) 

Log-lineara   0.0016 

   (0.004) 
Constant -0.1215 -0.0461 0.0112 

 (0.074) (0.104) (0.102) 

    
Observations 260 260 260 
ll 1.5445 1.6191 1.6634 
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). *** p<0.01, 
** p<0.05, * p<0.1.  Standard errors in parentheses. Random Effects Panel (RE Panel) regressions 
estimated using the "mixed" routine in Stata 14, where the cluster specific effects are defined according 
to the K=63 unique study-housing market clusters. Observations weighted following the RESAC weights 
(see equation 2 in section 2.4).  
(a) Denotes independent variables that are dummy variables.  
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Appendix D: Variance-Covariance Matrix for Weighted Least Squares (WLS) Meta-regression Model 2. 

Table D1. Variance-Covariance Matrix for WLS 2 Meta-regression. 

 Waterfront Mean clarity Estuary Mean clarity × estuary Median income Midwest 

Waterfront 4.5665E-04           

Mean clarity -1.7039E-05 2.2389E-04         

Estuary -2.7068E-04 2.5750E-04 1.9709E-03       

Mean clarity × estuary 3.7960E-04 -2.4875E-04 -2.5313E-03 4.0880E-03     

Median income 2.2328E-06 2.8977E-06 -1.2469E-05 5.3594E-06 1.1345E-06   

Midwest 4.6048E-05 3.8895E-04 5.4929E-04 -3.3254E-04 6.2228E-06 1.8246E-03 

South 2.9903E-04 5.3809E-04 6.8063E-04 -3.2271E-04 2.9702E-06 1.9009E-03 

West 1.7073E-04 -2.6609E-04 1.6246E-04 3.2173E-04 -1.7593E-05 8.4662E-04 

Elasticity variance -1.0967E-08 -3.2775E-09 -4.3966E-09 -1.3272E-08 8.4489E-10 -3.2815E-08 

Unpublished 1.7767E-04 1.1686E-04 1.6351E-04 3.0563E-05 -2.0086E-06 2.7453E-04 

Assessed values -3.2116E-04 -1.0685E-04 -2.6897E-04 4.9478E-05 7.3989E-06 -5.1677E-04 

Time trend -6.9604E-07 2.2725E-05 1.5459E-05 -2.9965E-05 -1.3719E-07 -3.8581E-06 

Constant -5.1956E-04 -1.2940E-03 -4.7040E-04 6.1872E-04 -7.1785E-05 -2.8698E-03 

 South West Elasticity variance Unpublished Assessed values Time trend Constant 

Waterfront               

Mean clarity               

Estuary               

Mean clarity × estuary               

Median income               

Midwest               

South 2.6933E-03             

West 9.8456E-04 4.4636E-03           

Elasticity variance -5.6400E-08 -6.5956E-08 2.8479E-10         

Unpublished 9.1739E-04 5.0955E-04 -2.3739E-08 8.6437E-04       

Assessed values -6.5136E-04 -1.2047E-03 4.3330E-08 -6.0920E-05 2.1784E-03     

Time trend 1.0246E-05 -1.0347E-04 3.0762E-10 -8.7010E-06 6.2301E-06 6.7973E-06   

Constant -3.9335E-03 1.4444E-03 1.3528E-08 -9.5751E-04 4.3208E-04 -1.0754E-04 1.1381E-02 
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