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Estimating Recreation Benefits through Joint Estimation of Revealed and Stated Preference 

Discrete Choice Data 

Abstract. We develop econometric models to jointly estimate revealed preference (RP) and 

stated preference (SP) models of recreational fishing behavior and preferences using survey data 

from the 2007 Alaska Saltwater Sportfishing Economic Survey. The RP data are from site choice 

survey questions, and the SP data are from a discrete choice experiment. Random utility models 

using only the RP data may be more likely to estimate the effect of cost on site selection well, 

but catch per day estimates may not reflect the benefits of the trip as perceived by anglers. The 

SP models may be more likely to estimate the effects of trip characteristics well, but less 

attention may be paid to the cost variable due to the hypothetical nature of the SP questions. The 

combination and joint estimation of RP and SP data seeks to exploit the contrasting strengths of 

both. We find that there are significant gains in econometric efficiency, and differences between 

RP and SP willingness to pay estimates are mitigated by joint estimation. We compare a number 

of models that have appeared in the environmental economics literature with the generalized 

multinomial logit model. The nested logit “trick” model fails to account for the panel nature of 

the data and is less preferred to the mixed logit error components model that accounts for panel 

data and scale differences. Naïve (1) scaled, (2) mixed logit, and (3) generalized multinomial 

logit models produced similar results to a generalized multinomial logit model that accounts for 

scale differences in RP and SP data. Willingness to pay estimates do not differ across these 

models but are greater than those in the mixed logit error components model.  

Key words: discrete choice experiment, generalized multinomial logit model, hypothetical bias, 

revealed preference, stated preference, travel cost method 
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Introduction 

The economic benefits of recreational activities can be estimated using revealed and 

stated preference data. The travel cost method (TCM) is a revealed preference approach that 

captures benefits that accrue to those who visit a recreation site and are assumed to prefer 

locations with better recreation opportunities and lower costs of access. Consider recreational 

fishing. Under the TCM, information on where and how often recreational fishing trips are taken, 

travel costs, and catch rates (or other measures of stock abundance) could be gathered using 

recreation surveys and used to determine recreational benefits. The discrete choice experiment 

(DCE) method is a stated preference approach that presents recreation alternatives, with varying 

costs and benefits, to respondents in a survey setting. Recreationists are asked which 

hypothetical recreation alternatives and/or locations they prefer. The revealed and stated 

preference decisions can be analyzed econometrically to determine the economic benefits of 

additional catch resulting from stock enhancement or other fisheries management actions.  

Each of these approaches is a nonmarket valuation method. As such, the estimates of 

economic benefits must consider validity issues. Validity is the extent to which the measure of a 

theoretical construct (i.e., economic benefits) is accurately measured (Mitchell and Carson 1989; 

Freeman 2003). Validity can be enhanced by (1) using multiple valuation methods and (2) 

combining different types of data. Convergent validity is attained if two valuation approaches 

yield the same answer. For example, if TCM estimates are not statistically different than DCE 

estimates, then more confidence can be placed in both estimates. Combining revealed preference 
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(RP) and stated preference (SP) data allows another type of validity test by determining if 

individual decision makers are consistent in their decisions.  

Another rationale for the use of multiple methods and data combination is the limitations 

of RP and SP data. Revealed preference data are constrained by history (i.e., past behavior), 

among other more technical limitations. Using historical data may make simulation of the effects 

of proposed fishery management policy (e.g., bag limits) more difficult due to the lack of 

variation in key variables. Stated preference data are constrained by the hypothetical nature of 

the survey task. Respondents may not fully understand the decision context or not take it as 

seriously as a real world decision. Combining RP and SP data may allow more accurate 

estimates of behavior beyond historical experience and ground hypothetical behavioral models in 

real world behavioral models. The combination and joint estimation of RP and SP data seeks to 

exploit the contrasting strengths of RP and SP data while minimizing their weaknesses 

(Whitehead et al. 2008; Whitehead, Haab, and Huang 2011).  

In this paper we develop econometric models to jointly estimate RP and SP data models 

of recreational fishing behavior and preferences using survey data collected by the National 

Marine Fisheries Service (NMFS) (Lew, Lee, and Larson 2010). The RP data are site choice 

behavior and the SP data are from a discrete choice experiment. To our knowledge, this study is 

the first to use the generalized multinomial logit model to jointly model RP and SP choice data in 

the environmental economics literature, although the model has been applied to analyze SP alone 

(Hensher, Beck, and Rose 2011; Christie and Gibbons 2011; Scarpa, Thiene, and Hensher 2012; 

Kragt 2013; Lew and Wallmo 2017). We compare results from this model to econometric 

models used in the few previous joint estimation efforts in this literature. The policy context is 
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the Halibut Catch Sharing Plan adopted by the North Pacific Fishery Management Council 

(NPFMC) and implemented by NMFS. Under this plan, the NPFMC annually reviews charter 

sector-specific regulations, and makes recommendations about measures to manage recreational 

harvest of Pacific halibut for the upcoming year. The paper’s goal is to explore how combining 

RP and SP data in different discrete choice models may lead to better estimates of the demand 

and value of saltwater recreational fishing in Alaska, with a primary emphasis on Pacific halibut 

and its primary economic substitutes and complements, Pacific salmon.   

Joint Estimation Literature 

The RP and SP data have been separately analyzed by Lew and Larson (2011, 2012, 

2014) and Larson and Lew (2013). The RP models use travel and time costs measured by 

distance to various fishing sites and income data reported in the survey. The trip benefits are 

measured by catch per day estimated from creel surveys and from estimates provided by the 

anglers themselves. The SP models use a total trip cost measure that does not make explicit 

travel distance or time cost. Expected catch and keep per trip and other attributes are included as 

attributes in the choice experiment. In this context, the strengths of the RP data are also the 

weaknesses of the SP data, and vice versa, so that the RP and SP data should be considered 

complementary.  

Data combination can be used to mitigate problems in both RP and SP data. In short, the 

RP models may be more likely to provide an unbiased estimate of the effect of cost on site 
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selection but catch estimates may not reflect the benefits of the trip as perceived by anglers.2 

Site/species-specific revealed preference catch estimates do not vary across anglers and, 

therefore, may be highly correlated. Multicollinearity may hinder estimation of unbiased catch 

coefficients. Estimation of individual/site specific catch rates is feasible but the data often does 

not support estimation (Haab et al. 2012). Also, the revealed preference data are limited to 

analyzing behavior in response to a limited range of catch per day variation across sites. The 

discrete choice experiment is designed to collect data on hypothetical behavior with individual 

variation in catch rates, which can span beyond observed levels.  

The SP models are more likely to estimate unbiased coefficients for trip attributes 

(including catch) but the cost coefficient may suffer from attribute non-attendance (which would 

manifest as hypothetical bias). If respondents pay less than full attention to the cost variable it 

will be biased downward (in absolute value) leading to upwardly biased willingness to pay 

estimates (Campbell, Hensher, and Scarpa 2012; Colombo, Christie, and Hanley 2013)3. There is 

evidence of hypothetical bias of choice experiment data in the transportation (e.g., Fifer, Rose, 

and Greaves 2014) and agricultural (e.g., Lusk and Schroeder 2004) economics literatures. 

Metcalfe et al. (2012) find that total willingness to pay is higher with choice experiment data 

relative to comparable contingent valuation data. They scale the willingness to pay estimates 

from choice experiment data down by the choice experiment-contingent valuation ratio of total 

                                                           
2 The RP cost will be unbiased under the assumption that the travel cost variable is not measured 

with error (Randall 1994).  

3 Attribute non-attendance is not limited to cost (e.g., Colombo, Christie, and Hanley 2013).  
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willingness to pay. Various methods have been used to mitigate hypothetical bias in choice 

experiments (Lusk 2003; Ready, Champ, and Lawton 2010; Araña and León 2013; de-Magistris, 

Gracia and Nayga 2013; de-Magistris and Pascucci 2014) but recognition of the problem and a 

willingness to address the issue in the environmental economics DCE literature is not widespread 

(Hoyos 2010).4 

Combining RP and SP data grounds hypothetical choices with real choice behavior and 

may reduce hypothetical bias (Hoyos 2010, Hensher 2010). While there have been a number of 

RP and SP joint estimation applications in other literatures and the DCE literature in 

environmental economics has exploded, we know of only four applications in environmental 

economics that combine RP and SP DCE data. Adamowicz, Louviere, and Williams (1994) 

present the first application of RP and SP joint estimation using choice experiments in the 

environmental economics literature. They find that the RP data are limited due to collinearity and 

the SP data are prone to hypothetical bias. Adamowicz, et al. (1997) present an application to 

moose hunting with a focus on a comparison of RP and SP models with objective or subjective 

characteristics of the choices. They conclude that the jointly estimated RP and SP model with 

subjective characteristics outperforms the other models, suggesting that RP models are limited 

by the lack of subjective measurement of choice attributes. Both of these studies combine data 

using the nested logit “trick” (Hensher and Bradley 1993). Using the Adamowicz et al. data, von 

Haefen and Phaneuf (2008) extend the model by including observed and unobserved preference 

heterogeneity. They reject the hypothesis of consistency between the RP and SP data (i.e., 

                                                           
4 See Krucien, Gafni, and Pelletier‐Fleury (2015), Lancsar and Swait (2014) and Fifer, Simon, 

Rose, and Greaves (2014) for discussion in the health and transportation literatures.  
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equality of coefficients across data sources) and illustrate how sensitivity analysis can be used to 

account for the inconsistency. Abildtrup, Olsen, and Stenger (2015) estimate forest recreation 

choices with a mixed logit error components model (Hensher, Rose, and Greene 2008). They 

find significant hypothetical bias in the choice experiment data.  

In the next section we describe the models available for RP and SP data combination. 

These include the nested logit “trick,” the mixed logit error components model, and the 

generalized multinomial logit model. Then we describe the data. Since the survey was not 

specifically designed for joint estimation, we manipulate the RP and SP data in order to create a 

parallel data set suitable for an illustrative example. Then we present the results comparing a 

range of models. Finally, we offer some conclusions and directions for future research. 

Models 

Both the RP and SP data we analyze represent discrete choices made by individuals between 

multiple fishing (and non-fishing) alternatives.  Random utility theory is the basis for 

recreational fishing models involving joint estimation of these discrete RP and SP choices,  

(1) 𝑈𝑖𝑗 = 𝜷′𝒙𝑖𝑗 + 𝜀𝑖𝑗 𝜎⁄ , 

where 𝑈𝑖𝑗 is the utility angler i receives from fishing alternative j, i = 1, …, I, j = 1, …, J, 𝜷′𝒙𝒊𝒋 is 

the systematic portion of utility, 𝜷 is a vector of parameters, 𝒙𝑖𝑗 is a vector of variables specific 

to the choice (e.g., travel cost, catch), ε is the random error and 𝜎 is the standard deviation of the 

error term, i.e., the scale parameter. Multiplying through by the scale parameter angler utility 

becomes 
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(2) 𝑈𝑖𝑗
′ = 𝜎𝜷′𝒙𝑖𝑗 + 𝜀𝑖𝑗, 

where the scale parameter is normalized to one in order to identify the coefficients when a single 

dataset is used. Given the unobserved elements of utility, we consider the probability of 

individual i choosing alternative j is 

(3) 𝜋𝑖𝑗 = 𝑃𝑟(𝜎𝜷′𝒙𝑖𝑗 + 𝜀𝑖𝑗 > 𝜎𝜷′𝒙𝑖𝑘 + 𝜀𝑖𝑘; ∀𝑘 ∈ 𝐽). 

The multinomial logit (MNL) model assumes the error terms in (2) are independent and 

identically distributed (iid) extreme value (also known as Gumbel) variates; as a consequence, 

the probability of a choice alternative takes the form:  

(4) 
𝜋𝑖𝑗 =

𝑒𝑥𝑝(𝜎𝜷′𝒙𝒊𝒋)

∑ 𝑒𝑥𝑝(𝜎𝜷′𝒙𝒊𝒋)𝐽
𝑗=1

. 

In the MNL model the model parameters describing site choice are assumed to be constant 

across individuals, indicating homogeneous response to site characteristics.  

A number of discrete choice models have been developed to combine discrete choice RP 

and SP data. A naïve approach simply stacks the data and employs the MNL model. When RP or 

SP data are estimated separately the scale parameter in the multinomial logit is arbitrarily set 

equal to one. This is naïve because when RP and SP data are stacked and estimated jointly, it is 

common for the error terms that result from the different data to have unequal variance leading to 

unequal scale parameters (Swait and Louviere 1993). It is typical, but not universal, for the SP 

data to have a higher variance due, perhaps, to the unfamiliarity of the choice task. The 

difference in the scale parameter will cause the MNL coefficients to differ across RP and SP data 
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sets. In this case the RP coefficient estimates will be proportionately larger than the SP 

coefficient estimates since the variance of the error term is an inverse function of the scale factor 

(Swait and Louiviere 1993).  

The relative scale factor in a stacked data set can be estimated as described by Hensher 

and Bradley (1993), Hensher, Rose and Greene (2005) and Whitehead (2011). The so-called 

nested logit “trick” involves creating a choice situation for each RP (SP) observation that 

counterfactually also includes the SP (RP) alternatives. The model is then estimated as a nested 

logit with the inclusive value for the RP branch set equal to one. The SP alternatives are 

estimated in individual branches but with the inclusive value for each branch constrained to be 

equal. The variance of the RP nest is constrained to equal one while the variance of the SP 

alternatives is allowed to diverge from one. When the scale parameter for the RP data is set equal 

to one the nested logit model will estimate the relative scale factor for the SP data as the 

inclusive value for the SP data. The SP data are then appropriately scaled and the coefficients 

can be estimated jointly without one dataset having a larger influence than the other.  

One problem with the nested logit “trick” is the assumption that the stacked RP and SP 

observations from each angler are independent (Hensher, Rose, and Greene 2008). In contrast, 

mixed logit (MXL) discrete choice models capture the panel nature of the data, allow correlation 

across choices for each angler, are capable of estimating scale parameters and allow for random 

parameters in the utility specification (Train 2003): 
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(5) 𝑈𝑖𝑗 = (𝜷 + 𝜼𝑖)′𝒙𝑖𝑗 + 𝜀𝑖𝑗 , 

where β is the mean parameter estimate, 𝜼𝒊 is the individual specific deviation from the mean 

parameter estimate, and the error terms are Gumbel distributed.  Brownstone, Bunch, and Train 

(2000) and Greene and Hensher (2007) develop a mixed logit error components model where 

scale is estimated as the standard deviation of alternative specific SP random coefficients where 

the mean effect is constrained to zero. The scale parameters are estimated by including 

alternative specific constants for the SP alternatives with zero mean and free variance. Hensher 

(2008) and Börjesson (2008) provide examples of its estimation in the transportation context. 

Abildtrup, Olsen and Stenger (2015) use the model in the recreation context. 

While the random parameters in the MXL model introduce preference heterogeneity in 

the model, a recent alternative has been proposed that accounts for scale heterogeneity that may 

result from some individuals having a systematically larger (or smaller) scale (error variance). 

This alternative model is the scaled MNL (SMNL) model that accounts for scale differences by 

allowing individuals to have different scale parameters (Fiebig et al. 2010). In effect, the model 

estimates parameters that describe the distribution of scale (Hensher 2012): 

(6) 𝑈𝑖𝑗 = 𝜎𝑖𝜷′𝒙𝑖𝑗 + 𝜀𝑖𝑗. 

Both preference and scale heterogeneity are captured in a third model, the generalized 

multinomial logit (GMXL) model (Fiebig et al. 2010; Keane and Wasi 2013):5 

                                                           
5 The ability of the GMXL to separately estimate individual-level scale and preference 

heterogeneity has been challenged recently by Hess and Rose (2012), who argue that the utility 

specifications in GMXL models simply allow for more flexible distributions of the preference 

parameters. 
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(7) 𝑈𝑖𝑗 = [𝜎𝑖𝜷 + 𝛾𝜼𝒊 + (1 − 𝛾)𝜎𝑖𝜼𝒊]′𝒙𝑖𝑗 + 𝜀𝑖𝑗 

where 𝛾 is a weighting variable that allows for scaling of the unobserved heterogeneity in the 

parameters. When 𝛾 = 1 there is no scaling of the preference heterogeneity. Fiebig et al. (2010) 

called this model GMXL-I:  

(8) 𝑈𝑖𝑗 = [𝜎𝑖𝜷 + 𝜼𝑖]′𝒙𝑖𝑗 + 𝜀𝑖𝑗, 

when 𝛾 = 0 the preference heterogeneity is scaled. Fiebig et al. (2010) called this model GMXL-

II:  

(9) 𝑈𝑖𝑗 = [𝜎𝑖𝜷 + 𝜎𝑖𝜼𝒊]′𝒙𝑖𝑗 + 𝜀𝑖𝑗. 

The scale parameter in the GMXL models takes the form 

(10) 𝜎𝑖 = 𝑒𝑥𝑝(−𝜏2 2⁄ + 𝜃𝑆𝑃 + 𝜏𝑤𝑖), 

where 𝜏 is the coefficient on the unobserved scale heterogeneity, 𝑤𝑖, which is assumed to follow 

a standard normal distribution, and SP is equal to one for the stated preference data source and 

zero otherwise (Hensher 2012).   

Individual angler preferences differ randomly according to a specified distribution, f(ß), 

so that the unconditional site choice probability takes the form: 

(11) 
𝜋𝑖𝑗 = ∫

𝑒𝑥𝑝(𝝋′𝑥𝑖𝑗)

∑ 𝑒𝑥𝑝(𝝋′𝑥𝑖𝑗)𝐽
𝑗=1

𝑓(𝝋)𝑑𝝋. 
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where 𝝋 = 𝜎𝑖𝜷 + 𝛾𝜼𝑖 + (1 − 𝛾)𝜎𝑖𝜼𝒊.  The probability is evaluated over the distribution of both 

the random preference parameters (i) and the individual scale heterogeneity (wi) and does not 

have a closed form solution.  Therefore, estimation of the parameters requires simulation of the 

integral. See Greene and Hensher (2010) for details.  

Data 

A 2007 survey of Alaska saltwater anglers collected information on saltwater fishing 

participation, effort, and preferences of resident and non-resident anglers during the 2006 fishing 

season. The survey was administered to three groups of anglers for which separate survey 

instruments were developed: non-residents, residents of Southeast Alaska, and all other Alaska 

residents.6 In this study we focus on the Southeast Alaska resident angler data which were 

analyzed in Larson and Lew (2013) and Lew and Larson (2014). Using a repeated mixed logit 

RP model the authors show how multiple sources of catch data, both from exogenous creel 

surveys and from self-reported survey data by the sample itself, could be used in the same model 

and weighted to provide improved value estimates (Larson and Lew 2013). The Southeast 

Alaska SP data were analyzed in Lew and Larson (2014) which focused on the relationship 

between catch and keep and catch and release rates.  

In this study, we focus on a sample of Southeast Alaska resident anglers who took a 

private boat trip to a Southeast Alaska fishing site and also answered each of four stated 

                                                           

6 Lew, Lee, and Larson (2010) describe the development, content, and structure of the three 

survey versions, their implementation, and a summary of the data.  
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preference questions (𝑛 = 204). There is a preponderance of nonusers in the full sample and the 

no RP trip option makes combining data less informative (e.g., the no trip option dummy 

variable is strongly positive in the RP data). Only considering users in this exercise puts an 

emphasis on the gains from combining data from a sample where the opt-out option can only be 

identified in the SP data, such as for intercept samples (Whitehead 2011). As a result, this type of 

data combination will be most informative to other recreation demand choice experiment models 

that can be combined with surveys of on-site users. In Table 1, we summarize the data. Sixty-

seven percent of the sample is male and the average age is 47. The average number of years of 

fishing experience is 23. Average income is $80,000 and the average household size is 2.3 

persons. The average number of fishing trips to Southeast Alaska sites is 12 with a range of 1 to 

50.   

In order to combine data, it is often recommended to have the same number of 

observations so that neither data source dominates in estimation. There are 𝑘 = 4 SP 

observations (i.e., trip preferences) for each of the 204 survey respondents and 2245 RP trips 

over 𝑗 =  10 sites in the data (Table 1). We use the “typical” trip to define site choice over four 

choice occasions for the RP site choice data. We define the typical trip as equal to one if the site 

has the maximum number of trips for the respondent: 𝑡𝑡𝑟𝑖𝑝𝑗 = 1 for 𝑗 = max (𝑡𝑟𝑖𝑝𝑠𝑗) and 0 

otherwise. There are four ties in the data. In this case the typical trip site was chosen randomly 

by the computer.  
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The distribution of typical trips across the 𝑗 = 10 sites is very similar to the distribution 

of total trips (Table 2).7 The percentage of total trips ranges from 0.4% at Kake to 41% at Juneau 

(Figure 2). The typical trips range from 1% at Kake and Yakutat to 43% at Juneau. In Table 2, 

we also present the travel cost and catch and keep rates for each site. The mean travel costs range 

from $39 at Juneau to $192 at Yakutat. The catch and keep rates are estimated from the 2007 

survey for halibut, king (chinook) and silver (coho) salmon. The mean halibut catch ranges from 

0.07 per trip at Haines-Skagway to 0.69 per trip at Glacier Bay.8 The mean king salmon catch 

ranges from 0.05 per trip at Glacier Bay to 0.42 per trip at Sitka. The mean silver salmon catch 

ranges from 0.01 per trip at Yakutat to 0.73 per trip at Prince of Wales. The catch rates vary 

across sites but not within sites (i.e., the standard deviation is zero at each site) which is a 

limitation of the RP recreational fishing data.  

The SP site choice data are adapted from a contingent ranking exercise where 

respondents are asked for their most preferred and least preferred of three alternatives in each 

choice occasion (recall there are four for the SP data). The first two alternatives (A, B) are 

fishing trips that vary over fishing mode, fishing days, target species, daily bag limit, actual catch 

and size, and cost per trip. Catch levels are truncated where the actual catch exceeds the daily 

bag limit. Alternative C is the no trip alternative. We assume that respondents would choose the 

fishing site that they rate as their most preferred. We delete cases where choices are ambiguous 

                                                           
7 Alternatively, we could randomly choose each of the 𝑘 =  4 sites for respondents who take 

more than one trip. 

8 These rates were calculated over trips targeting any species, not just those targeting halibut or 

salmon. 
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in the raw data (e.g., respondent chooses same alternative as best and worst). Anglers choose 

almost equally across alternatives A and B (Table 3). About 10% of the anglers prefer no trip 

across the four choice occasions. The mean travel cost ranges from $71 to $115. Mean halibut 

catch per trip ranges from 0.50 to 1.15. Mean king salmon catch per trip ranges from 0.58 to 

1.18. Mean silver salmon catch per trip ranges from 0.21 to 1.87.  

Results 

We estimate four sets of models. We first estimate separate RP and SP models to illustrate the 

limitations of both types of data. We then combine the data in the nested logit “trick” structure 

and estimate the nested logit and mixed logit error component models. Next, we stack the data 

without the contrived structure of the previous models and estimate the naïve scaled multinomial 

logit and mixed logit models. Finally, we estimate two alternative generalized multinomial logit 

models. We specify simple models that include cost, catch rates and a no trip alternative specific 

constant interacted with income. The preference heterogeneity in each mixed logit model is 

specified as normally distributed for the catch rate variables. Each of the standard deviations 

reach into the negative realm but a similar pattern of results is found for the triangular 

distribution which constrains the catch rate parameter distribution to the positive realm.9   

The separately estimated RP site selection and SP choice experiment models are 

                                                           
9 These results and others mentioned in this section are available upon request.  
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presented in Table 4.10 The travel cost coefficient is negative and highly statistically significant 

in the multinomial logit RP model. Each of the catch coefficients is positive but only the king 

salmon coefficient is statistically significant in the RP model. The coefficient on the key variable 

of policy interest, halibut catch, is not statistically significant. This is likely due to the limited 

variation in catch rates across sites and the relatively low halibut catch at the most visited site. In 

the mixed logit SP model the coefficient on the travel cost is negative but only marginally 

significant. The travel cost coefficient is an order of magnitude lower than that in the RP model 

(in absolute value). The coefficients for halibut and king salmon catch are positive and 

statistically significant. The king salmon coefficient is an order of magnitude larger than that in 

the SP model. The coefficient on silver salmon is not statistically significant. The coefficient on 

the no trip option interacted with income is negative. This indicates that anglers with higher 

incomes are more likely to choose to take either trip A or trip B.   

Next, the data are stacked with the nested logit “trick” data structure and jointly estimated 

(Table 5). Several gains from joint estimation are observed. In contrast to the independently 

estimated models, all of the coefficients are estimated more efficiently due to the simple fact that 

there are more observations. The RP data influences the parameter estimates more than the SP 

data in the nested logit model. Each of the coefficient estimates are of similar magnitude 

compared to the RP data model. The scale factor is very large in the nested logit model. This 

suggests that there is extreme heteroskedasticity in SP data when compared to RP data after 

                                                           

10 All of these models are estimated with NLOGIT software (Greene 2012; Chang and Lusk 

2011).  
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stacking the uniform RP choices, which may artificially introduce less randomness in the RP 

data. In contrast, the SP data dominates in the error components model with catch rate 

coefficients similar in magnitude to the independently estimated SP model. The travel cost 

coefficient is increased in absolute value so that it is only about 50% lower as the independently 

estimated RP model travel cost coefficient. Only the king salmon standard deviation is 

statistically different from zero. The alternative specific scale factors are statistically significant 

for alternatives A and C (no trip).  

We next apply the scale MNL and mixed logit models to the combined RP and SP data 

(Table 6). These models are “naïve” in that they do not consider differences in scale across data 

sources. Each of the coefficient estimates is statistically different from zero. The travel cost 

coefficients are similar in magnitude to that in the RP data model. The coefficient on 𝜏 in the 

scale parameter is statistically different from zero indicating some support for the scaled model.11 

Results for the mixed logit model are similar. Each of the standard deviations on the catch rate 

coefficients is statistically different from zero. We find that the mixed logit is statistically 

superior with lower AIC and higher pseudo-R2 values.  

The generalized multinomial logit model is estimated with the 𝛾 weighting parameter set 

to one (i.e., GMXL-I). When we restrict the 𝛾 parameter to zero and estimate GMXL-II the 

coefficient on 𝜃, the SP contribution to the 𝜏 scale, changes sign and increases by an order of 

magnitude (in absolute value). When the model is estimated with 𝛾 unconstrained, 𝛾 is greater 

                                                           
11 We also attempted to estimate the 𝜃 coefficient by including the SP dummy variable in the 

estimation of 𝜏. However, this model did not converge successfully.  
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than one. While 𝛾 can be treated as a parameter to be estimated and can range beyond 0 and 1 

(Keane and Wasi 2013), we restrict our attention to GMXL-I.  

All of the generalized multinomial logit coefficient estimates are statistically different 

from zero (Table 7). The first model is naïve in that it does not account for differences in scale 

across data sources. It is a combination of the scale and mixed logit models in Table 6 and the 

results are very similar. It is statistically preferred to both models in Table 6 with lower AIC and 

higher pseudo-R2 values. In order to estimate the generalized multinomial logit model while 

controlling for SP scale differences (GMXL-I-SP), we fix 𝜏 at 0.5 as in Hensher (2012).12 The 

magnitudes of the coefficient estimates are similar to the naïve model. Standard deviations of the 

catch coefficients are slightly higher. The coefficient on the SP contribution to scale, 𝜃, is 

positive and statistically different from zero indicating a larger variance in the SP data relative to 

the RP data. The AIC and pseudo-R2 values indicate a slight preference for the naïve model with 

individual scale parameters.  

Willingness to Pay  

The independently estimated RP and SP models and jointly estimated RP and SP models 

can be used to estimate a willingness-to-pay (𝑊𝑇𝑃) for changes in the non-cost attributes. Haab 

and McConnell (2002) show that the marginal 𝑊𝑇𝑃 for a change in catch for each fishing trip is 

                                                           
12The model fails to converge when 𝜏 is unconstrained while including the SP dummy variable. 

Similar results, other than a larger 𝜃 parameter, are found with 𝜏 fixed at 0.25. When 𝜏 is fixed at 

0.75 the model fails to estimate satisfactorily.  
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the ratio of the catch (βq) and travel cost (βc) coefficients,  
𝜷𝑞

𝛽𝑐
 , where 𝑞 denotes the catch and 𝑐 

denotes the cost. Since the coefficient on travel cost is in the denominator of the willingness to 

pay function, it plays a large role in value determination. Hypothetical bias in SP cost 

coefficients will lead to upward bias in 𝑊𝑇𝑃 for catch.  

The pattern of 𝑊𝑇𝑃 estimates is similar across models with king salmon valued highest 

in each (Table 8). Notably, 𝑊𝑇𝑃 for halibut or silver salmon is not statistically significant in the 

RP model.13 The 𝑊𝑇𝑃 estimates in the SP models are significantly higher than in the RP models 

given the small travel cost coefficient. But, SP 𝑊𝑇𝑃 estimates are also not significantly different 

from zero given the statistical insignificance of the SP travel cost coefficient. The 𝑊𝑇𝑃 

estimates from the more flexibly estimated scaled and mixed logit SP models are lower for king 

salmon relative to the RP estimate. The jointly estimated halibut 𝑊𝑇𝑃 estimates fall in between 

the RP and SP estimates and are statistically significant. The silver salmon 𝑊𝑇𝑃 estimates in the 

jointly estimated models are all similar to the RP model 𝑊𝑇𝑃 estimates, but statistically different 

from zero. The silver salmon 𝑊𝑇𝑃 is lower with statistically significant differences than the 

halibut and king salmon WTP estimates in all of the scaled and mixed logit models. The 𝑊𝑇𝑃 

estimates for halibut and king salmon are not statistically different except for those from the 

generalized multinomial logit with SP scale differences model which have non-overlapping 

                                                           
13 This is also true in the model that uses all 2245 trips instead of the typical trip.  
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confidence intervals.  

Discussion and Conclusion 

This paper is the first attempt to combine site choice RP and discrete choice experiment SP data 

with the generalized multinomial logit model in the environmental economics literature. Our 

results illustrate the benefits of joint estimation even with data that were collected without joint 

estimation in the study design. This study finds that there are two significant gains to jointly 

estimating RP recreation trip and SP choice experiment data–econometric efficiency is increased 

and bias in RP and SP willingness-to-pay estimates are mitigated by joint estimation. The only 

model where the SP scale parameter made a significant difference was in the nested logit “trick” 

model. This model fails to account for the panel nature of the data and is less preferred 

statistically to scale and mixed logit models that account for panel data and scale differences. 

With these data we found scale differences across data sources in several models. The 

generalized multinomial logit models outperformed the others statistically, but there is little 

difference in willingness to pay estimates. 

These results should not be directly compared to the earlier Lew and Larson papers since 

we used a subset of the RP data and our interpretation of the data differs. The Alaska sport 

fishing survey was not designed to collect data for RP and SP joint estimation. In order to 

appropriately combine the data we made a number of data decisions that could lead to 

differences in separate RP and SP analyses. Nevertheless, the data handling decisions made here 

are not invalid; that is, the separate RP and SP analyses in this study are different, but valid, 

approaches to obtaining willingness to pay values.  
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While these results are instructive they should only be considered as illustrative. In our 

models we have simplified the data to (1) focus on variables that are contained in both the RP 

and SP data (travel cost and catch) and (2) assess the simplest RP choice scenarios. Considering 

(1), it is not necessary for the RP and SP coefficients vectors to contain the same elements. In 

fact, it is typical for RP data sets to have some variables that do not vary or are unobserved 

across individuals. In this case, the SP data could be used to identify the effect of the variable on 

the choices. Also, SP choice experiments may be difficult to design with some attributes that are 

relatively easy to estimate with RP data. Future research should strive to design, collect and more 

consistently measure attributes so as to fully exploit the gains from combining RP and SP data.  

Still, our results raise questions about much of the SP choice experiment literature in 

environmental economics. Even with the attention accorded to the Adamowicz, Louviere, and 

Williams (1994) seminal contribution, the choice experiment literature has proceeded with little 

to no attention paid to its similarities to RP data. This is in stark contrast to the contingent 

valuation and contingent behavior literatures which have spent considerable time comparing and 

jointly estimating RP and SP data (Carson et al. 1996; Whitehead, Haab, and Huang 2011).  

The lack of attention to the issue of hypothetical bias may be due to the fact that many SP 

choice experiments are not designed as behavioral surveys. With the Southeast Alaska fishing 

data we assumed that a ranking of the “best” trip would be a chosen trip. Many other choice 

experiments are designed to elicit non-behavioral preferences and elicit nonuse values for which 

there is no behavioral trace. Our results suggest that choice experiment survey design should pay 

more attention to their behavioral counterparts and attempt to exploit the gains from joint 

estimation.  
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Figure 1. Southeast Alaska Fishing Locations. 
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Table 1. Sample characteristics. 

Variable Mean Std dev Min Max 

Male 0.67  0 1 

Age  46.56 13.67 18 84 

Fishing experience 22.98 13.97 0 70 

Income ($1000s) 80.33 45.61 5 200 

Household size 2.28 1.46 1 11 

Trips 11.89 10.06 1 50 
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Table 2. Revealed preference data. 

 Total Typical Travel Cost 

Halibut 

Catch 

King Salmon 

Catch 

Silver Salmon 

Catch 

Alternative Sum % Sum % Mean Std dev Mean Mean Mean 

Glacier Bay 46 1.9% 4 2.0% 125.68 46.95 0.690 0.050 0.222 

Haines-Skagway 76 3.1% 8 3.9% 129.58 59.07 0.066 0.093 0.042 

Juneau 997 41.1% 87 42.6% 39.00 38.14 0.173 0.114 0.440 

Kake 9 0.4% 2 1.0% 102.04 20.91 0.598 0.110 0.071 

Ketchikan 407 16.8% 30 14.7% 123.93 44.34 0.208 0.135 0.445 

Petersburg 120 4.9% 13 6.4% 98.96 27.14 0.500 0.179 0.092 

Prince of Wales Island 250 10.3% 18 8.8% 145.55 60.05 0.645 0.227 0.734 

Sitka 397 16.4% 31 15.2% 147.10 30.57 0.481 0.424 0.596 

Wrangell 78 3.2% 9 4.4% 108.24 35.07 0.200 0.312 0.051 

Yakutat 45 1.9% 2 1.0% 191.74 59.49 0.559 0.360 0.010 
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Table 3. Stated preference data.    

 Total Travel Cost Halibut Catch King Salmon Catch 

Silver Salmon 

Catch 

Alternative Sum % Mean Std dev Mean Std dev Mean Std dev Mean Std dev 

Choice A 104 51% 77.82 44.61 0.91 0.99 0.94 0.87 1.29 1.51 

Choice B 81 40% 71.45 24.99 0.85 0.82 0.63 0.77 1.30 1.82 

No trip 19 9% 0 0 0 0 0 0 0 0 

           

Choice A 88 43% 75.245 39.62 0.89 0.77 0.58 0.71 1.71 2.25 

Choice B 99 49% 114.95 32.5 1.15 0.87 0.77 0.80 1.27 1.32 

No trip 17 8% 0 0 0 0 0 0 0 0 

           

Choice A 77 38% 97.43 42.51 0.485 0.698 0.93 0.86 0.21 0.76 

Choice B 108 53% 77.45 45.55 0.78 0.88 1.18 1.00 0.90 1.68 

No trip 19 9% 0 0 0 0 0 0 0 0 

           

Choice A 111 54% 87.38 43.58 0.50 0.80 1.36 0.77 0.69 1.31 

Choice B 70 34% 83.33 31.65 0.71 0.98 0.61 1.01 1.87 2.09 

No trip 23 11% 0 0 0 0 0 0 0 0 
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Table 4. Separately estimated RP and SP models.    

 MNL - RP MXL - SP 

 Coeff. S.E. z Coeff. S.E. z 

Halibut 0.708 0.600 1.18 0.865 0.144 6.01 

King salmon 7.707 1.041 7.40 0.772 0.123 6.28 

Silver salmon 0.577 0.486 1.19 0.017 0.054 0.32 

Travel cost -0.051 0.004 -12.58 -0.003 0.002 -1.63 

No trip x income    -0.013 0.003 -4.90 

Halibut std dev    1.280 0.181 7.09 

King salmon std dev    0.925 0.161 5.74 

Silver salmon std dev    0.286 0.100 2.87 

 

Cases 204 204 

Periods 1 4 

Model 𝜒2 116 456 

AIC/n 1.669 1.658 

Pseudo-R2 0.08 0.25 
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Table 5. Scaled models. 

 Nested Logit "Trick" MXL - ECM 

 Coeff. S.E. z Coeff. S.E. z 

Halibut 0.732 0.253 2.90 0.591 0.049 11.99 

King salmon 7.446 0.448 16.64 0.634 0.048 13.23 

Silver salmon 0.782 0.161 4.85 0.223 0.030 7.41 

Travel cost -0.042 0.001 -30.95 -0.024 0.001 -32.98 

No trip x income -0.332 0.063 -5.27 -0.053 0.007 -7.05 

Standard deviations of 

random coefficients       

  Halibut     0.027 0.119 0.23 

  King salmon     0.253 0.084 3.02 

  Silver salmon     0.074 0.081 0.91 

Scale (𝜎)a 21.028 2.848 7.38    

Scale-1 b    0.626 0.114 5.48 

Scale-2 b    0.121 0.245 0.49 

Scale-3 (no trip) b    3.081 0.468 6.58 

 

Cases 204 204 

Periods 8 8 

Model 𝜒2 3012 2347 

AIC/n 3.24 3.71 

Pseudo-R2 0.36 0.28 
a The relative scale factor in a stacked data 
b Zero mean SP alternative specific constant scale parameters 
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Table 6. Naïve scaled and mixed logit RPSP models.    

       

 SMNL MXL 

 Coeff. S.E. z Coeff. S.E. z 

Halibut 2.362 0.348 6.79 1.569 0.179 8.78 

King salmon 2.797 0.394 7.10 2.138 0.257 8.33 

Silver salmon 0.540 0.097 5.58 0.465 0.084 5.53 

Travel cost -0.049 0.006 -7.91 -0.040 0.001 -30.22 

No trip x income -0.053 0.010 -5.55 -0.050 0.004 -12.19 

Standard deviations of 

random coefficients       

  Halibut     1.924 0.188 10.24 

  King salmon    2.727 0.250 10.90 

  Silver salmon     0.710 0.117 6.10 

𝜏 0.964 0.109 8.840    

𝜎𝑖 mean 1.000      

𝜎𝑖 std dev 1.240      

 

Cases 204 204 

Periods 4 8 

Model 𝜒2 4087.00 4393.07 

AIC/n 2.108 1.923 

Pseudo-R2 0.544 0.585 
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Table 7. Generalized multinomial logit RP and SP models. 

 Naïve GMXL-I GMXL-I-SP 

 Coeff. S.E. z Coeff. S.E. z 

Halibut 1.852 0.243 7.63 1.702 0.181 9.38 

King salmon 2.532 0.318 7.95 2.941 0.312 9.43 

Silver salmon 0.582 0.092 6.30 0.637 0.100 6.35 

Travel cost -0.039 0.001 -29.53 -0.040 0.001 -29.74 

No trip × income -0.051 0.004 -13.87 -0.055 0.004 -13.96 

Standard deviations of 

random coefficients       

  Halibut  1.465 0.235 6.24 1.836 0.248 7.40 

  King salmon  1.888 0.300 6.29 2.026 0.348 5.82 

  Silver salmon  0.556 0.112 4.95 0.622 0.121 5.16 

𝜏 1.092 0.058 18.76 0.50   

𝛾 1.00   1.00   

SP (𝜃)    0.853 0.054 15.85 

𝜎𝑖 mean 0.97   0.98   

𝜎𝑖 std dev 1.26   1.04   

 

Cases 204 

  

204 

Periods 8   8 

Model 𝜒2 4440   4429 

AIC/n 1.896   1.902 

Pseudo-R2 0.591   0.589 
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Table 8. Willingness to pay per fish caught and kept ($). 

 Halibut King salmon Silver salmon 

Model WTP 95% C. I. WTP 95% C. I. WTP 95% C. I. 

MNL - RP 13.97 -8.41 36.36 152.15 116.33 187.96 11.39 -8.30 31.08 

MXL - SP 308.61 -58.74 675.96 275.72 -54.60 606.03 6.03 -30.63 42.69 

NL "Trick" - RPSP 17.55 6.13 28.97 178.40 161.77 195.03 18.74 10.62 26.87 

MXL - ECM - RPSP 24.85 20.88 28.82 26.66 22.44 30.89 9.38 6.88 11.88 

SMNL - RPSP 48.06 42.17 53.96 56.92 48.66 65.18 10.98 8.18 13.78 

MXL - RPSP 39.44 31.11 47.77 53.77 41.39 66.14 11.70 7.55 15.84 

GMXL - RPSP (𝜏, 𝜃 = 0) 47.37 35.61 59.12 64.76 48.81 80.70 14.88 10.23 19.52 

GMXL - RPSP (𝜏 𝑓𝑖𝑥𝑒𝑑, 𝜃) 42.02 33.82 50.23 72.62 57.72 87.52 15.73 10.85 20.60 

 




