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Abstract: 

We examine the impact of glucose on a Bayesian choice task that creates a separating equilibrium 
between high-level Bayesian choice and lower-level reinforcement heuristic choice.  Consistent with a 
dual systems framework, we hypothesize that glucose administration will both increase reaction times 
and improve Bayesian accuracy because it should shift decision making towards the more deliberate 
system 2 and away from the more automatic system 1 decision process.  We study 113 subjects 
randomly assigned to either a glucose or placebo drink condition, who make choices over several 
incentivized easy and difficult choices of the Bayesian task.  Our results indicate a significant glucose 
effect on reaction times. In this case, glucose administration has a main effect of increasing reaction 
time, as predicted, but glucose also improves the marginal decrease in reaction times experienced 
across trials. Regarding Bayesian accuracy, we find that glucose administration significantly increases the 
likelihood of Bayesian choice over reinforcement heuristic-based choice only for those subjects 
indicating an above-average comprehension of the task structure.  Additionally, we find that Bayesian 
choice likelihood increases across trials on the easy task when administered glucose.  We interpret this, 
as well as the reaction time result, as evidence that glucose may improve learning, particularly on easy 
tasks.  Together, these results suggest that there is a beneficial impact of glucose on deliberative 
decision making, though some of the results depend on the difficulty of the task and the comprehension 
of the decision environment being faced.    
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Glucose is the primary fuel source for the brain, including both the lower limbic regions and the 

outer cortex.  Consequently, most, if not all, cognitive functioning is dependent upon glucose.  Because 

glucose is such a key element in the human thought process, researchers have shown interest in 

examining the role that glucose plays in many facets of cognitive functions and behavior, including 

decision making.  In this paper, we test the hypothesis that glucose administered subjects will favor 

choices requiring deliberate thought over heuristic-based choices that require little deliberation.  More 

specifically, we use a modification of the decision task in Charness and Levin (2005), where certain trials 

create a divergence between the choice a Bayesian subject would make versus the choice one would 

make if following a simple reinforcement heuristic rule. Additionally, because there is evidence that 

glucose metabolism may differ in task-specific brain regions by gender (Haier and Benbow, 1995), we 

explore the role that gender plays in our results. 

 

1.   Glucose and Cognition 

Blood glucose is an important determinant of cognitive function (Donohoe and Benton, 1999). A 

number of studies have looked at how glucose may influence different components of cognitive 

functioning.  Because cognitive functioning is an encompassing term, findings from this research should 

be considered specific to each particular type of cognitive functioning and its consequential processing.  

For example, cognitive impairment of working memory may not mean impairment for decisions 

dependent upon long-term memory retrieval.  It is also important to make the distinction between how 

glucose level interacts with tasks that are cognitively complex or simple.  A number of studies have 

shown that when participants were glucose enriched they performed better on more cognitively 

demanding tasks that were complex but their performance did not differ on cognitively simple tasks 

(Kennedy and Scholey, 2000; Scholey et al, 2001). 
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Glucose seems to be a potent player in at least some types of memory performance. One of the 

most influential types of memory that has been studied is verbal memory.  A series of studies seem to 

show a consistent pattern, indicating that glucose enriched participants outperform glucose deprived 

participants in verbal memory tasks (Messier et al, 1998; Sünram-Lea et al 2001; Sünram-Lea et al, 

2002).  There is also evidence that glucose enriched participants perform better on spatial memory 

(Sünram-Lea et al, 2001) and spatial working memory tasks.  Further addressing this issue, Meikle et al 

(2004) investigated glucose effects on cognitive performance and specifically examined the role that age 

plays in mediating general or memory-dependent measures of cognition.  They found that glucose 

effects seemed to be exclusive to memory-dependent measure and this effect seemed to be 

exacerbated in middle-aged participants as compared to younger subjects.  Such research highlights the 

importance of selection tasks for behavioral research on glucose effects that do not involve a memory 

component to performance, since doing so would present a confound in the data. 

Other research, however, clearly shows that glucose effects are not restricted to memory-

dependent measures of cognition.  Research has shown that glucose deprivation can influence the more 

thoughtful processes as well.  For example, choice that involves impulse control, which is an effortful 

cognitive endeavor, has been found to deplete blood glucose levels (Gailliot and Baumeister, 2007) and 

other research has reported that supplemental glucose eliminates self-control impairments resulting 

from depleted glucose reserves (Gailliot et al, 2007).  These results regarding glucose and self-control 

may be largely explained, however, by differences in one’s beliefs about willpower and self-control, as 

shown in Job et al (2013).  Other research has shown that  glucose administration reduces the use of 

stereotypes (Gailliot et al, 2009) and improves patience for future rewards (Wang and Dvorak, 2010), 

which is consistent with a preferential impact of glucose on prefrontal brain regions that show increased 
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activation when more delayed rewards are chosen (McClure et al, 2004).1  The result of glucose 

administration on preference for delayed payments may not be without controversy, however.  For 

example, Kuhn et al, (2013) find that both glucose and a placebo drink promote similar increases in 

delayed payments preference.   

 

2.  Glucose Implications for Decision Making 

While much of the previous research has investigated the role of glucose in cognition, a more specific 

question for our investigation is how glucose may influence decision making.  Existing research (e.g., 

impulse control, time discounting, use of heuristics) seems to indicate that glucose may preferentially 

impact executive function regions of the brain that are more active with deliberate thought.  In the 

context of a dual-systems framework of brain function (e.g., Schneider and Shiffrin, 1977; Camerer et al, 

2005; Kahneman, 2011), this would imply that glucose supplementation shifts the relative weight of 

decision making away from the more automatic System 1 in favor of the more deliberative System 2.2  

Interestingly, not all studies finding a glucose effect involve actual glucose consumption.  To some 

extent, the brain may react to the mere presence of glucose, which highlights the complexity of glucose 

effects.3 

                                                           
1 Bodenhausen (1990) show that decision-making at one’s more preferred time of day also reduces the use of 
stereo-types.  Thus, there is a consistency in the behavioral effects of some factors believed to deplete cognitive 
resources (i.e., glucose depletion or sleepiness caused by decision at non-preferred times of the day). 
2 Neural evidence indicates that system 1 and system 2 thinking activate different parts of the brain (Goel et al 
2000). 
3 Molden et al (2012) show that rinsing one’s mouth with a sugared beverage improves self-control, a result 
previously linked to consumption of the glucose (Gaillot et al, 2007).  Such a result implies the brain may anticipate 
the forthcoming delivery of glucose, because certain behavioral effects from gargling without ingesting are shown 
to be similar between a glucose and non-glucose drink (Sanders et al, 2012).  Indeed, there is activation in the 
brain when one smells, tastes, and consumes food or drink (Kringelback, 2004), and research has shown that 
glucose in the mouth triggers sensors that activate reward and motivation areas of the brain (Carter et al, 2004; 
Gant, et al, 2010) This complicates the interpretation of glucose effects since some effects may be enjoyed without 
the actual fuel increase to the brain. See Kuhn et al (2013) for description of this literature.  If glucose activates the 
reward centers focused on the reward of glucose (as opposed to our payoff rewards) then our results would be a 
conservative estimate of the effects of glucose as fuel for cognitive thought.  This is because any increase in 
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 Masicampo and Baumeister (2008) looked at how glucose deprivation versus enrichment 

influenced participant’s decision making in an attraction task, which presents the participants with two 

alternatives that are approximately equal in desirability.  Then a third unattractive “decoy” alternative is 

added to the options.  Importantly, the third decoy alternative is very similar to one of the two “real” 

alternatives.  Prior studies show that participants will change their preference to that of the alternative 

most similar to the decoy alternative.  In the study, Masicampo and Baumeister found that the glucose-

deprived participants relied more on the decoy alternative when making decisions compared to the 

glucose enriched participants.  These results are consistent with the hypothesis that glucose can help 

keep decisions from being influenced by irrelevant auxiliary factors in the decision environment. 

Another study, to which ours is closely related in spirit, focused on how glucose affected more 

thoughtful deliberate decision making in a probability judgments task.  In the McMahon and Scheel 

(2010) study participants had to choose which of two events were likely to occur in each of 200 decision 

rounds.  The environment was such that one alternative was set to be correct more frequently than the 

other (e.g., 70% of the time), and this environment is well-known as one that gives rise to phenomenon 

of probability matching.  A subject who probability-matches selects the alterative with the same 

frequency as its occurrence, even though a less heuristic-based assessment of probability should lead 

subjects to select the more likely alternative in every round.  McMahon and Scheel found that glucose 

enriched subjects were actually more likely to probability match, while glucose deprived participants 

used the probabilistically more optimal strategy more often.  They explain this paradoxical result by 

presenting some evidence that glucose enriched subjects engaged in normative rule generation, which 

requires deliberate thought, but we must also note that subjects were not incentivized in the task to 

receive a higher payoff for increased accuracy.   

                                                                                                                                                                                           
anticipation of a glucose reward would be considered a more automatic System 1 process that works opposite our 
hypothesis regarding glucose and effortful thinking. 
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3.  Experimental Methods 

3.1  The Bayesian Switching Task 

This task is a simplified version of the choice experiment in Charness and Levin (2005).  Figure 1 

shows the 2x2 matrix at the heart of the choice task.  Each cell is populated with black and/or white balls 

as shown.  Each trial or decision round involves two stages, and prior to stage 1 nature flips a fair coin to 

determine whether we are in the UP or DOWN row for both stages of that round.  Subjects do not see 

the outcome of that coin flip, but they are informed that the randomly chosen UP or DOWN row 

remains fixed for both stages of that round.  After this (hidden) coin flip, stage 1 has the computer select 

the LEFT or RIGHT column, and one ball is then drawn from the contents of the resultant cell.  Note that 

the stage 1 computerized column choice reveals information to the subject about which state of nature 

applies (UP or DOWN row).  If the stage 1 choice is RIGHT, then the subject knows for certain whether or 

not nature drew UP or DOWN based on the color of the ball drawn.  A stage 1 column selection from the 

LEFT reveals information about the initial draw of nature, but in this case not all uncertainty is removed. 

After this stage 1 computerized column choice, the ball is replaced and then stage 2 follows.  In 

stage 2 the subject’s choice task is to choose a column, after which a single ball will be drawn from the 

resultant cell.  The subject is told that a black ball drawn will result in a $10 payoff for the subject, while 

a white ball will result in no payoff (McMahon and Scheel, 2010, do not incentivize the probability 

assessments in their study).  Thus, following a stage 1 RIGHT draw of a black ball, the state of nature is 

revealed to be UP, and so a Bayesian subject wanting to maximize expected payoff will choose RIGHT in 

stage 2. A stage 1 RIGHT draw of a white ball would lead a Bayesian subject to switch columns and 

choose RIGHT in stage 2.  Note, however, that a subject following the reinforcement heuristic would also 

select LEFT in stage 2 following a stage 1 black ball draw, because reinforcement causes the subject to 

“stay” following the draw of what will be the payoff ball color in stage 1.  Similarly, a reinforcement 
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heuristic subject will “switch” and select LEFT after a stage 1 draw of a white ball, which is the losing 

color.  In short, trials in this task which select RIGHT in stage 1 create a type of pooling equilibrium 

where both Bayesian and reinforcement heuristic subjects are predicted to make identical choices. 

In order to discriminate between those who are truly Bayesian versus Reinforcement subjects, 

half of our trials have the computer choose LEFT in stage 1.  Stage 1 LEFT trials create a separating 

equilibrium between these subject types.  If a black ball is drawn from LEFT in Stage 1, a Reinforcement 

subject would stay LEFT for Stage 2 (i.e. the win-stay, lose-switch decision rule).  However, a Bayesian 

subject would switch because the expected payoff for RIGHT is higher given that a black ball was drawn 

from LEFT in Stage 1.4  Likewise, if the Stage 1 draw from LEFT is a white ball, then a Reinforcement 

subject would switch to RIGHT for stage 2, but the expected payoff is higher by sticking with LEFT for the 

Stage 2 draw.  Because Bayesian choices are empirically indistinguishable from reinforcement heuristic 

choices for many naturally occurring decision environments, there is an inherent choice-rule 

identification problem in field data: one cannot discriminate a Bayesian from a Reinforcement decision 

maker.  This experiment solves that problem.5 

The key result in Charness and Levin (2005) is that switching error rates (from the Bayes rule 

perspective) are generally under 10% following a stage 1 choice of the RIGHT column, which is when 

Bayes and Reinforcement are aligned for the stage 2 choice.  However, switching error rates are closer 

to 50% following a stage 1 LEFT choice.  Thus, when Bayes rule is at odds with the reinforcement 

heuristic, subjects are much less likely to make Bayesian choices.  This indicates that what appears to be 
                                                           
4 A black ball drawn from LEFT in Stage 1 implies the subject updates the likelihood of being in the “UP” row to 3/4 
(because 3 of the 4 total black balls in the LEFT column are in the UP row).  Assuming we are in the UP row and 
LEFT column, the chances of drawing a black ball are also 3/4.  Thus, assuming $1 payoff for a black ball, the Stage 
2 expected payoff of staying LEFT is ((3/4)*(3/4)*($1))+((1/4)*(1/4)*($1))=$.625.  However, the expected payoff of 
switching to RIGHT is ((3/4)*(4/4)*($1))+((1/4)*(0)*($1))=$.75. 
5 Our main modifications to the Charness and Levin (2005) task are as follows:  We reduce the number of balls in 
each cell of the 2x2 matrix for simplicity, while also increasing the difference in expected payoff between a correct 
versus incorrect Bayesian choice to enhance saliency.  We also include only trials with the computerized column 
choice in stage 1 rather than “force” the subjects to choose a particular column as is done for certain trials in 
Charness and Levin (2005).  In the end, the focus is whether subjects choose the same column in stage 2 or 
whether they switch, and we aimed to capture that feature of the task in as simple of an environment as possible. 
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Bayesian choice in some contexts may be deceiving because of this identification problem between 

Bayesian and heuristic-based (i.e., more automatic) choices.   

 

3.2  The Glucose Manipulation Protocol 

 Recruited subjects are asked to fast from food and drink (except water) for at least 3 hours prior 

to the experiment.  At the beginning of the experiment session, subjects are randomly presented either 

a 12 oz can of sugared-lemonade or diet lemonade in double-blind fashion such that the cans were 

indistinguishable.6  Subjects were instructed to drink the contents of the can as fast as possible and, 

once all subjects in the session (up to 9 subjects per session) had finished drinking the beverage, 

subjects then kept busy with distractor tasks for 15 minutes prior to administration of the Bayesian 

decision task.  The 15 minute delay was so that the glucose had time to increase blood glucose levels of 

the glucose-condition subjects and is standard protocol in such experiments. 

 The existing literature leads to two possible hypotheses regarding glucose effects on decision 

making.  Because glucose has been shown to differentially improve decisions on more difficult tasks, we 

hypothesize a glucose effect on the likelihood of making a Bayesian choice error based on whether the 

stage 1 draw is from the LEFT column (Hard choice) or the RIGHT column (Easy choice).  Put differently, 

subjects should be more likely to make Bayes consistent choice in the glucose condition for Hard trials, 

in which Bayesian choice conflicts with Reinforcement heuristic choice.  Thus, we have: 

HYPOTHESIS 1:  In Hard trials, subjects in the glucose condition are more likely to be 

Bayesian consistent than Reinforcement consistent (alternatively, Bayesian 

errors will be significantly lower in the glucose condition). 

                                                           
6 Cans were presented inside of blank neutral-colored grey koozies, with additional black tape to cover the visible 
portion of the can not quite covered by the top of the koozie.  Subject codes were written on the tape, and the 
content of the can was blind to both subject and the experimenter administering the study. 
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If reaction times are indicative of deliberate thought processes at work (System 2: Kahneman, 2011), 

then glucose should naturally increase reaction times. 

HYPOTHESIS 2:  Subjects in the glucose condition will have longer reaction times 

 

3.3 The Experiment Sessions 

A total of 113 subjects (56 female) took part in the experiment protocol.  Of these subjects, 27 

females were in the glucose condition (29 were no-glucose) and 29 males were in the glucose condition 

(28 were no-glucose).  Subjects were recruited from a standard Psychology department subject pool, 

which consists of subjects enrolled in introductory level Psychology courses, but who are not necessarily 

Psychology majors.  A fixed payment was given in the form of research experiment credit, but the task 

was incentivized with the potential to earn $10 cash if a black ball was drawn in stage 2 from a randomly 

selected decision round.  Because Bayesian choices maximize the probability of having a black ball 

drawn in stage 2, it is incentive compatible for Bayesian risk neutral decision-maker to select the column 

in stage 2 with greatest posterior probability of a black ball.   

The task involved 40 timed trials where the subject was presented the stimulus in stage 1 (Fig. 

1), was informed of the column and the outcome of the computerized stage 1 draw, and then the 

subject had 6 seconds during which to make a stage 2 column choice.  The task was programmed to 

automate half the trials to select the LEFT column in stage 1, and half would select the RIGHT column 

(randomized throughout the set of 40 trials).  Subjects were informed of the outcome of drawing a ball 

in stage 2 before the next trial initiated, and subjects were informed prior to the start of the trials that 

the cash payoff would result only from a stage 2 draw of a black ball.  A white ball drawn in stage 2 

would result in a cash payoff of zero.  Only after all 40 trials did the experiment initiate the programming 

sequence to randomly draw a trial for actual payment based on the outcome of the stage 2 draw.  The 
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task was programmed in E-Prime� software for the added benefit of generating accurate response time 

data for each trial.  Four practice trials preceded the real trials to familiarize subjects with the stimulus-

response process explained in the instructions. 

 

4.  Results 

 A basic summary of the Bayesian error and reaction time results is show in Figures 2 and 3, 

respectively.  Here, the data are pooled across trials, split by glucose condition and trial difficulty, and 

the graphs are separated by gender.  Standard error bars are included.  Recall that if the stage 1 draw is 

from the RIGHT column, then Bayesian and Reinforcement heuristic choices are empirically 

indistinguishable.  One might also consider such trials as “easy” trials for a Bayesian subject since all 

uncertainty is removed following stage 1.  As noted above, the stage 2 LEFT trials purposefully misalign 

Bayesian and Reinforcement choices such that it is more difficult for a subject to make a Bayesian 

choice.  From these figures it is clear that Bayesian error rates are significantly higher for the more 

difficult trials, and the size of this difference seems to be a function of gender.  The impact of the 

glucose manipulation on accuracy in Fig. 2 is unclear (additional analysis follows below).  Figure 3 

displays reaction times.  The initial evidence in Fig. 3 is that reaction times are longer for the more 

difficult trials, longer in the glucose condition, but similar across gender. 

  

Unconditional Nonparametric Analysis 

Because Bayesian accuracy (or Bayesian errors) is a binary outcome variable, we conduct initial 

nonparametric analysis on Bayesian accuracy with two-sample proportions tests.   We code a response 

as a “Reinforcement Choice” if it is consistent with the reinforcement heuristic , and we code as a 

“Bayesian Choice” if the choice is consistent with Bayes rule.  Of course, for the Easy trials where the 

stage 1 draw is from the RIGHT column, a choice is either both Bayesian Choice=1 and Reinforcement 
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Choice=1 or both these dummy variables are zero.  Across all trials, we find the proportion of Bayesian 

choices in the glucose and no-glucose conditions to be 53% and 55%, respectively.  The proportion of 

Reinforcement choices are 47% and 44%, respectively.  Only the hard trials (i.e., stage 1 LEFT trials) are 

interesting for this particular analysis, and we test the null hypothesis that the proportion of Bayesian 

choices equals the proportion of Reinforcement choices in the hard trials.  We performed this test 

separately for the glucose and no-glucose data, and we reject the null hypothesis in favor of the 

alternative that Bayesian choices are more likely than Reinforcement choices (p<.01 in both cases).   

A further breakdown of these results by gender finds the proportion of choices consistent with 

Bayes rule on Hard trials is significantly higher than the proportion of Reinforcement choices in the 

female/glucose (p<.01), female/no-glucose (p<.10), and male/glucose (p<.01) conditions.  Rejection of 

this null hypothesis is stronger for female subjects in the glucose condition, and the result for males is 

only statistically significant in the glucose condition.  Thus, the initial evidence indicates that glucose 

may differentially impact male and female subjects such that more Bayesian choice only occurs with 

males administered glucose.  On the other hand, a drawback of this approach is the pooling of the data 

for each subject across trials, which are likely not independent observations. 

An alternative nonparametric approach is to generate a metric to describe each subject’s overall 

consistency with Bayesian choices over the course of all trials.  We generate two Bayes-adherence 

scores for each subject by summing all observations for which the subject made a Bayesian accurate 

choice in the Easy and Hard trails (each score ranges from 0 to 20 as a result).  This generates 113 

independent observations of both Easy choice Bayes-adherence and Hard choice Bayes-adherence.  

Results of these tests indicate an insignificant impact of glucose on Bayes-adherence scores males, 

females, Hard choices, and Easy choices (Mann-Whitney two sample tests; p>.10 in all instances).  

However, we note that the Bayes-adherence scores approach wastes information on subject choice over 

the progression of trials.  We will revisit this result in the multivariate analysis below. 
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Reaction times are analyzed using Mann-Whitney means tests.  Again, the data are pooled 

across trials for a given subject, so the nonparametric results should be taken with caution.  Results of 

these nonparametric tests indicate that reaction times are significantly higher in the glucose condition 

(p<.01), and the results hold for comparisons split by gender and task difficult (p<.01 both easy and hard 

task comparisons of the glucose effect on reaction times for females, and p<.10 for both the easy and 

hard task comparisons for male subjects).  If one averages reaction times across all trials for a given 

subject in order to avoid the issue of non-independent observations across trials, the Mann-Whitney 

tests only indicate a significant decrease in average reaction time in the glucose condition for female 

subject in the Easy trials (n=57, p=.06:  all others p>.10).  We take these results as an initial indication of 

glucose effects on reaction times and the possibility that they vary across trials, but we more 

appropriately analyze the panel nature of the data set next using multi-variate analysis. 

 

Multi-variate Panel Data Analysis 

Our data represent a panel of 4520 observations (113 subjects x 40 trials), roughly half of which 

(56 subjects) are in the glucose condition.  A small number of observations were lost due to subjects 

failing to respond prior to the end of the 6-second trial response window, resulting in a final sample of 

4507 trial-level choices.   We first examine the reaction time data using a random effects GLS estimation 

of the following form (for each subject and trial): 

(1) Reaction Time = D���E1Trial# + E2Hard Trial + E3Female + E4Glucose + error 

The results are shown in Table 1, model 1.  The significant negative coefficient on Trial indicates that 

reaction times decrease for each subsequent trial, ceteris paribus, which is evidence of learning across 

trials.  Reaction times are estimated to be significantly longer for Hard Choice Trials.  This is consistent 

with the hypothesis that harder choices will engage system 2 deliberate thought.  However, there is no 
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significant gender or glucose effect estimated in model 1.  Because learning is apparent in the reaction 

time data across trials, we estimate model 2 to include an interaction effect between glucose and the 

trial number (1-40).  In other words, in model 2 we test whether glucose facilitates the learning process, 

which is not tested in the model 1 specification.  The results of model 2 reveal a significant interaction 

effect between Glucose and Trial #.  Specifically, glucose administered subjects experience a significantly 

steeper declining reaction time trend across trials than the no-glucose subjects.   

This is shown visually in Fig. 4, which shows the predicted reaction times over the course of all 

40 trials for a baseline male subject in the easy trial (i.e., use Table 1 model 2 estimates with Hard Choice 

Trial and Female set equal to one).7  Thus, our results are consistent with Hypothesis 2, that glucose will 

increase reaction times consistent with increased deliberate thought, but we estimate an additional 

effect of glucose on learning.  While our interpretation of these faster response times is that glucose 

facilitates learning or improves efficiency of cognitive processing, an alternative interpretation is that 

faster response times over time in the glucose condition imply a reduction in system 2 thinking.  We will 

see in our analysis that our data are not consistent with this alternative interpretation.  Rather, our data 

are consistent with the hypothesis that improved reaction times represent a type of learning.  We also 

note that the impact of glucose on reaction times is robust across gender. 

 This learning-corollary to our reaction time result—reaction time improvements across trials are 

accelerated with glucose administration—indicates that our analysis of Bayesian errors should also 

differentially consider choices made in earlier versus later rounds.  Such consideration was not taken 

into account in the previous nonparametric analysis.  For the following analysis of Bayesian errors, we 

estimate random effects probit models suitable for the dichotomous dependent variable (Bayesian 

error=1) and that take into account the correlation of error terms across trials for a given subject.  We 

                                                           
7 Note, there is no predicted gender effect on reaction times, while the robust effect that Hard Trials increase 
reaction times is predicted to be similar for glucose and no-glucose subjects.  We estimate a separate model to 
additionally include all possible two-way interactions between Hard Trial, Female, Glucose, and Trials, and find 
that the only significant interaction is between Glucose and Trial (results available on request). 
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include interaction terms for glucose*gender, as well as glucose*trial#.  The latter is due to our previous 

reaction time result that indicates the glucose effects may vary across trials.  The baseline model for 

each trial is of the following form:  

(2)          Bayes Error = D���E1Trial # + E2Hard Trial + E3Female + E4Glucose +E5(Glucose*Female) + 

b6(Glucose*Trial #) + error 

We first turn to the results in Table 2, which includes the model in (2) along with the same model 

estimated for the subset of Easy choice trials.  The estimates for the full set of trials indicate that a 

Bayesian error is significantly more likely on Hard trials and significantly less likely for Female subjects.  

Neither Glucose nor the glucose interactions are significant, which initially seems inconsistent with 

Hypothesis 2.  However, when estimating the model on the subset of Easy trials only (the right hand 

column of Table 2) we find that the likelihood of a Bayesian error decreases across trials.  While this 

effect is only found on the Easy trials, it is consistent with the hypothesis that deliberate-thought 

learning promotes reduced Bayesian errors (not an abandoning of deliberate thought for a quicker 

system 1 response) .8 

 It is worth reminding the reader that Easy trials are ones where the Reinforcement heuristic is 

aligned with Bayesian choice.  So, our Table 2 results (right-hand column) imply that there is less than 

perfect Bayesian accuracy, even when the design makes it almost impossible not to be.9  In light of this, 

one final approach to our analysis involves separating the data based on an individual-specific variable 

that proxies for that individual’s comprehension of the task itself.  That is, subjects who comprehend the 

task stimulus would realize that an Easy trial (i.e., a stage 1 RIGHT draw) makes the Bayesian choice 

simple given that all uncertainty regarding the row choice drawn by nature is removed.   

                                                           
8 As an alternative to estimating the model for the subset of Easy trials, one can also add Hard Choice Trial 
interactions to all variables in the initial model.  To do so would create some three-way interaction variables.  For 
simplicity of interpretation, we instead simply estimate the model for the Easy trial subset of data. 
9 Subjects did make decisions in 4 practice trials prior to the start of the real trials, though we did not formally 
assess comprehension of the task. 
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To create a proxy for the difference in apparent comprehension of the task across subjects, we count 

the total number of trials across the 20 Easy trial choices in which the subject made a 

Bayesian/Reinforcement choice.  We call this individual-specific variable Task IQ, which ranges from 0 to 

20.  The mean Task IQ of our subjects is 13.8 (out of 20), and so Bayesian errors even on Easy trials are 

not uncommon.10  Because these errors exist on Easy trials, our subject choices can really be divided 

into three types: Naïve (Bayesian error even on Easy trials), Reinforcement (follows this heuristic on 

Hard trials), or Bayesian (follows Bayes rule on Hard trials).  Note that each choice “state”—Naïve, 

Reinforcement, Bayes—becomes more likely the more deliberate thought is engaged by the subject.   

 

Markov Steady State Probabilities 

 As a final analysis, we model the probability that a subject changes categories across trials as a 

discrete regular Markov chain.  That is, we use the transition probabilities in going from one state to 

another across the three possible choice states (Naïve, Reinforcement, Bayes) to calculate the steady 

state probability distribution across states.  Restricting the analysis to subjects with higher than average 

Task IQ scores implies the steady state probabilities will be concentrated in the Reinforcement and 

Bayes categories.  Of particular interest is to examine whether the steady state probabilities from the 

glucose-administered subjects are higher for the Bayes category of choice.11  

 Let pij represent the transition probability of going from state i to state j.  If we use subscript 

notation N, R, B, to describe the respective states Naïve, Reinforcement, and Bayes, then the transition 

matrix is: 

ࡼ = ൥
ேܲே ேܲோ ேܲ஻
ோܲே ோܲோ ோܲ஻
஻ܲே ஻ܲோ ஻ܲ஻

൩ 

                                                           
10 A binomial test indicates a 4% probability that a subject merely making random choices would get 14 of 20 trials 
Bayesian correct, so the average subject in our experiments does better than this 50% random choice accuracy 
benchmark. 
11 The authors thank Olivier L’Haridon for suggesting the Markov chain analysis. 
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and the steady state vector of long run probabilities, ࢙ =     :is the solution to , [࡮,ࡾ,ࡺ]

࢙ (3) = [࡮,ࡾ,ࡺ]     or    ࢙ࡼ ൥
ேܲே ேܲோ ேܲ஻
ோܲே ோܲோ ோܲ஻
஻ܲே ஻ܲோ ஻ܲ஻

൩ =   [࡮,ࡾ,ࡺ]

Pooling subjects together, for each of the 40 trials we estimate the transition probabilities as the 

proportion of the choices that transitioned to each state in the subsequent trial.  For example, we 

estimate PRB by counting the total number of trials where the subject left state R in the prior trial.  

Among those, the number of instances where state R was left for state B is PRB , and so on for the other 

transition probabilities.  The steady state probabilities of each state are then found by solving (3), while 

using the constraint that the sum of the probabilities of being in any given state must equal 1. 

 The steady state probabilities for the non-glucose and glucose subjects are as follows: 

௚௟௨௖௢௦௘ୀ଴[࡮,ࡾ,ࡺ] = [. 245, .357, .398] 

௚௟௨௖௢௦௘ୀଵ[࡮,ࡾ,ࡺ] = [. 236, .334, .433] 

Thus, the long-run steady state indicates that subjects will choose naively about 24% of the time.  They 

will choose according to Reinforcement more often than Naïve, and the highest probability is to choose 

Bayesian.  Glucose administration is found to decrease the probability of choosing according to the 

Reinforcement heuristic and increase the probability of choosing Bayesian.   

If one focuses on only those subjects in the upper half of the Task IQ range (i.e., those most 

likely fully understanding the task), then we also estimate these steady state probabilities separately for 

the above-median and below-median Task IQ individuals (median Task IQ=12).  For those below the 

median Task IQ score, we have: 

௚௟௨௖௢௦௘ୀ଴[࡮,ࡾ,ࡺ] = [. 342, .331, .334] 

௚௟௨௖௢௦௘ୀଵ[࡮,ࡾ,ࡺ] = [. 349, .320, .334] 
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Not surprisingly, the low Task IQ subjects have an estimated probability distribution across states that is 

roughly uniform.  For those subjects with Task IQ above the median (those comprehending the task 

better), we have: 

௚௟௨௖௢௦௘ୀ଴[࡮,ࡾ,ࡺ] = [. 113, .388, .504] 

௚௟௨௖௢௦௘ୀଵ[࡮,ࡾ,ࡺ] = [. 113, .346, .540] 

As we would expect, these subjects have a much lower steady state probability of making a naïve 

choice, and Bayesian choices are somewhat more dominant in the steady state among these subjects.  

Again, the impact of glucose administration is apparent.  Although not large in magnitude, it does 

indicate an increase in the steady state probability of making the type of choice most indicative of 

deliberate thought. 

 

5.  Discussion 

 Our results provide new evidence on the effects of glucose and decision making in a task 

designed to separate Bayesian decision makers from those who follow a more simple reinforcement 

heuristic.  A dual-systems approach led us to hypothesize that glucose, which fuels cognitive function 

and is particularly important in instances of high cognitive load, would increase the proportion of 

Bayesian choices relative to a placebo (non-glucose) drink.  We also hypothesized that reaction times, 

which are considered a barometer of system 2 thinking, would be longer for glucose-administered 

subjects given our prediction that glucose would increase effortful thought on the task. 

 With respect to reaction times, the data are consistent with our hypothesis.  Reaction times are 

significantly longer on more difficult choice trials, ceteris paribus, which is consistent with the 

hypothesis of increased engagement of system 2 thinking on Hard trials.  However, the glucose effect on 

reaction times is two-fold.  Reaction times for glucose-administered subjects are estimated to be 

significantly longer initially, consistent with Hypothesis 2.  We also find a significant glucose impact on 
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learning, such that trend of improved reaction times across trials present in the placebo subjects is 

accelerated in the glucose subjects.  Indeed, by the end of the 40 trial experiment, decision reaction 

times are estimated to be faster for glucose-administered subjects.   

In light of this result, we also evaluate Bayesian error probabilities across trials and find that the 

likelihood of a Bayesian error decreases across trials for glucose-administered subjects, though the 

effect is only significant for Easy trials (i.e., a glucose-driven learning effect that improves Bayesian 

accuracy).  Our data also allow us to categorize subject choices as falling into one of three states, and a 

Markov chain analysis finds the steady state probabilities of making a Bayesian choice increase at the 

expense of Reinforcement choices in the glucose condition.  Though the evidence of glucose effects on 

Bayesian accuracy are estimated to be weaker than the glucose effects on reaction times, it is indicative 

of a beneficial glucose effect on overall quality of choice in the Bayesian task.  

 We have highlighted that the effect of glucose on decision making appears to focus on two 

dimensions of choice:  reaction times, as well as Bayesian accuracy.  And a key contribution of this paper 

is to show that glucose administration appears to beneficially impact a simple type of learning in this 

task.  To be fair, the subject of “learning” is vast and many different models may be applied to such a 

complex process.  Our interpretation of learning is basic: learning involves improvements in Bayesian 

accuracy over time, and it also involves decreased reaction times on repeated trials of the same task 

(with similar or better accuracy results).  A natural extension of this research is to examine the 

boundaries of this result as a function of one’s glucose metabolism profile.  Our task was completed by 

the subjects in approximately 30 minutes (i.e., 45 minutes after glucose consumption given that subjects 

wait 15 minutes after consumption before beginning the task).  It is also the case that individual 

response to a given dosage of glucose may be different, and so future research might wish to directly 

measure baseline blood glucose levels of each subject prior to the start of the task. 
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 The implications of this research are potentially significant.  The behavioral results of glucose 

administration also suggest that individuals with blood glucose regulatory disorders (hypo- or hyper-

glycemic conditions) may manifest systematic differences in behavioral outcomes at different point in 

the blood glucose level cycle.  Our subjects were normal young adults without such conditions, such that 

glucose administration would not produce blood glucose levels outside of the normal range.  It is left for 

future research to assess whether individuals, such as diabetics, would manifest the same behavioral 

responses to glucose.  It is also the case that some individuals consume an ill-advised amount of sugar as 

a baseline, and American society in particular is well-known for the massive increase in consumption of 

daily sugar.  For such individuals, it remains to be seen whether glucose deprivation would produce 

opposite results of our glucose administration treatment, or whether any of our results might differ for 

sensitive age groups like children or the elderly.       
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FIGURE 1: Choice Task Stimulus 
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FIGURE 2:  Treatment effects on Bayesian error rates, by gender. 
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FIGURE 3:  Treatment effects on subject reaction times, by gender. 
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FIGURE 4:  Reaction time by trial (Glucose vs. No Glucose) 
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TABLE 1:  Predictors of Reaction Times 

Reaction Times (in milliseconds) 
random effects GLS estimation (113 groups, n=4057 observations) 

 
 

Variable 
Model 1 

Coeff (st. errors) 
Model 2 

Coeff (st. errors) 

constant 998.00 (47.20)*** 949.96 (48.49)*** 

Trial# -11.39 (0.76)*** -8.93 (1.08)*** 

Hard Choice Trial (=1) 46.67 (17.56)*** 47.25 (17.56)*** 

Female (=1) -7.67 (50.29) -9.45 (48.99) 

Glucose (=1) 54.13 (50.29) 152.31 (57.66)*** 

Glucose*Trial --- -4.88 (1.51)*** 

Chi-Squared test of model 232.57*** 243.24*** 
   

*,**,*** indicate statistical significance at the .10, .05, and .01 levels, respectively, for the 2-tailed test 
 
                                             
  



24 
 

TABLE 2:  The Probability of a Bayesian Error 

Dependent Variable: Bayes Error (=1) 
random effects probit estimation 

 
 

Variable 
Coeff (st. errors) 

(all trials) 
Coeff (st. errors) 
(only Easy trials) 

constant -34 (.11)*** -.23 (.19) 

Trial# -.002 (.002) -.003 (.003) 

Hard Choice Trial (=1) .45 (.04)*** --- 

Female (=1) -.34 (.13)*** -.87 (.25)*** 

Glucose (=1) -.07 (.15) -.003 (.26) 

Glucose*Trial -.005 (.003) -.011 (.005)** 

Glucose*Female .20 (.19) .43 (.35) 

Log Likelihood -2790.0574 -1194.7954 

Chi-Squared test of model 139.48*** 29.44*** 
   

*,**,*** indicate statistical significance at the .10, .05, and .01 levels, respectively, for the 2-tailed test 
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