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ABSTRACT 
 

Exercise is known to improve health along many dimensions.  Decision making is an 
understudied dimension of one’s (behavioral) health where exercise effects are not well-known.  
Because certain physiological changes are known to impact decision making, exercise may 
modulate decisions via its effect on physiological or psychological variables.  We examine how 
moderate aerobic exercise affects outcomes and the decision process in an incentivized Bayesian 
choice task.  Twenty-six adult subjects (30-60 years old, 14 female) are administered the 
decision task under both exercise and no-exercise conditions.  Our results indicate that the 
estimated decision model changes post-exercise such that exercise increases the decision weight 
subjects place on new evidence in making their choices.  This same effect is found among those 
with higher fitness levels, which is a long-term result of regular exercise, but both of these 
effects appear gender-specific.  Accuracy of choice, however, is not significantly affected by the 
exercise treatment.  The fact that exercise leads to a shift in relative decision weights on evidence 
compared to base rate information is important in terms of identifying when exercise and/or 
fitness may lead to improved versus harmed decision making in more complex environments. 
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INTRODUCTION 

 Exercise has been shown to improve outcomes along several important short-run and 

long-run health dimensions, such as weight control, mood improvement, increased energy, and 

improved sleep (Centers for Disease Control and Prevention).  Researchers have yet to explore 

the impact that exercise might have on behavioral outcomes.  Experimental manipulations of 

certain hormones that impact choice can be found in the literature, but the separation of 

individual physiological effects on behavior is less practically relevant to case of exercise.  This 

is because exercise impacts physiology in several ways simultaneously—for example, acute 

exercise stimulates serotonin production (Greenwood et al., 2011), attenuates cortisol levels 

(Webb et al, 2012), and increases blood flow (Collier at al, 2010).  Thus, while isolated 

manipulations are desirable from an internal experimental control standpoint, an externally valid 

examination of the net effect of exercise on behavior is more practically relevant to individuals 

who are constantly encouraged to make exercise a routine part of their lifestyle. 

 Of course, the purpose of exercise recommendations from a public health perspective is 

to improve cardiovascular health.  This implies that exercise has both an immediate impact on 

one’s physiology as well as the ability to increase one’s aerobic capacity in general.  Any 

investigation of the impact of exercise on behavioral outcomes should therefore take into account 

both short-run impacts as well as long-run impacts that result from regular exercise. 

 In this paper, we present the result from a unique experimental study that looks at choices 

in a Bayesian environment.  The task is administered to subjects in a baseline no-exercise session 

(Day 1), immediately after 30 minutes of moderate aerobic treadmill exercise (Day 2), and once 

again in a no-exercise return-to-baseline session (Day 3) to examine repeat administration 

effects.  The task is a computerized Bayesian choice task based on Grether (1980).  Faced with 
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base rate information and new evidence regarding whether one is in one of two possible “states”, 

subjects make an incentivized choice as to which state they believe to be in.  This simple task is a 

building block for many real world decision environments where integration of multiple sources 

of information is important.  The domain of risky health choices (e.g., smoking, alcohol 

consumption, sexual behavior) is relevant when discussing Bayesian choice because updates to 

risk assessment occur whenever base rate risk is coupled with informational shocks, such as new 

research discoveries or otherwise acquired new information (see, for example, Viscusi and 

O’Connor, 1984; Chern et al 1995; Hsieh et al, 1996; Lundborg and Andersson, 2008).  Bayesian 

decision making implies that individuals weigh both base rates as well as new information in 

forming subjective probability estimates of state-likelihood. In fact, El-Gamal and Grether 

(1995) find that Bayes rule is the most likely decision rule used to update probabilistic outcomes.  

To a lesser degree, they find that subjects may use heuristics that amount to overweighting either 

the base rate or the evidence information. 

 Our results indicate that the accuracy of one’s choice is not significantly affected by the 

moderate exercise treatment.  Nevertheless, we find significant differences in the estimated 

choice model following moderate exercise.  Specifically, subjects tend to increase the decision 

weight placed in new information post-exercise.  Similar decision weight effects are found 

among those with higher base fitness levels.  In the context of difficult Bayesian task choices, the 

estimated decision model is more Bayesian post-exercise than in the absence of pre-decision 

exercise. While choice model differences that result in no final difference in outcomes may 

appear to be of academic interest alone, the estimated choice model differences may contain 

useful insights when considering other choice environments.  For example, our findings may 

indicate that exercise places one at a competitive advantage in complex Bayesian decision 
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environments where outcomes possibilities are more varied than our simple dichotomous 

outcome environment. 

 

BACKGROUND 

Physiological Effects of Exercise 

An acute exercise bout as well as exercise training has been shown to influence an 

individual’s response to anxiety or stress by producing neural plasticity within the neuro-

endocrinological and immunological environment (Greenwood et al., 2011).  During the epoch 

of time following exercise, physiological response includes blood pressure and cardiac output 

reductions (Collier et al., 2008; Heffernan et al., 2006). The post-exercise reduction in 

sympathetic outflow contributes to the attenuation of stressor-invoked stress hormones such as 

cortisol.  There is also an increased blood flow post-exercise (Collier et al, 2010), which implies 

increased oxygen delivery.   

It has been suggested that exercise is an antidepressant that enhances aminergic synaptic 

transmission in the central nervous system, which augments the release of serotonin.  Exercise 

has been shown to have antidepressant effects in clinically depressed subjects and an acute bout 

of aerobic exercise has also led to mood elevation in non-clinical subjects (Folkins et al., 1972).  

Long-term physiological effects of exercise are similar in many important ways to the post-

exercise time epoch.  Trained men exhibit lower base cortisol levels (Rimmele et al., 2007) as 

well as increased serotonin levels (Soares et al, 1994). There is a paucity of literature in this area 

since few studies have been completed in human subjects due to the physiological and ethical 

constraints of direct assay measures. 
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Behavioral Effects 

 Behavioral economists have explored the isolated effects of certain physiological 

variables on important dimensions of decision making.  For example, oxytocin administration 

has been found to increase trust (Kosfeld et al, 2005), testosterone increases honesty (Wibral et 

al, 2011) and increases ultimatum offers (Eisenegger, et al, 2010), while serotonin depletion was 

found to increase rejection rates in ultimatum games (Crockett et al, 2008).  Cortisol is a 

hormone that prepares one against threat, such that high cortisol levels can make one excessively 

risk-averse (The Economist, Sept. 24, 2011) or can increase risk seeking behavior (Putman, et al, 

2010) in other contexts.  In general, elevated cortisol levels can produce an inaccurate 

assessment of risk (Coates and Herbert, 2008).  Bayesian choice is not about pure risk but rather 

uncertainty, where individuals must update the subjective probability of an event occurring in a 

decision environment.  Existing research on hormones and bargaining, or hormones and pure risk 

decisions (i.e., where probabilities are known) is therefore not directly applicable to the Bayesian 

task, but we can nevertheless glean insights from existing behavioral research.1   

First, rejection of positive offers in ultimatum games are always monetarily inefficient 

and reflect a preference for emotion over expected payoffs.  The Crockett et al (2008) findings 

suggest that increased serotonin, as one might experience post-exercise, is associated with lower 

rejection rates.2  Thus, serotonin may cause subjects to favor deliberate thought processes over 

emotional reaction.  Assuming deliberate thought is important in Bayesian choice, we might 

predict that post-exercise subjects are more likely to weight information in a Bayesian manner.  

                                                 
1 Exercise is known to increase other hormones in the brain that are less relevant to our current decision task.  
Dopamine release following exercise, for example, is beneficial for reward-driven learning, but our task does not 
provide outcome feedback between trials.   

2 They accomplish the serotonin manipulation by depleting tryptophan, which the body converts into serotonin. 
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Elevated cortisol may lead to inaccurate risk assessment (Coates and Herbert, 2008).  Decisions 

resulting from the input of all possible sources of information are less likely to produce 

inaccurate Bayesian estimates.  Thus, excess cortisol would seem to be associated with non-

Bayesian approaches to decision making.  Finally, explicit oxygen administration has been found 

to improve lower level cognitive function (Scholey et al., 1999).  While the decision task we 

administer involves higher-level thinking, we hypothesize that the increase in oxygen resulting 

from increased post-exercise blood-flow would improve one’s ability to incorporate multiple 

information sources into a decision. 

 

Hypotheses 
 
 By merging what we know of the physiological effects of exercise and the behavioral 

effects of relevant physiological variables, we formulate our hypotheses regarding behavior in 

the Bayes task environment.  Of course, our study involves the confounded effects of any and all 

physiological inputs to decision making that result from exercise and so a more controlled 

experimental approach is necessary to separately evaluate each isolated physiological effect on 

Bayesian choice.  Nevertheless, our exercise manipulation represents a very ecologically valid 

attempt to understand how recommended exercise bouts may influence decision making.  

Because exercise has the immediate post-exercise effect of raising serotonin (thus increasing 

deliberate thought), lowering cortisol levels (thus increasing accuracy of risk assessment), and 

increasing blood flow and hence oxygen delivery to the brain (improving overall cognitive 

performance), we put forth: 
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Hypothesis 1a:  Post-exercise, decision choice will be more Bayesian (i.e., equally weight 

base rate information and new information sources in making choice) 

Hypothesis 2a:  Post-exercise, Bayesian accuracy will increase (i.e., subject choice will 

more often be aligned with the Bayesian more likely outcome) 

  

In addition to immediate short-run effects experienced during the time epoch post-

exercise, exercise also has the longer-run benefits of improved fitness levels.  As a result, we 

also make hypotheses with respect to fitness levels, which are measured cross-sectionally in our 

sample as one’s cardio-capacity, or VO2max.  More fit individuals enjoy larger cardiovascular 

capacity, lower base levels of stressor hormones (ceteris paribus), and increased levels of 

beneficial hormones such as serotonin.  Thus, our hypotheses with respect to fitness levels mirror 

those with respect to the time epoch immediately post-exercise. 

 

Hypothesis 1b:  For higher fitness-level individuals, decision choice will be more 

Bayesian (i.e., equally weight base rate information and new information 

sources in making choice) 

Hypothesis 2b:  For higher fitness-level individuals, Bayesian accuracy will increase (i.e., 

subject choice will more often be aligned with the Bayesian more likely 

outcome) 

 

EXPERIMENTAL METHODS 

 In total, we recruited twenty-six adult subjects (30-60 years old, 14 female) to take part in 

the experiment.  The experiment consisted of three sessions, such that each subject completed the 
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incentivized decision task in no-exercise, exercise, and no-exercise (return to baseline) 

conditions.  While an alternative design choice would be to use separate subjects as experimental 

and control groups, we choose a more statistically powerful within-subjects (or repeated-

measures) design that utilizes each subject as his/her own baseline control.  Of course, the key 

exercise treatment day always occurs after the day 1 task administration, which is why we 

include a no-exercise day 3 administration of the task.  Day 3 behavior compared to day 1 will 

allow us to measure any simple repeat-administration or learning effect of the task independent 

of exercise.  All 3 sessions for a subject took place within the same work week (e.g., Monday, 

Wednesday, Thursday) at a standardized time of 6:30 p.m. 

 

EXERCISE PROTOCOL 

Maximal Exercise Testing  Aerobic capacity was assessed using a customized treadmill 

protocol.  Briefly, exercise commenced at 2.5 mph for two minutes and we increased the 

treadmill speed by 1 mph every two minutes until a comfortable pace was established.  If 

additional intensity was required, the grade of the treadmill was increased (2.5%) at two-minute 

intervals until volitional fatigue is reached.  Heart rate was recorded once per minute during the 

protocol, and a minimum of four minutes into recovery, using a Polar Heart Rate Monitor (Polar 

Electro Inc., Woodbury, NY).  Exercise capacity was assessed by exercise time and total 

workload expressed in MET.  Heart rate maximum (HRmax) was recorded as maximum HR at 

corresponding VO2max. Expired gases were analyzed using a ParvoMedics metabolic system.  
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Acute Bout of Exercise On an exercise day, subjects were asked to walk on a treadmill at 65% 

of their predetermined HRmax for 30 minutes.  This level represents the typical recommendation 

for moderate aerobic activity, which is a threshold level to experience cardio benefits. 

Bayesian Task 

 The task is based on the dichotomous-choice experiment in Grether (1980) and adapted 

in Dickinson and Drummond (2008).  Subjects are given paper instructions on the computerized 

task that will be administered.  In the Bayes Rule (BR) task, subjects are shown two boxes.  The 

Left Box contains 2 black and 1 white balls, and the Right Box contains 2 white and 1 black 

balls.  Subjects are given base rate odds (i.e., chances out of 6) that the Left Box will be used for 

a given trial, P(L).  The computer selects the box for each trial based on those odds, but the 

subject is not informed of the box selected.  Rather, subjects are shown the sample results, X, of 

drawing five balls with replacement from the chosen box.  At that point, subjects are asked to 

indicate which box they believe was used for that trial, knowing the contents of each box, the 

base rate (prior) odds that either box might be used, and the sample evidence.  Bayes rule would 

calculate the probability of using the Left Box given the evidence as a function of both the base 

rate and evidence information.  That is, Bayes rule would calculate the posterior probability of 

the Left Box as: 

ܲሺܮ|ܺሻ ൌ
ܲሺܺ|ܮሻܲሺܮሻ

ܲሺܺ|ܮሻܲሺܮሻ ൅ ܲሺܺ|ܴሻܲሺܴሻ
 

 

The computerized stimulus presents this information succinctly for the subjects, as shown 

in Fig. 1, and the subject has 10 seconds to indicate her choice for that decision round.  After 10 

seconds, a new stimulus appears, and this repeats for 48 decision rounds.  At the end of the 
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experiment, one round is randomly selected and the subject is paid $10 if correctly indicating the 

chosen box for that randomly chosen round.  Otherwise, the subject earns zero from this task.  

Other tasks were administered before and after the BR task, but no payoff outcomes were 

revealed for any of those other tasks prior to the BR task.  The BR task itself took about 10 

minutes after instructions were read. 

 

 Each subject generates 48 rounds of BR task data.  Across trials, the base rates and the 

sample evidence vary such that there is a range of objective Bayesian probabilities that the LEFT 

BOX was used.  However, 1/3 of the stimuli included base rate odds of 0/6 or 6/6 as a rationality 

check.  Of course, these base rates remove all uncertainty for the subject regarding the box used 

regardless of the sample evidence, and so we do not include these trials in our analysis.  Thus, 

we have a panel of data on 26 subjects with 32 observations for each of 3 days (i.e., 96 

observations per subject). 

 

RESULTS 

 We take two approaches to evaluate our data.  First, an examination of the data pooled 

across all trials, which is followed by analysis at the individual trial level, which more fully 

Left Box Right Box 

2/6 4/6 

FIGURE 1: Sample Task Stimulus  
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exploits the richness of the data set.  Across the three administrations of the decision task, both 

Day 1 and Day 3 are “no-exercise” conditions.  When Day 3 results do not indicate a return to 

Day 1 baseline results, we treat the Day 1 to Day 3 difference as indicative of a repeat-

administration (or “learning”) effect.  In testing for a significant exercise treatment (Day 2) effect 

on behavior, the simplest approach is to then assume a linear repeat-administration effect, such 

that a significant exercise treatment effect is assumed if behavior is significantly different from 

the “average” behavior of Days 1 and 3.  A more conservative approach would assume a 

treatment condition effect must produce behavioral estimates outside of the Day 1-to-Day 3 

range.  Such treatment effects would be inconsistent with any hypothesized monotonic repeat-

administration effect, not just linear effects.  In most cases, we approach the analysis 

conservatively and do not average the Day 1-Day 3 effects. 

Pooled Data Analysis  

 For each of the three experiment Days, we calculate for each subject the proportion of 

choices that are consistent with the base rate information (Odds Consistent) and consistent with 

the sample evidence (Evidence Consistent).  For example, if a subject chooses the Left Box for 

the stimulus in Fig. 1, then the choice is consistent with the evidence (i.e., more black balls in 

sample draw is consistent with using the box with 2 black balls in it).  However, this choice 

would be inconsistent with the base rate odds, which favor the Right Box.  For some stimuli, a 

choice might be consistent with both odds and evidence, might be inconsistent with both, or 

consistent with one but not the other.  We score data for each decision round in this way, 

discarding the base rate 0/6 and 6/6 rounds, as well as discarding the base rate 3/6 rounds for 
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calculating Odds Consistent (since any choice is consistent with 50-50 base rate odds).  Table 1 

shows the results of this scoring of the data. 

 From Table 1 we see data the average choice consistency of the subjects with respect to 

the two different information sources.  The differences across days (or comparing Day 2 to an 

average of Days 1&3) are not statistically significant (nonparametric Wilcoxon signed ranks test 

for matched pairs, p>.10 for all comparisons).3  However, a simple test of means masks the fact 

that the distributions of choice consistency vary significantly across days.  Figures 2 and 3 show 

the kernel density estimates in each case, and a statistical test reveals significant differences in 

the distributions of  odds and evidence-consistent choices across any two experimental days 

(nonparametric 2-sample Smirnov full distribution test: p < .05 in each case).4  These differences 

will be further explored using the trial level data below, but Fig. 2 and 3 reveal a tendency for 

post-exercise choices to be more consistent with sample evidence. 

Trial-Level Analysis 

A more detailed analysis will exploit the panel nature of our data, as well as include 

important individual-level control variables like gender and fitness level.  To analyze the data in 

a Bayesian framework at the individual trial level, Grether (1980) considers the following model 

that we apply to this task:  Assume ௜ܻ௧
∗ is subject i’s posterior log odds favoring Box L (left Box) 

over Box R (right Box).  Then, we have: 

                                                 
3 When failing to find a significant statistical difference for the least conservative test of Day 2 behavior to Day-
Day3 average behavior, we do not bother following up with the more conservative test for treatment effects. 

4 Such tests are based on actual proportions of odds- and evidence-consistent choices, not the kernel density 
estimates.   
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ሺ1ሻ												݁௒೔೟
∗
ൌ ቀ

௉ಽ
ଵି௉ಽ

ቁ
௜௧
ൌ ݁ఈሾܴܮሺܮሻሿ௧

ఉభ ቂ
௉෠ಽ

ଵି௉෠ಽ
ቃ
௧

ఉమ
݁௨೔೟,  

Where ቀ
௉ಽ

ଵି௉ಽ
ቁ is one’s posterior (Bayesian) odds of L as a function of the likelihood ratio for L, 

LR(L) = 
௅ሺ௑|௅ሻ

௅ሺ௑|ோሻ
 (the “evidence” variable), and the prior odds favoring L, ෠ܲ௅	(the base rate 

variable).  Here, uit is a random variable (mean zero, finite variance).  Bayes rule implies that 

=0, 1=2=1 as noted in Grether (1980).  We observe Yit=1 for subject i in trial t only if ௜ܻ௧
∗ ൒ 0.  

Taking logarithms of both sides of (1), the following equation is estimated as a probit model 

(suppressing t subscripts).5 	

(2)  ௜ܻ
∗ ൌ ߙ ൅ ሻܮሺܴܮଵ݈݊ߚ ൅ ଶ݈݊ߚ ቀ

௉෠ಽ
ଵି௉෠ಽ

ቁ ൅   ௜ݑ

 We estimate a random effects probit model to correct for the possibility that error terms 

across trials for a given subject are correlated, and we also modify the model to include 

regressors for each experiment day, individual-specific controls for gender and fitness-level 

(using the subject’s VO2max measurement taken on the baseline day after initial administration 

of the decision tasks6), and interaction variables to measure whether exercise, repeat 

administration, gender, and/or fitness level affect the relative decision weight placed on evidence 

and base rates.  Our analysis can therefore help identify both short-run impact of exercise on the 

decision process, as measured by Day 2 interactions, as well as the long-run impact of exercise, 

as measured by the fitness level interactions.  Of course, only the short-run impact is measured as 

a repeated-measures effect in our design, while the long-run fitness level effect is measured 

between-subjects. 

                                                 
5 Grether (1980) estimates logit results for this model, but does not account for subject-specific random effects. 
6 The cutoffs for High VO2max are 30 ml/kg/min for women and 45 ml/kg/min for men.  These cutoffs split both 
male and female subsamples into half that are classified as high VO2max and half that are low VO2max. 
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In what follows we are able to identify difficult versus easy Bayesian choice by scoring 

as “Hard Choice” those stimuli with Bayesian probability of Box A in the (.25, .75) interval.  

More difficult choices in this Bayesian choice framework promote increased activation in task 

relevant regions of the brain’s prefrontal cortex (Drummond et al, 2012) and so decision making 

for Hard Choices may respond differentially to exercise.7 

 Results from this random effect probit estimation are shown for the subset of data where 

base rates are not 0/6 or 6/6.  Any no-response trials were also removed from the data set.  This 

results in a final sample of 2490 trial-level observations for analysis (1380 easy and 1110 hard 

choices).  Model estimates on the far left of Table 2 are for the pooled Hard and Easy choices 

sample, while the columns on the right show the split sample estimates.  The coefficient 

estimates on base rate information, ቀ
௉ಽ

ଵି௉ಽ
ቁ, and on the sample evidence information, LnLR(L), 

indicate the relative decision weights placed on base rates and new information in making a 

choice by a Male subject with low VO2max in Day 1 of the experiment.  The chi-squared test on 

the linear restriction that the coefficients ቀ
௉ಽ

ଵି௉ಽ
ቁ and LnLR(L) are equal cannot be rejected 

(p>0.10) for the pooled Hard & Easy model or the Hard choice model.  We reject the null 

hypothesis that the weight on these information sources are equal in the Easy choice sample 

(p=.03). The estimated tendency is to overweight the new information represented by the sample 

evidence.  As one would expected, the controls for exercise, repeat administration, gender, and 

fitness levels are not estimated to have any significant effect on the likelihood of choosing Box A 

                                                 
7 Our results are robust to an alternative definition of Hard Choice as defined by any trial in which the base rates are 
in favor of one box, but the evidence favors the other. 
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(we address below how they may affect whether more or less decision weight is placed on one 

information source or the other.)   

 Regarding the main Exercise treatment in the Hard & Easy sample, the interaction 

between Exercise and the information source weights indicate that exercise introduces a shift in 

relative decision weight away from base rates in favor of new information.  Contrary to 

Hypothesis #1, we actually find that the isolated short-run effect of exercise is to cause subjects 

to become even less Bayesian.  The fact that they are less Bayesian in the direction of 

overweighting the new evidence may indicate a tendency to “overthink” the decision post-

exercise.  In the split sample estimates, we find this result limited to the subsample of Easy 

choices.  That is, exercise is not found to alter the relative decision weights placed on evidence 

and base rates for Hard choices, compared to Day1 choices.  We note that this effect is not 

simply due to repeat administration of the task by looking at the coefficients on the interaction 

variables of the information source with Day3.  Here, Day3 is estimated to shift a subject’s 

relative decision weight away from the evidence.  In fact, when examining the decision weights 

on evidence and base rates on Day 3, we find that low fitness male subjects (i.e., the dummy 

variables reference group) are statistically Bayesian in the sense that there is no significant 

difference in the two decision weights.8   

 Figure 4 uses the Table 2 estimates to highlight the effect of the 30-minute bout of 

exercise on relative decision weights.  We define the vertical axis such that bar values above zero 

indicate a relative decision weight favoring new information over base rates (in the case of Day 2 

                                                 
8 To see this, we test the equality of evidence and base rate weight by testing the linear restriction of the coefficients: 

 lnLR(L) + Day3*lnLR(L) =  lnቀ
௉ಽ

ଵି௉ಽ
ቁ+ Day3* lnቀ

௉ಽ
ଵି௉ಽ

ቁ.  We fail to reject this null hypothesis for the Hard & Easy 

sample (p=.83), as well as for the separate Easy (p=.13) and Hard (p=.19) subsamples. 
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and Day 3, the measure combines the coefficients with the appropriate estimated interaction term 

of the decision weights from Table 2).  The asterisks above a bar indicate a statistically 

significant difference compared to the Bayesian standard of zero on the vertical axis as defined.  

We see clearly from Figure 4 that overweighting the evidence is more common, and statistically 

significant in most cases regarding post-exercise choices in Day 2.  For comparison, the dashed 

line indicates the linear repeat administration trend line between Day1 and Day3 choices.  If we 

were to test whether the Exercise Day results in an increased relative decision weight on new 

evidence that is larger than any increased relative decision weight on evidence on Day 3, we are 

able to reject the null hypothesis for the pooled estimates (p=.02) as well as for Hard (p=.09) and 

Easy (p=.06) subsamples.9 

 We next look at the estimated effects of fitness level and gender on decision weights.  

Regarding fitness level, across all sample options in Table 2, we estimate that a high fitness level 

introduces a relative shift of decision weight toward the new evidence.  Our between-subjects 

(i.e., cross-sectional) estimate of the long-run impact of exercise as measured by fitness levels is 

in the same direction as the estimated short-run impact of exercise on decision weights in the 

Bayesian task.  An interesting gender result from Table 2 is that males (the reference group) are 

estimated to place a relatively higher decision weight on new evidence, while females place a 

relatively higher decision weight on the base rate information.  This result is qualitatively the 

same for both Easy and Hard choices.  This result from our controlled experiments parallels the 

                                                 
9  The null hypothesis in this case is to test the coefficient linear restriction: 

 Exercise* lnLR(L) – Exercise* lnቀ
௉ಽ

ଵି௉ಽ
ቁ= Day3* lnLR(L)  – Day3* lnቀ

௉ಽ
ଵି௉ಽ

ቁ 
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empirical findings of Lundborg and Andersson (2008), who report that smoking information 

sources (i.e., new evidence) increased perceived mortality risk among boys but not girls. 

In short, in addition to our finding that exercise causes one to increase the relative 

decision weight placed on new evidence, we find that being male, or having a higher fitness level 

also have the independent effect of increasing the relative decision weight placed on new 

evidence.10  To illustrate these estimated effects, assume we were to estimate our basic decision 

model in equation (2) for the subsample that includes all the factors estimated to increase  

relative decision weight on new evidence (high fitness, male, post-exercise: n=192), and 

compare the decision weight estimates to those of the opposite subsample (low fitness, female,  

no-exercise (Day 3): n=224).  The estimates are in Table 3 highlight in a more simple way how 

the estimates from our previous estimation (Table 2) leads to instances where some subjects 

clearly overweight one source of information over the other.  Even in the case of Hard choices, 

where we estimate that both categories of subjects place significant decision weight on both 

evidence and base rates, the linear restriction test indicates that there is significant overweighting 

of the evidence for fit males post-exercise (p=.00) but a significant overweighting of base rates 

for low fitness females after repeat administration (p=.00). 

                                                 
10 We show additional estimates of gender-specific response to exercise and fitness level in the Appendix.  
Qualitatively, these results indicate that main result of exercise and fitness levels increasing the relative decision 
weight placed on new information is specific to male subjects.  High-fitness female subjects are estimated to 
increase the relative decision weight placed on base rate information to a marginal extent.  We suggest these results 
as an indication that future studies be designed to more explicitly examine gender differences in response to 
exercise.  
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A more detailed examination of the emerging gender result is to examine whether 

decision weight response to fitness or the bout of exercise interacts with gender and the difficulty 

of the Bayesian choice.  Rather than estimate models with triple or quadruple interaction terms 

(e.g, Female * Hard Choice * Exercise *lnLR(L)), we estimate separate models by gender and 

difficulty of the Bayesian task, and report results of the (evidence-minus-base rates) coefficient 

differences in Table 4.  For example, the statistically significant positive exercise effect (of 

.4591) for male subjects on easy trials indicates that, compared to Day 3, the exercise treatment 

lead to a statistically significant increase in the relative decision weight placed on new 

information (evidence) relative to base rates.  Thus, Table 4 highlights that for men, both short-

run and long-run (fitness) effects of exercise are a significant increase in the relative decision 

weight placed on new evidence.  For females, the short- and long-run exercise effects on relative 

decision weights are the opposite, but they are not statistically significant differences.  Recall 

that these effects are on top of the baseline tendency for men to overweight evidence and females 

to overweight base rates (see Table 2) in their Bayesian choices. 

Bayesian Accuracy 

While the previous estimations highlight interesting differences in estimated decision 

models based on exercise, gender, and fitness levels, our data do not support Hypotheses 1a and 

2a.  The evidence indicates that post-exercise and for more fit individuals, the tendency is to 
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overweight evidence relative to what is Bayesian.  Hypotheses 1b and 2b relate to how exercise 

affects the overall accuracy of subject choice, which we can evaluate by simply looking at the 

frequency with which subjects choose the more Bayesian likely Box.  Table 5 indicates 

unconditional Bayesian accuracy across days for subsamples of Day2 and Day3, male or female, 

high or low fitness subjects.  In all cases, accuracy of choice is significantly above 50%, which 

would be the average accuracy rate of random choice in our design.   

Several interesting results emerge from Table 5.  First, regarding the immediate impact of 

exercise on Bayesian accuracy, we find no significant difference in accuracy based on the 

exercise treatment.  However, if fitness levels are viewed as an indicator of the long-run effects 

of exercise, then more fit individuals are more Bayesian accurate on the easy trials (and no less 

accurate on the hard trials).  Curiously, we also find that male subjects are more accurate on easy 

trials, while females are significantly more accurate on hard trials.  Together with Table 2 results, 

this implies factors that increase the relative decision weight placed on new evidence in Bayesian 

choice may improve accuracy for fairly easy choices, but possibly harm accuracy on rather 

difficult choices.  This may not be surprising if one considers that easy choices typically present 

the decision maker with evidence and base rate information that are aligned and point to the 

same outcome, in which case focusing on one information source is not as harmful to decision 

making.   
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However, difficult choices typically imply evidence and base rate information that 

conflict, in which case an overweighting of new information is more likely to bias one’s 

assessment of the likelihood of a particular event.  One problem with this interpretation, 

however, is that female subjects on difficult choices statistically overweight base rate 

information and yet are more accurate in hard trials.  Because our physiological hypotheses do 

not, to our knowledge, explain the gender result, this finding is perhaps due to a psychological 

difference in decision making or use of heuristics that merits further study.   Clearly, more 

research is needed to investigate gender related differences to decision making under uncertainty    

 

DISCUSSION 

 We put forth two hypotheses in this paper regarding the behavioral impact of exercise 

(both immediate and long-term impacts) in a Bayes choice task.  Hypotheses 1a and 2a state that 

exercise should lead to a more Bayesian decision process, in the sense that subject should equally 

weight base rates and evidence in making choice.  Our results do not support these hypotheses.  

Rather, our evidence across all subjects suggests a tendency to place relatively more weight on 

the new evidence compared to the base rate odds immediately after exercise or for those who are 

more fit.  However, it is also clear that this surprising result is only estimated for male subjects, 

with weak effects in the opposite direction found for female subjects.  Because female subjects 

have a baseline tendency to overweight base rates relative to new information, while male 

subjects overweight new information, one might speculate that short-run or long-run exercise 

effects amplify one’s natural decision weight tendencies, in general.  Of course, additional 
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research is needed to substantiate such a speculation, but the gender effects we estimate are 

consistent with such a process. 

Regarding Hypotheses 1b and 2b, which state that exercise should increase Bayesian 

accuracy, we find some limited evidence to support Hypothesis 2b.  In general, subject accuracy 

is unaffected by the exercise manipulation, but we do find that more fit individuals are more 

Bayesian accurate, which supports Hypothesis 2b (see Table 5).  A deeper examination reveals 

that this result is limited to choices on Easy trials, and recall that this improved accuracy occurs 

for those trials where we estimated that subjects overweight the evidence relative to what is 

Bayesian.  Thus, we cannot make a general claim that equal weighting of both information 

sources is the only decision process that can accurately assess uncertainty.  For Easy trials, where 

base rates and evidence point to the same outcome, a focus on one information source over may 

be a useful heuristic.  The fact that this result is found for more fit individuals, but not 

immediately following exercise, indicates that temporary changes in physiology post-exercise 

are not a perfect substitute for higher a base-level of fitness.  This is in spite of the fact that 

similarities were found in the estimated decision weights between high fitness and exercised 

subjects.    

 While we may only speculate on the physiological mechanism at work at this stage, 

researchers recognize that decisions may be made based on more or less deliberate thought—

effortful thinking versus more heuristic-based choice.  Because the sample draw in our task is the 

new evidence, it is the perhaps a more likely focal point for the subject taking a deliberate 

thought approach to making a decision, which might explain over-weighting the evidence.  In 

some contexts overweighting new evidence might actually improve decisions in a way that our 

experimental task cannot capture.  For example, consider a risky health behavior example where 
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a smoker has a downwardly biased perception of the base rate risk of getting lung cancer (e.g., 

over-confidence regarding one’s health risk).  In this case, a disproportional weighting of new 

evidence regarding the risk of smoking will help correct that biased base rate information such 

that posterior odds of smoking risk more accurately reflect the true objective risk.  While it 

seems unlikely that regular exercisers are smokers, the point is that exercise may generate 

behavioral spillover effects that help correct overconfidence regarding other risky health 

behaviors (e.g., driving while sleepy, sexual promiscuity, etc).  This is worth exploring in future 

research and, as we have noted, may be gender specific. 

In other contexts where base rates are objectively known and individuals are unbiased, 

the result that decision weights are altered by exercise might seem practically irrelevant unless it 

translates into actual differences in choice outcomes (i.e., accuracy rates in our task).  However, 

these decision model changes may be indicative of underlying changes in the thought process 

that is a precursor to measurable outcome differences.11  An understanding of the decision-

process that precedes final outcomes is therefore important towards our understanding of 

behavior.  It is the task of future research to examine the different contexts or boundary 

conditions under which final outcomes are affected.   This study is intended to stimulate research 

in the area of behavioral effects of exercise.  Given this, it is perhaps not surprising that our 

results offer some insights but bring up many new questions as well. 

  

                                                 
11 Indeed, Venkatraman, et al (2007) shows that 24 hours of total sleep deprivation significantly alters neural 
activation even in the absence of behavioral differences in a risky choice task.  It is therefore possible that the 
differences we find in estimated decision models may be the result of such neural activation differences.  More 
extreme decision environment conditions may be necessary to generate behavioral outcomes differences in certain 
contexts.  While this is speculative on our part without direct evidence, it is clearly important to identify precursor 
changes in the decision process as we attempt to understand when behavioral differences will manifest. 
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TABLE 1: Choice Consistency with each information source (Hard & Easy Choices) 
 
 
 

 
DAY 1 
Average 
(st dev) 

DAY 2 
(Post-Exercise)

Average  
(st dev) 

 
DAY 3 
Average  
(st dev) 

 
Consistency with Base Rates (prior odds)

 
.551 

(.249) 
 

 
.529 

(.307) 

 
.599 

(.328) 

 
Consistency with Sample Evidence 

.654 
(.193) 

 

.627 
(.218) 

.633 
(.192) 

N=26 independent observations (subjects)    
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TABLE 2: Bayesian Choice Model--Random Effect Probit Estimation 
 

Dependent Variable = Choice of Box A 
Coefficient Estimates (standard error in parenthesis) 

 
Variable 

HARD and EASY choices 
(n=2490) 

EASY choices 
(n=1380) 

HARD choices 
(n=1110) 

Constant -0.004 
(0.060) 

-.062 
(.081) 

0.068 
(0.104) 

Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

0.228 
(0.060)*** 

0.115 
(0.078) 

0.896 
(0.180)*** 

LnLR(L) 0.315 
(0.036)*** 

0.286 
(0.037)*** 

0.937 
(0.168)*** 

Exercise 
 

0.028 
(0.065) 

0.036 
(0.088) 

0.040 
(0.103) 

Day 3 
 

0.004 
(0.065) 

0.017 
(0.088) 

-0.005 
(0.102) 

High VO2max 0.039 
(0.053) 

0.040 
(0.072) 

0.041 
(0.098) 

Female 0.002 
(0.053) 

0.014 
(0.072) 

-0.014 
(0.099) 

Exercise * Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

-0.157 
(0.068)** 

-0.196 
(0.090)** 

0.287 
(0.199) 

Exercise * LnLR(L) -0.088 
(0.041)** 

-0.082 
(0.042)** 

0.294 
(0.184) 

Day 3 * Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

-0.038 
(0.069) 

-0.045 
(0.092) 

0.292 
(0.199) 

Day 3 * LnLR(L) -.0112 
(0.041)*** 

-0.096 
(0.043) 

0.136 
(0.182) 

High VO2max * Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

0.060 
(0.056) 

0.109 
(0.073) 

-0.154 
(0.166) 

High VO2max * LnLR(L) 0.237 
(0.034)*** 

0.207 
(0.034)*** 

0.193 
(0.152) 

Female * Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

0.201 
(0.056)*** 

0.075 
(0.074) 

0.457 
(0.165)*** 

Female * LnLR(L) -0.170 
(0.034)*** 

-0.180 
(0.035)*** 

-0.087 
(0.153) 

Chi-squared 350.67*** 218.30*** 267.17*** 

Log Likelihood -1523.7713 -829.38066 -596.45146 
*, **, *** indicates significance at the .10, .05, and .01 levels, respectively, for the two-tailed test. 
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TABLE 3: Bayesian Choice Model—select subsamples  
 

Dependent Variable = Choice of Box A 
Coefficient Estimates (standard error in parenthesis) 

Variable HARD and EASY choices EASY choices HARD choices 
 

Subsample: Males with High VO2max on Day 2 (post Exercise) 
Subsample favoring evidence in choice (from Table 2) 

Constant -0.092 
(*0.115) 

-0.133 
(0.163) 

-0.094 
(0.193) 

Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

0.090 
(0.115) 

-0.085 
(0.161) 

1.353 
(0.314)*** 

LnLR(L) 0.723 
(0.089)*** 

0.645 
(0.094)*** 

2.324 
(0.415)*** 

Chi-squared 68.51*** 47.51*** 31.66*** 

Log Likelihood -77.0745 -38.1843 -26.7927 

N 192 112 80 

 
Variable 

 
HARD and EASY choices 

 
EASY choices 

 
HARD choices 

 
Subsample: Females with Low VO2max on Day 3 (repeat administration only) 

Subsample favoring base rates in choice (from Table 2) 

Constant -0.023 
(0.084) 

-0.059 
(0.111) 

0.016 
(0.149) 

Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

0.193 
(0.082)** 

-0.072 
(0.107) 

1.802 
(0.366)*** 

LnLR(L) 0.024 
(0.048) 

0.021 
(0.050) 

1.243 
(0.303)*** 

Chi-squared 5.56* .71 25.41*** 

Log Likelihood -152.444 -88.2296 -46.6286 

N 224 128 96 

*, **, *** indicates significance at the .10, .05, and .01 levels, respectively, for the two-tailed test. 
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TABLE 4: Relative Coefficient Weight Impact of Exercise and Fitness 
(effects reported are the evidence minus base rate coefficient weight impacts in each instance) 
 

EXERCISE EFFECT 
 Male Female 

Easy .4591*** -.0412 
Hard .5137*** -.0905 

 
HIGH FITNESS EFFECT 

 Male Female 
Easy .5468*** -.0663 
Hard .9460*** -.0414 

*, **, *** indicates significance at the .10, .05, and .01 levels, respectively, for the two-tailed test of the linear 
restriction on the appropriate coefficients.  Relative decision weight coefficient effects of exercise are tested against 
relative effects of Day 3 (repeat administration with no exercise).  Fitness effects are simply the relative evidence 
minus base rate coefficients on the High VO2mas interaction variables. 
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TABLE 5: Bayesian Accuracy  
 
Proportion of choices in agreement with Bayesian more likely outcome 
 Easy & Hard Choices 

(st. error) 
Easy Choices 

(st. error) 
Hard Choices 

(st. error) 
Post-Exercise (Day 2) .678 (.016) .679 (.022) .677 (.024) 

Day 3 
 

Proportions test on 
Difference (2-tailed) 

 

.685 (.016) 
 

p-value=.75 

.688 (.022 
 

p-value=.78 

.682 (.024) 
 

p-value=.87 

Male .702 (.012) .752 (.022) .634 (.027) 
Female 

 
Proportions test on 

Difference (2-tailed) 
 

.664 (.016) 
 

p-value=.09* 

.621 (.021) 
 

p-value=.00*** 

.746 (.022) 
 

p-value=.02** 

High VO2max .713 (.016) .735 (.020) .685 (.024) 
Low VO2max 

 
Proportions test on 

Difference (2-tailed) 
 

.650 (.017) 
 

p-value=.01*** 

.631 (.022) 
 

p-value=.00*** 

.674 (.024) 
 

p-value=.75 
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FIGURE 2: Kernel density estimates by day—Choice Consistency 
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FIGURE 3:  Kernel density estimates by day—Evidence Consistency 
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FIGURE 4: Relative Decision Weights By Choice Difficulty 
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APPENDIX—Examining Gender Effects (Hard and Easy trials) 
12 males, 14 females 

 
 
TABLE A1: Bayesian Choice Model--Random Effect Probit Estimation 

 
Dependent Variable = Choice of Box A 

Coefficient Estimates (standard error in parenthesis) 
 

Variable 
Males  

(n=1150) 
Females 
(n=1340) 

Constant -.0194 
(.0786) 

.0095 
(.0724) 

 

Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

.1378 
(.0757)* 

.6278 
(.0843)*** 

 

LnLR(L) .1324 
(.0466)*** 

.3549 
(.0486)*** 

 

Exercise 
 

.0164 
(.1008) 

.0306 
(.0879) 

 

Day 3 
 

.0744 
(.1024) 

-.0431 
(.0873) 

 

High VO2max .0374 
(.0848) 

.0447 
(.0708) 

 

Exercise * Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

-.0563 
(.0976) 

-.3339 
(.1035)*** 

 

Exercise * LnLR(L) .0197 
(.0622) 

-.2151 
(.0599)*** 

 

Day 3 * Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

.4658 
(.1094)*** 

-.4794 
(.0992)*** 

 

Day 3 * LnLR(L) .1196 
(.0695)* 

-.3042 
(.0574)*** 

 

High VO2max * Ln ቀ
௉ಽ

ଵି௉ಽ
ቁ 

-.1152 
(.0859) 

.1324 
(.0779)* 

 

High VO2max * LnLR(L) .5275 
(.0589)*** 

.0724 
(.0452) 

 

Chi-squared 252.37*** 137.89***  

Log Likelihood -608.1021 -855.0169  
*, **, *** indicates significance at the .10, .05, and .01 levels, respectively, for the two-tailed test. 
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FIGURE A1:  Relative Decision Weights by Gender 
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These results are summarized as follows.  Females tend to overweight base rates relative to new 
evidence (consistent with Table 2 results).  When looking at the separate gender-specific 
response to exercise and fitness levels, we find that the male subjects are responsible for most of 
the estimated exercise and fitness effects in Table 2.  The female exercise effect appears 
insignificant while the estimated effect of high-fitness is opposite that of males (see Table 4).  
Because exercise day effects should be compared against repeat administration effects of Day 3, 
these effects are shown in Appendix Figure A1 that is comparable to Figure 4 in the main text. 

To see this, note that for males the simple repeat administration effect (i.e., Day 3 interactions) is 
to place relatively more decision weight on base rate information and less decision weight on 
new information.  This same tendency is not present following Day 2 exercise.  In effect, 
exercise bout favors new information decision weight given that exercise eliminates what would 
have been an estimated reduction in new information decision weight.  Male subjects who are 
more fit also tend to increase the relative decision weight on new evidence.  Both the exercise 
and fitness results are qualitatively similar to the pooled results from Table 2. 

For female subjects, the estimates on the Exercise interactions appear to indicate that exercise 
causes females to increase relative decision weight on new evidence.  However, when comparing 
these effects to the simple repeat administration effects estimated on the Day 3 interactions, it is 
apparent that the Exercise (Day 2) effects are following a basic trend resulting from repeat 
administration of the task.  Thus, we find no significant effect of exercise on female subjects.  
Regarding fitness levels, high-fitness female subjects are estimated to place relatively more 
decision weight on base rates relative to new information, which contrasts with the estimation 
results for males.  Qualitatively similar results to these in Table A1 are found when looking 
separately at Hard versus Easy trials.  The most detailed breakdown of the results for both short- 
and long-run exercise effects by gender and choice difficulty is found in the main text in Table 4. 


