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Economic Growth and Threatened and Endangered Species Listings: A VAR Analysis 

Abstract: We conduct several analyses to examine the link between threatened and 

endangered species listings and macroeconomic activity.  Preliminary tests using 

ordinary least squares are run on both time series data on the national level and cross 

sectional data at the state level.  The analysis is then extended using vector autoregressive 

(VAR) techniques.  VAR results, impulse response functions and variance 

decompositions are reported to shed more light on the causal relationships between 

threatened and endangered species, GDP and population. Our results indicate that there is 

little or no empirical evidence that GDP growth rates lead to changes in the number of 

threatened and endangered species listings. 
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The tight correlation (R2 = 0.99; see figure) of U.S. GDP to the number of U.S. 

threatened and endangered species listed under the Endangered Species Act is unlikely to 

be a coincidence. 

Czech, et al. (2005) 

 

Introduction 

Environmental economics is a field dominated by microeconomics. Yet 

macroeconomists have considered both the positive and negative effects of environmental 

protection on economic growth. Macroeconomists have documented important costs of 

environmental pollution such as the negative health impacts and the resulting losses in 

labor productivity. Environmental regulation leads to improved labor productivity and 

increases in economic growth. On the other hand, environmental regulation diverts 

business firms’ resources away from production, raising the cost of production and 

leading to lower economic growth. 

Another macro environmental economic issue is the relationship between Gross 

Domestic Product (GDP) and environmental quality. In general terms, the Environmental 

Kuznets Curve (EKC) may be described as an empirical relationship that shows an 

inverted U-shaped curve relating economic growth to environmental degradation.2 In the 

initial stages of economic development, unregulated economic activity damages the 

environment. As income grows, the public demand for environmental quality rises and 

more public policy is focused on environmental protection. For example, Earth Day and 

                                                 
2 Analysis of the environmental Kuznets curve is not limited to empirical analysis. For 
the theoretical underpinnings, see López (1994), Selden and Song (1994), Brock and 
Taylor (2004) and Dinda (2005).   
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the establishment of the Environmental Protection Agency in 1970 were partially the 

result of a rise in per capita income in the United States. 

There exists an extensive literature regarding the environmental Kuznets curve 

(EKC) including the seminal works: Selden and Song (1994), Grossman and Krueger 

(1994) and Holtz-Eakin and Selden (1995).  Grossman and Krueger (1994) find an 

environmental Kuznets curve, in that, the level of emissions are an increasing function of 

GDP to a point and then begin to decrease as GDP increases.  Selden and Song (1994) 

also find an inverted-U relationship between per-capita emissions and per-capita GDP.  

López (1994) provides a theoretical model which supports the inverted-U relationship 

between per-capita emissions and per-capita GDP. 

As Maddison (2006) notes, the interest in the EKC is far from declining.  The 

growth in this line of research is demonstrated by the variety of the forms of 

environmental degradation.  Although the initial focus of the EKC works involved 

emissions such as sulfur dioxide and nitrogen oxide, the scope of research has expanded 

to other areas of environmental degradation such as water pollutants (see Paudel, Zapata 

and Susanto 2005), deforestation (Koop and Tole 1999) and biodiversity in terms of 

threatened species (Naidoo and Adamowicz 2001).  

Using international cross sectional data, Naidoo and Adamowicz (2001) find that 

a small number of species showed the characteristics of an environmental Kuznets curve.  

Many taxonomic groups show an increase in the number of the threatened species over 

the range of income. Also using international data, Dietz and Adger (2003) do not find an 

EKC for biodiversity.  In contrast to Naidoo and Adamowicz (2001) and Dietz and Adger 

(2003), our focus is on threatened and endangered species listings in the U.S. Previous 
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research using these data is limited. Reed and Czech (2005) and Czech et al. (2005) use a 

bivariate regression of Endangered Species Act listed species on GDP from 1972-2003 as 

empirical evidence of the correlation between macroeconomic growth and threatened and 

endangered species.  

The number of listed species under the ESA is determined by a number of factors 

including government budget constraints. Limited government resources devoted to 

listing decisions force the cumulative number of species listed to increase over time 

(Brown and Shogren, 1998). Also, species listing decisions are not perfect measures of 

endangered status (Brown and Shogren, 1998). For example, listing decisions reflect the 

preference for charismatic macrofauna over science (Metrick and Weitzman, 1996) and 

the importance of interest group politics (Ando, 2003). These additional factors are not 

considered as independent variables in current empirical research. Econometrically, 

omitted variable bias can lead to statistically significant, unexpected signs on the 

coefficients. 

In this paper, we conduct several analyses to examine the link between threatened 

and endangered species and macroeconomic activity.  Preliminary tests using ordinary 

least squares are run on both time series data on the national level and cross sectional data 

at the state level.  The analysis is then extended using vector autoregressive techniques.  

VAR results, impulse response functions and variance decompositions are reported to 

shed more light on the causal relationships between threatened and endangered species, 

GDP and population. 

Data and Preliminary Models 
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The time-series analysis is conducted with thirty years of annual data from 1973-

2002 (Table 1). The cumulative number of threatened and endangered species (TES) is 

obtained from the U.S. Fish and Wildlife Service. The annual number of TES is 

constructed from the cumulative data. The average annual TES listings is about 40. 

Annual gross domestic product data is obtained from the U.S. Bureau of Economic 

Analysis. Annual population data is obtained from the U.S. Census Bureau. 

We first replicated the results summarized in Reed and Czech (2005). Using 

ordinary least squares regression analysis, we find an R2 = .98 when GDP is regressed on 

cumulative TES listings. In Table 2, we present four time-series regression models. We 

consider both the stock dependent variable of cumulative TES listings and the flow 

dependent variable of annual TES listings. Two models are estimated with each 

dependent variable. The first includes only annual GDP as the independent variable. The 

second decomposes annual GDP into per capita GDP and the population growth.3 Since 

the error terms are often correlated over time with time-series data, we use a model that 

accounts for the serial correlation. Ordinary least squares results are qualitatively similar.  

 We find that GDP is positively correlated with cumulative TES listings. GDP per 

capita and population are also positively correlated with cumulative TES listings. But, as 

stated previously, cumulative TES listings are a stock variable and will increase over time 

by definition. In our annual TES listing models, we find that neither GDP nor GDP per 

capita and population have any statistically significant impact on TES listings. 

As an alternative model of the impact of economic growth on TES listings, we 

consider cross-sectional data for the 48 mainland states. The dependent variable is the 

                                                 
3 We also considered the flow variable population growth with little difference in results.   
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number of threatened and endangered species listed in each state (source: USFWS). The 

independent variables include the decomposed measures of regional economic growth in 

each state for 2004: State per capita personal income is obtained from the U.S. Bureau of 

Economic Analysis and state population data are obtained from U.S. Bureau of the 

Census. Control variables are the land area and inland water area in each state, both of 

which are measured in thousands of square miles. In addition we include Census Region 

dummy variables to control for regional variation in TES listings (Table 3). 

Correlations among these variables indicates that per capita income has little 

correlation with species listings (r = .02) but population is highly correlated (r = .75). In 

order to determine the impact of per capita income and population on species listings 

while holding other factors constant, we estimate a multivariate regression model. The 

ordinary least squares regression analysis reveals that increases in population increase the 

number of listed species. The most striking result is that increases in per capita income 

lead to decreases in the number of listed species. The independent variables explain 

almost all of the variation in the dependent variable, which is quite high for state level 

cross-sectional data.  

One criticism of the cross-section results is that they do not measure regional 

(measured at the state-level) economic growth because they are a snapshot in time. As 

one potential way of addressing this, we consider the time period of 1972-2004 and 

consider regional economic growth and the change of TES listings over that time period. 

Since TES listings began in 1973, the state-level listings in 2005 also measure the change 

over this time period.  
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We compute the state level change in state level per capita personal income and 

population from 1972 – 2004 and include these variables in another set of cross-section 

regression models. We find results similar to the cross-section results. Population growth 

from 1972 – 2004 is positively correlated with TES listings. Per capital personal income 

growth from 1972 – 2004 is negatively correlated with TES listings, although the strength 

of the effect is weak (p = .10).  

VAR Models 

Simple OLS regressions can provide suggestive results regarding the relationships 

between variables, but one can draw only tentative conclusions regarding causality from 

such results.  In order to further examine the relationship between the number of 

threatened and endangered species, population, and GDP, we employ several techniques 

based on VAR models.  Let the dependent variable of equation of i be written as yi = 

[yi1,…,yiT], where T is the sample size in terms of years.  Let Y* be a (T x k) matrix of 

regressors of lagged value of the yi’s where k = pN with p being the number of lags and 

N being the number of variables.  In general, the model is given by 
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In our specification, we consider a three equation, second order VAR using real GDP, 

population and the cumulative number of endangered species.4 

                                                 
4 We also tested a number of alternative specifications using real GDP, population and 
annual  listings; per capita GDP, population and annual listings; and per capita GDP, 
population and cumulative number of TES.  Our results were similar across all models.  
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 The results of this VAR are given in Table 5.  In the GDP equation, the first and 

second lags of GDP and the second lag of population are significant.  F-tests indicate that 

lagged values of GDP are highly significant and lagged values of population are 

significant at the 5% level.  Lags of species are insignificant individually and jointly, as 

indicated by the F-test.  The only significant variables in the population equation are 

lagged values of population itself.  The first lag of population is significant at the 1% 

level and F-tests indicate that the first and second lags are jointly significant.  The two 

lags of real GDP are jointly significant at the 10% level.  Our main interest, however, is 

with the species equation.  Note that none of the lags of real GDP or population are 

significant individually or jointly.  Thus, it does not appear that changes in population or 

GDP have significant impact on the cumulative number of threatened and endangered 

species. 

 Like OLS results, the results of this VAR provide some insight into the 

relationships between the three variables included.  To further explore the causal 

relationships involved, we used this VAR to conduct two additional forms of analysis.  

First, we estimated impulse response functions, which measure the responses of each 

variable in the system to a shock to one of those variables.  We measured these responses 

for ten periods.  For example, if there is a shock to real GDP at time (t), the impulse 

response functions estimate the response of GDP, population and the cumulative number 

of species at each point in time from (t) to (t+9).  The impulse responses, however, are 

point estimates, and can therefore be misleading.  If there is a positive response to a 

shock to population, is that response significant or merely a statistical coincidence?  In 

order to answer this question, we used Monte Carlo integration to construct confidence 
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bands around our impulse response functions.  The impulse responses with confidence 

bands are shown in Figure 1.  A response is significant if the confidence band does not 

include zero. 

When a shock is imposed on real GDP, there is a positive and significant response 

of real GDP contemporaneously and for the next three periods.  The response then 

becomes insignificant, but is again significant for periods 7, 8 and 9.  Although 

population does not immediately respond to the change in real GDP, after 2 periods the 

response is positive and significant and remains so in all subsequent periods.  The more 

interesting result for our analysis is the fact that the response of the cumulative number of 

species is never significant.  A shock to population creates a significant positive response 

in real GDP after four periods and significant responses in population at each step.  Again, 

the response of species is insignificant throughout.  The only significant response by 

species is to shocks to species itself.  Interestingly, both real GDP and population (of 

humans) also respond positively to shocks to species, GDP after two periods and 

population after five. 

 The final analysis that we performed was a variance decomposition.  The VAR is 

used to compute forecasts for each of the variables in the system and the standard error of 

the forecasts is estimated.  The variance of this forecast error is then broken down into 

the proportion that can be attributed to innovations in each variable.  The results of these 

variance decompositions are given in Table 6.  While the total variance of forecast 

standard error does not depend on the ordering of variables in the equation, the 

decomposition of that variance does.  For that reason, we ran this test using several 

possible orderings.  Results were not significantly different.  Variables listed first are 
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expected to have the greatest predictive power, while the last variable is expected to have 

no predictive value.  The variance decompositions reported here are based on the 

ordering: real GDP, population, species.  This ordering will result in the strongest 

possible impact of innovations in real GDP on species (and conversely, the weakest 

impact of species on real GDP). 

For real GDP, the forecast error is explained only by innovations in GDP for the 

first step.  But note that the percentage of variance explained by innovations in 

population and species increases at the longer steps.  After ten steps, over 32% of the 

variance is explained by innovations in species, 14.5% by innovations in population and 

52% by innovations in real GDP.  The variance of forecast error for population is largely 

explained by innovations in real GDP after three steps.  After seven steps, real GDP 

becomes more important than population itself.  For species, however, over 90% of the 

forecast error variance is explained by innovations in species itself.  Innovations in real 

GDP and population do not have a strong impact on species.  

Alternative Explanations 

Given that our results suggest that real GDP and population do not explain the 

variations in the number of threatened and endangered species listings, are there 

alternative explanations for the number of threatened and endangered species listings?  

Loss of habitat and habitat fragmentation are well known sources of species extinction 

(for example, see Pearce and Moran 1994; Lawton and May 1995; Jenkins 2003).   

Unfortunately, there is not a simple, generally accepted definition for habitat especially 
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given the magnitude of the land mass considered in our study.5  Compounding the 

conceptual problems associated with defining habitat are data limitations.  If one was to 

consider forest area as a measure of habitat, a potentially poor proxy given the variety of 

forest cover, one would find incomplete time series regarding this measure.   

Greenwald, Suckling and Taylor (2006) suggest an alternative explanation for the 

variations in the species.  They argue that the differences in listings are largely due to 

changes in the administrative environment.  They divide the post-ESA era (from 1974-

2003) into four distinct periods based on major changes in the regulatory environment.  

According to the authors, in the years immediately following the passage of the 

Endangered Species Act, listings increased steadily.   In 1978, Congress amended the act 

to require that any proposal for listing be withdrawn if it was not finalized within two 

years.  The amendment also prohibited listings from being re-proposed unless new 

information came to light and required the designation of “critical habitat.”  When these 

changes were implemented, the number of listings dropped dramatically.  Shortly after 

taking office in 1981, Ronald Reagan issued an executive order requiring an economic 

impact analysis prior to listing.   As a result of this order, combined with additional 

bureaucratic reviews, in 1981, for the first time since the ESA was passed, no species 

were listed.   

The second period described by Greenwald et.al. is 1983-1990.  In 1982, 

Congress amended the ESA again in order to reduce administrative delays in the listing 

process.  Congress also reversed the Reagan administration’s economic impact 

                                                 
5  To illustrate this difficulty, Rosenzweig (1995) notes that earlier studies found over 
twenty types of habitat varieties for woodland mites.  In more general terms, Vanreusel 
and Van Dyck (2007) state that “[t]he unambiguous recognition of a species’ habitat is a 
matter of debate.   

 11



requirement.  As a result, the number of listings increased to an average of forty species 

per year for this period.  There was another dramatic increase in the number of listings 

starting in 1991.  This shift was caused primarily by a series of petitions and lawsuits by 

NGOs designed to force the USFWS to move quickly in listing the backlog of candidate 

species.  During the period 1991-1995 (Period three), 66% of species were listed 

following lawsuits.  Following this sharp increase in the number of listings, Congress 

imposed a twelve month moratorium on the listing program from April 1995 - April 1996.  

The final period examined is 1996-2004.  In 1995, the Interior Department issued 

a policy prohibiting NGOs from petitioning to list a species that was currently on the 

candidate list.  This limited the use of lawsuits to increase listings.  To address the issue 

of petitions on species not on the candidate list, the USFWS began using a statutory 

provision that allowed them to delay issuing initial findings if it was “not practicable”.  

The final factor influencing the number of listings per year is funding.  Despite the large 

backlog of candidate species and the additional workload created by amendments to the 

ESA, the Department of the Interior has not requested sufficient funds to keep up with the 

workload.  In fact, in 1998, it requested that Congress legislatively cap the amount of 

funds available for the listing process.  This cap has been renewed at the request of the 

Secretary of the Interior every year from 1999-2004. 

 Although it appears that political factors affect the listing process, changes in the 

regulatory environment are difficult to specify for a multitude of reasons.  Given both 

Democratic and Republican administrations have mixed records regarding listing, the 

inclusion of a dummy for party affiliation may provide little or no insight.  Alternatively, 

political influences may be detected through a structural break.  Unfortunately, the 
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limited numbers of years since passage of the ESA combined with the high number of 

potential regimes implied by Greenwald, Suckling and Taylor (2006), limits the use of 

tests for structural change.  However, we did run several stability tests which provide 

suggestive results.  All tests were performed on a simple regression with cumulative 

species as the dependent variable and real GDP and population as independent variables.  

The first test is a CUSUM test (Brown, Durbin and Evans, 1975), which uses recursive 

estimation.  The null hypothesis is that the recursive residuals should act as a random 

walk, if they do not, there is evidence of a structural break.  Results from this test, shown 

in figure 2, indicate that there is a break in 1994, which represents the bound between the 

third and fourth periods identified by Greenwald, Suckling and Taylor (2006).  A Hansen 

(1991) test for parameter stability also rejects the null that the coefficients and variance of 

the regression are jointly constant at the 1% level.  Finally, using a series of Chow tests 

with hypothesized breaks in 1982, 1991, and 1995 (the break points in the periods 

described by Greenwald, Suckling and Taylor) we can reject the null hypothesis of no 

structural shift at the 1% level for two of these shifts.  There does not appear to be a 

significant structural break in 1995.  Results of the Hansen and Chow tests are shown in 

Table 7.  While all of these results indicate at least one structural break, they should be 

interpreted with caution due to the limited size of the data set, as noted above. 

More recent events suggest that political appointees may be influencing the listing 

process.  Stokstad (2007) notes that Julie MacDonald, deputy assistant secretary at the 

U.S. Department of the Interior, “intimidated U.S Fish and Wildlife Service scientists to 

alter biological reports about endangered species”.  Less than a month after the 
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publication of Stokstad’s Science article and a week prior to appearing in front of a 

House oversight committee, MacDonald resigned.6 

Conclusions 

We find that in simple, statistically inappropriate, OLS models GDP is positively 

correlated with cumulative threatened and endangered species (TES) listings. GDP per 

capita and population are also positively correlated with cumulative TES listings.  

However, in our annual TES listing models, we find that neither GDP nor GDP per capita 

and population have any statistically significant impact on TES listings.  With the more 

rigorous vector autoregressive analysis (VAR), we find that neither GDP nor population 

affects TES listings.   

Our results indicate that there is little or no empirical evidence that GDP growth 

rates lead to changes in the number of threatened and endangered species listings.  The 

possible explanations are varied. As Kongsamut et al. (2001) found, cleaner service 

sectors increase as economies grow.  Increases in GDP fueled by growth in these sectors 

may have little or no negative impact on the environment.  Also, since environmental 

protection is a normal good, rising incomes lead to greater demand for programs that will 

protect species.  Including spending on such programs in a vector autoregressive system 

would elucidate its relationships to GDP and threatened and endangered species. 

                                                 
6Eilperin (2006) reported on various allegations against MacDonald were under 
investigation by the  inspector general of the Department of Interior. 
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Table 1. Time Series Data     
 Mean Std.Dev. Minimum Maximum    

Annual Threatened and Endangered 
Species Listings 39.97 30.66 0 126 
Cumulative Threatened and 
Endangered Species Listings 504.13 414.91 7 1199 
Gross Domestic Product ($100,000s) 6737.48 1818.09 4311.20 10048.80 
Per Capita Gross Domestic Product 
($1000s) 27.02 4.88 19.96 34.89 
Population (1,000,000s) 245.54 22.15 211.91 287.99 
Cases = 30     
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Table 2. Time Series Data Models* 
  Threatened and Endangered Species Listings 
 Cumulative Cumulative  Annual  Annual 
 Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio 
Constant -804.02 -6.01   -0.021 0.00 175.90 0.82 
Gross Domestic 
Product ($100,000s) 0.19 11.33   0.006 1.38   
Per Capital Gross 
Domestic Product 
($1000s)   34.21 3.74   9.91 1.27 
Change in Annual 
Population 
(1,000,000s)   8.77 4.28   -1.65 -0.97 
ρ 0.94 14.45 0.95 15.95 0.37 2.13 0.30 1.70 
Durbin-Watson 1.50 1.41 2.29 2.26 
*AR(1) Model: e(t) = ρ*e(t-1) + u(t)  
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Table 3. Cross-Section Data     
 Mean Std.Dev. Minimum Maximum    

Threatened and Endangered Species 
Listed in State 42.54 46.50 9 308 
Per Capita Personal Income (1000s, 
2004) 31.91 4.61 24.52 45.32 
Population (1,000,000s, 2004) 6.07 6.58 0.51 35.84 
Per Capita Personal Income Growth 
(1000s, 1972-2004) 11.81 2.69 8.08 19.58 
Population Growth (1000s, 1972-
2004) 57.05 64.29 0.17 345.38 
Land Area (1000s of square miles) 61.65 46.81 1.04 261.80 
Inland Water Area (1000s of square 
miles) 12.39 24.50 0.36 121.59 
Northeast Region 0.13 0.33 0 1 
Middle Atlantic Region 0.06 0.24 0 1 
East North Central Region 0.10 0.31 0 1 
West North Central Region 0.15 0.36 0 1 
East South Central Region 0.08 0.28 0 1 
West South Central Region 0.08 0.28 0 1 
Mountain Region 0.17 0.38 0 1 
Pacific Region 0.06 0.24 0 1 
South Atlantic Region 0.17 0.38 0 1 
Cases = 48     
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Table 4. Cross-Section Data Models*  
 Dependent Variable = Threatened and Endangered Species Listed 

in State 
 Coeff. t-ratio Coeff. t-ratio    

Constant 49.35 3.27 33.65 3.16 
Per Capita Personal Income 
(1000s, 2004) -1.18 -2.22   
Population (1,000,000s, 2004) 7.27 7.36   
Per Capita Personal Income 
Growth (1000s, 1972-2004)   -1.73 -1.70 
Population Growth (1000s, 1972-
2004)   0.72 7.19 
Land Area (1000s of square miles) -0.24 -2.63 -0.22 -2.30 
Inland Water Area (1000s of 
square miles) 0.03 0.34 0.04 0.53 
Northeast Region -1.95 -0.30 -2.50 -0.34 
Middle Atlantic Region -66.50 -4.35 -70.73 -4.32 
East North Central Region -38.20 -4.77 -39.60 -4.49 
West North Central Region 1.74 0.22 3.86 0.47 
East South Central Region 35.09 2.31 39.64 2.61 
West South Central Region -7.76 -1.18 -4.96 -0.68 
Mountain Region 27.04 2.53 22.97 2.24 
Pacific Region 40.31 2.27 38.41 2.16 
R2 0.88 0.88 
F 22.53 21.93 
 

*Ordinary Least Squares with White heteroscedasticity robust covariance matrix  
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Table 5.  Vector Autoregression Results 
 
 Real GDP Population TES 
Real GDPt-1 1.15 

(6.03***) 
.003 
(1.70*) 

.003 
(.06) 

Real GDPt-2 -.47 
(-2.29**) 

-.00006 
(-.03) 

-.03 
(-.53) 

Populationt-1 -23.11 
(-1.20) 

.56 
(2.66***) 

-3.35 
(-.64) 

Populationt-2 39.80 
(2.31**) 

.18 
(.96) 

6.59 
(1.40) 

Cumulative # 
Speciest-1 

.35 
(.42) 

.008 
(.90) 

1.22 
(5.34***) 

Cumulative # 
Speciest-2 

.31 
(.36) 

.009 
(.92) 

-.25 
(-1.06) 

F-tests 
Real GDP 
Population 
Species 

 
21.70*** 
3.71** 
1.68 

 
2.73* 
22.04*** 
.43 

 
.23 
1.53 
56.45*** 

 
t-statistics in parentheses. 
*** significant at the 1% level 
**significant at the 5% level 
*significant at the 10% level 
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Table 6. Variance Decompositions 
Decomposition of Variance for Real GDP 
Step Standard Error RGDP Population Species 
1 91.21 100% 0.00% 0.00% 
2 140.56 96.94% 2.70% 0.36% 
3 163.50 93.88% 2.00% 4.12% 
4 176.91 86.26% 3.07% 10.67% 
5 189.64 76.46% 6.27% 17.26% 
6 201.88 68.16% 9.62% 22.22% 
7 212.95 62.26% 11.99% 25.75% 
8 223.39 58.24% 13.34% 28.42% 
9 233.90 55.32% 14.06% 30.63% 
10 244.71 52.85% 14.50% 32.65% 
     
Decomposition for Population 
Step Standard Error RGDP Population Species 
1 1.00 1.74% 98.26% 0.00% 
2 1.22 9.52% 87.75% 2.73% 
3 1.42 23.38% 73.92% 2.70% 
4 1.61 36.12% 61.76% 2.12% 
5 1.77 43.69% 53.60% 2.71% 
6 1.92 46.40% 48.51% 5.09% 
7 2.07 45.98% 45.22% 8.79% 
8 2.21 44.16% 42.85% 12.99% 
9 2.36 42.02% 40.88% 17.10% 
10 2.51 40.06% 39.08% 20.86% 
     
Decomposition of Variance for Species 
Step Standard Error RGDP Population Species 
1 24.98 5.08% .01% 94.91% 
2 39.46 4.90% .86% 94.24% 
3 50.11 3.68% .54% 95.79% 
4 57.95 2.76% .90% 96.34% 
5 63.81 2.29% 1.90% 85.80% 
6 68.11 2.01% 3.02% 94.97% 
7 71.31 1.91% 3.95% 94.15% 
8 73.88 2.07% 4.67% 93.26% 
9 76.15 2.51% 5.24% 92.25% 
10 78.30 3.10% 5.77% 91.13% 
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Table 7. Stability Tests 
Hansen Test 
Test Statistic p-value 
Joint Stability 1.97 0.00 
Variance .41 0.07 
Constant .43 0.06 
Real GDP .41 0.07 
Population .42 0.06 
   
Chow Test 
Structural Break 1982 107.15 0.00 
Structural Break 1991 11.02 0.00002 
Structural Break 1995 1.22 0.34 
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Figure 2 
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