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Abstract:  
Comparing talent across time is difficult as productivity changes. To compare talent 
across time we utilize Major League baseball data from 1871-2010 and time series 
techniques to determine if the mean and standard deviation of five performance measures 
are stationary and if structural breaks exist. We identify two structural breaks in the mean 
slugging percentage: in 1921, the free swinging era of Babe Ruth, and in 1992, the steroid 
era. Given that productivity changes over time, we develop a simple benchmark 
technique to compare talent over time and identify superstars. Applications of this 
measure outside of baseball are also suggested.  
 
JEL Classifications: J24, C22 
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1. Introduction 
 

Games change. New innovations are developed. In many sports it is the 

equipment that drives the change in the game such as innovation in tennis rackets or in 

golf club technologies. In other sports it might be the development of a new defensive 

technique, a new way to swing the bat, throw a pitch, shoot a basket, or hold a putter. 

When players develop successful innovations they are mimicked and the game changes. 

When a game changes comparing talent across different time periods becomes 

increasingly difficult. To overcome this difficulty we propose a simple benchmarking 

technique to address the question: How good are players when benchmarked to their 

peers? Our technique is common in finance, where performance of an asset is not simply 

measured by the absolute return, but the return relative to some benchmark. In such 

cases, the benchmark is established as a market portfolio or Security Market Line (Roll 

1978) where the portfolio manager’s goal is to ‘beat the market’. Similar benchmarking is 

used in many other ways.  For example, salaries are benchmarked to relative pay; 

technological development, research output, and teaching performance, among others, 

can be similarly benchmarked. We expand the use of such benchmarking to analyze 

performance when innovations occur. 

The use of benchmarking allows for more accurate analysis of performance. For 

example, benchmarking can be expanded to provide more detailed analysis of talent 

levels; not just of today’s performances, but for a viable measure of talent across different 

eras where different innovations have occurred.1 Talent is highly valued, thus accurate 

measures of relative talent today, and comparisons across time, are also highly valued. 

                                                
1 As an example: a firm comparing productivity of an employee pre- and post-computer era would be an 
inaccurate measure of relative productivity.  
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In some industries, however, talent is difficult to measure. This measurement 

difficulty increases as you measure the talent within an industry over long periods of 

time, for instance from 1871-2010. This problem is also complicated by the fact that 

when the opportunity to reveal talent is limited, true talent does not have the opportunity 

to reveal itself (Terviö 2009). 

Given that talent changes over time, having a moving benchmark reveals more 

accurate measurement of the true talent levels of a player at any given point of time. 

Throughout the years technologies, skills, strength, and training have changed. Having a 

benchmark increases the accuracy of measurement and the ability to truly compare talent 

over time. Moreover, having a benchmark provides a convenient method to identify 

superstars. In addition, having a benchmark may provide insight to help identify 

important innovative players who changed the game. To determine if a benchmark 

measure of performance changes we use time series techniques on the mean and standard 

deviation of several traditional performance measures in baseball. We find that most of 

these time series are stationary around one or two structural breaks. Perhaps most 

noteworthy, we find two structural breaks in the slugging percentage mean, in 1921 and 

1992, that correspond with the early years of the Babe Ruth free swinging era and the 

steroid era. 

In Section two, we discuss the data and the tests used to identify the benchmark 

and when the game changes. In Section three, we evaluate talent both by comparing 

players to an absolute standard and by comparing players to a changing benchmark. We 

conclude in Section four. 
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2. Data and Structural Breaks 

Major League Baseball attracts the best baseball players in the world. The first 

professional baseball team was established in 1869 (the “Cincinnati Red Stockings”).  

The league started in the late 1800s and continues today. Superstars have commonly been 

identified by the record books. However, we identify superstars in baseball by their 

deviation from the mean. Using data from Sean Lahman’s Baseball Database on all 

players from 1871-2010 with at least 100 at-bats, we measure slugging percentage 

(SLUG), home runs per hundred at bats (HR), batting average (BAVE), and runs batted 

in per hundred at bats (RBI). 2 With 35,728 single season observations we find that the 

average player hit 7 homeruns per season (with a maximum of 73), had 42.5 runs batted 

in (RBI), and a slugging percentage of .379. To create a time series to identify structural 

breaks we calculate both the mean and standard deviation of each performance measure 

for each season. This provides annual time series from 1871-2010 that consist of 140 

seasonal observations for each series. 

To determine if the time series measures of player performance are stationary 

(i.e., a deterministic trend) or non-stationary (i.e., a stochastic trend) and to identify 

structural breaks, we utilize the one- and two-break minimum LM unit root tests 

proposed by Lee and Strazicich (2003, 2004). Following Perron (1989), it is well known 

that ignoring an existing structural break in unit root tests will reduce the ability to reject 

a false unit root null hypothesis.3 To overcome this drawback, Perron proposed including 

dummy variables in the usual augmented Dickey-Fuller unit root test (ADF test) to allow 

                                                
2 Sean Lahman’s Baseball Database: http://baseball1.com/2011/01/baseball-database-updated-2010/. 
Slugging percentage is calculated as total bases divided by the number of at-bats. 
3 By “structural break,” we imply a significant but infrequent, permanent change in the level and/or trend of 
a time series.  See Enders (2010) for additional background discussion on structural breaks and unit root 
tests. 
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for one known, or “exogenous,” structural break. In subsequent work, Zivot and Andrews 

(1992, ZA hereafter), among others, proposed unit root tests that allow for one unknown 

break to be determined “endogenously” from the data. The ZA test selects the break 

where the t-statistic testing the null of a unit root is minimized (i.e., the most negative). 

The ZA test, however, and other similar ADF-type endogenous break unit root tests 

derive their critical values assuming no break under the null hypothesis. Nunes, Newbold, 

and Kuan (1997) and Lee and Strazicich (2001), among others, show that this assumption 

can lead to spurious rejections of the unit root hypothesis in the presence of a unit root 

with break. As a result, when using these tests, researchers can incorrectly conclude that a 

time series is “trend-break stationary” when in fact the series has a unit root with break.  

To avoid these drawbacks, we utilize the one- and two-break minimum LM unit root tests 

developed by Lee and Strazicich (2003, 2004). The endogenous LM unit root test has the 

desirable property that its test statistic is not subject to spurious rejections. Thus, 

conclusions are more reliable since rejection of the null hypothesis unambiguously 

implies that the series is stationary around one or two breaks in the level and/or trend. 

Our testing methodology can be summarized as follows. 4 According to the LM 

“score” principle, the test statistic for a unit root can be obtained from the following 

regression: 

  Δyt  = δ'ΔZt + φS∼t-1 + ΣγΔS∼ t-i + εt,     (1) 

where S∼t =  yt - ψ
∼

x  - Ztδ
∼, t=2,..,T; δ∼ are the coefficients from the regression of Δyt on ΔZt 

and ψ∼x is the restricted MLE of ψx (≡ψ + X0) given by y1 - Z1δ
∼.  ΔS∼t-i terms are included 

                                                
4 Gauss codes for the one- and two-break minimum LM unit root test are available on the web site 
http://www.cba.ua.edu/~jlee/gauss. 
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as necessary to correct for serial correlation. εt is the contemporaneous error term and is 

assumed to be independent and identically distributed with zero mean and finite variance. 

Zt is a vector of exogenous variables contained in the data generating process. Zt is 

described by [1, t, D1t, D2t, DT1t*, DT2t*]', where Djt = 1 if t ≥ TBj + 1, j = 1,2, and zero 

otherwise, DTjt* = t if t ≥ TBj + 1, and zero otherwise, and TBj is the time period of the 

structural break. Note that the testing regression (1) involves ΔZt instead of Zt so that ΔZt 

is described by [1, B1t, B2t, D1t, D2t]+, where Bjt = ΔDjt and Djt = ΔDTjt*, j=1, 2. Thus, B1t 

and B2t, and D1t and D2t, correspond to structural changes or breaks in the level and trend 

under the alternative, and to one period jumps and permanent shifts in the level under the 

null hypothesis, respectively. The unit root null hypothesis is described by φ = 0 and the 

LM test statistic is defined by: 

τ∼ ≡ t-statistic testing the null hypothesis φ = 0.     (2) 

To endogenously determine the location of two breaks (λj = TBj/T, j=1, 2), the 

minimum LM unit root test uses a grid search to determine the combination of two break 

points where the unit root test statistic is minimized. Since the critical values for the 

model with trend-break vary (somewhat) depending on the location of the breaks (λj), we 

employ critical values corresponding to the identified break points. 

To determine the number of lagged augmented terms ΔS∼t-i, i = 1,..,k, that are 

included to correct for serial correlation, we employ the following sequential “general to 

specific” procedure.  At each combination of two break points λ = (λ1, λ2)+ over the time 

interval [.1T, .9T] (to eliminate end points) we determine k as follows. We begin with a 

maximum number of k = 8 lagged terms and examine the last term to see if its t-statistic 
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is significantly different from zero at the 10% level (critical value of 1.645 in an 

asymptotic normal distribution). If insignificant, the k = 8 term is dropped and the model 

is re-estimated using k = 7 terms, etc., until the maximum lagged term is found, or k = 0. 

Once the maximum number of lagged terms is found, all lower lags remain in the 

regression. The process is repeated for each combination of two break points to jointly 

identify the breaks and the test statistic at the point where the unit root test statistic is 

minimized.5 

The LM unit root test results are reported in Table 1. In each case, we begin by 

applying the two-break LM unit root test. If only one break is identified (at the 10% level 

of significance) in the two-break test, we re-examine the series using the one-break LM 

unit root test. The mean slugging percentage (SLUGM) rejects a unit root at the 5% 

significance level, implying that SLUGM is a stationary series with two level and trend 

breaks in 1921 and 1992. For the slugging percentage standard deviation (SLUGSD), 

only one structural break was significant in the two-break test. We therefore re-tested this 

series using the one-break test. In contrast to SLUGM, the SLUGSD cannot reject a unit 

root at the 10% level of significance, implying that this series is nonstationary. The unit 

root hypothesis cannot be rejected for the homerun mean (HRM) at the 10% level of 

significant, implying that this series is nonstationary and has a positive stochastic trend. 

In contrast, the unit root hypothesis is rejected for the homerun standard deviation 

(HRSD) at the 5% level of significance, implying that this series is stationary with two 

level and trend breaks in 1920 and 1966. The mean batting average (BAVEM) cannot 

reject the unit root hypothesis at the 10% level of significance, implying that BAVEM is 

                                                
5 This type of method has been shown to perform better than other data-dependent procedures to select the 
optimal k (e.g., Ng and Perron, 1995). 
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a nonstationary series. In contrast, the batting average standard deviation (BAVESD) 

rejects the unit root hypothesis at the 1% level of significance, implying that BAVESD is 

a stationary series with two breaks in 1906 and 1933. The mean of runs batted in (RBIM) 

rejects the unit root hypothesis at the 10% level of significance, implying that RBIM is a 

stationary series with one level and trend break in 1887. The standard deviation of runs 

batted in (RBISD) rejects the unit root hypothesis at the 5% level of significance, 

implying that RBISD is a stationary series with one level and trend break in 1921. 

We next perform regressions on the identified level and trend breaks for the five 

performance time series that reject the unit root hypothesis (SLUGM, HRSD, BAVESD, 

RBIM, and RBISD). Note that regressions will not be undertaken for SLUGSD, HRM, 

and BAVEM, since the results in Table 1 indicate that these series are nonstationary and 

spurious regressions can occur. In reporting our results, the coefficients on the first Dt 

and Tt terms denote the intercept and trend slope in the time period from 1871 to the first 

break, the time period after the first break to the second break, and the time period after 

the second break to 2010, respectively. In each regression we correct for serial correlation 

by including lagged values of the dependent variable as necessary using the “general to 

specific” approach described for the LM unit root tests. White’s robust standard errors are 

used to correct for heteroskedasticity. 

We begin by regressing the slugging percentage mean (SLUGM) on the two level 

and trend breaks identified in Table 1. The results are reported in Table 2. Following each 

break, there is a significant increase (upward shift) in the mean slugging percentage. 

Perhaps most interesting is that the1921 break coincides with the early years of the Babe 

Ruth era and the 1992 break coincides with the steroid era often associated with Mark 
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McGwire, Sammy Sosa, and Barry Bonds, among others. Following each break there is a 

slight downward trend in SLUGM, which is statistically significant only in the time 

period of 1992-2010. 

We next examine the regression on the two level and trend breaks identified in 

Table 1 for the standard deviation of home runs (HRSD). The results are reported in 

Table 3. Following each break, there is a significant upward shift in the standard 

deviation of home runs indicating that the dispersion in home run performance increased 

after each break. Again, we see that the first break (in 1920) is associated with the early 

years of the Babe Ruth era. In each time period there is a positive and significant trend, 

which steepens after 1920. Then, following the second break (in 1966), the trend slope 

remains positive but flattens somewhat. These results suggest that Babe Ruth had a 

significant impact on the game that lead to a greater dispersion in home run performance 

among players. 

We next examine regression results for the batting average standard deviation 

(BAVESD), which was found to be stationary around two structural breaks in 1906 and 

1933. The results are reported in Table 4. Following each break, there is a significant 

downward shift in the standard deviation indicating that the variation in batting average 

decreased after 1906 and 1933. There is a negative trend in each time period, while only 

the trend in the last period (1934-2010) is statistically significant. 

We next examine results for our final performance measures of the mean and 

standard deviation of runs batted in (RBIM and RBISD) in Table 5 and 6. Following the 

break in 1887 the RBIM increases. While there is a slight negative trend after the break, 

the trend slope is not significant (p-value > 0.1). For RBISD, following the break in 1921 
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there is a slight increase in RBISD. There is a negative trend in each time period, but the 

trend slope is not significant in either period. While the break in RBISD is again 

associated with the Babe Ruth era, there is little change in the series. Overall, the results 

for RBI suggest that there has been little change in the RBIM and RBISD throughout 

1871-2010. 

To better visualize the regression results reported in Tables 2-6, we construct 

simple plots of the estimated trends and the actual data in Figures 1-5. As in the 

regression results, perhaps most interesting is the plot of the slugging percentage mean 

(SLUGM) displayed in Figure 1. From Figure 1, we can easily observe the significant 

upward shifts in SLUGM that occurred in 1921 and 1992, with the biggest increase 

apparent in 1921 during the early years of the Babe Ruth era. Similarly, in Figure 2, we 

see a significant upward shift in the standard deviation of home runs (HRSD) in 1920. In 

Figure 3, we can observe the general decline in the batting average standard deviation 

(BAVESD). In Figures 4 and 5, we observe the relative overall stability of the mean and 

standard deviation of runs batted in (RBIM and RBISD), respectively. Given that we did 

not perform regressions for the slugging percentage standard deviation (SLUGSD), home 

runs mean (HRM), and batting average mean (BAVEM) due to the inability to reject a 

unit root for these series, we provide plots of these series only for the actual data. The 

plots are reported in Figures 6-8. While these plots are provided for convenience, it is 

difficult to provide analysis relevant to constructing a baseline of baseball performance 

for these series since they could not reject a unit root and resemble random walks.6 

                                                
6 In a unit root process, a structural break in the level can be interpreted as an unusually large one-time 
shock or outlier, while a break in the trend can be interpreted as a permanent change in the drift. 
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The above results suggest that major league baseball performance had a structural 

break around 1920-1921. The slugging percentage mean (SLUGM) had a positive break 

in 1921 suggesting that the average player started to hit for power and hit more doubles, 

triples and home runs. The runs batted in standard deviation (RBISD) had a positive 

structural break in 1921 as did the home run standard deviation (HRSD) in 1920. Both of 

these structural breaks suggest that players after 1920 or 1921 became more diverse in 

their performance measures with some players hitting for power while others did not. 

This result might suggest that with the success of Babe Ruth’s free swinging style others 

that could mimicked his innovation and hit for power as well. Most notable among the 

other breaks is the 1992 positive break in the slugging perecentage mean (SLUGM) that 

is closely associated with the steriod era. The existence of breaks and (stationary) 

deterministic trends for most baseball performance series suggest that adopting a 

benchmark technique is the best way to evaluate talent over time. 

3. Benchmarking 

The deliberation on superstars and their relative performance is oft debated and 

hard to measure, particularly when the comparison happens over different periods of 

time. When structural breaks occur in the game it makes accurate comparisons nearly 

impossible. A more accurate way to measure these talents across time allows for more 

accurate identification of truly great stars. Given a seemingly endless set of debates and 

lists of superstars we propose a measurement technique, adopted from the finance 

literature, to compare stars in a relative performance measure of their same generational 

cohort.  
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In finance, all funds want their returns to be positive; however, the true measure 

of success is the ability to ‘beat the market’. Thus, the overall ranking is relative to some 

moving measure over time, referred to as the market average. Applying this relative 

measure to sporting events will allow us to compare groups of individuals that may have 

played in very different eras.  

In Tables 7-10, we report the means of batting averages, slugging percentage, 

home runs per hundred at bats, and runs batted in per hundred at bats, respectively. In 

each table we report the top ten talented players as measured in absolute terms by the 

overall standard deviations above the overall mean, and the benchmark measure as the 

yearly standard deviation above the yearly mean. The first measure treats the entire 

population as peers and does not account for changes in the game. The second technique 

compares talent directly to their peers. 

In Table 7 we report the ten players with the best batting average. We find that 

using the absolute measure the ten best players all occur in the early years of baseball 

with eight of the ten in the late 1800s, one in 1901, and the last, Roger Hornsby, in 1924. 

Using the benchmarked measure we find that the ten best players come from all eras in 

baseball. Manny Ramirez is the most recent hitting 3.75 standard deviations above the 

season mean. Other notables on this list are Ted Williams in 1941, George Brett in 1980 

and Tony Gwynn in 1994. 

Next we report the results of the slugging percentage for both measures of talent 

in Table 8. Using the absolute standard, Babe Ruth makes the top ten lists four times and 

Barry Bonds makes the list 3 times. The other three making the top ten are Lou Gehrig, 

Roger Hornsby, and Mark McGwier. On the benchmark list Babe Ruth makes the list 5 
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times with the top two in 1920 and 1921 where the structural break in the mean of the 

slugging percentage series occurs. Barry Bond makes the top ten lists in 2001, 2002 and 

2004. He makes the list many years after the second structural break in 1992. Other 

players that make the list are Lou Gehrig in the eighth position and Ted Williams in the 

ninth. 

We next turn our attention to home runs. We report the means in Table 9. First we 

find that using the absolute standard Barry Bonds and Mark McGwier dominate the list of 

the top 13 with Bonds being in the first position hitting home runs 7.37 standard 

deviations above the mean and making the list three times and McGwier making the list 

six times in the second through seventh position. Babe Ruth only makes the list in the 

tenth position in 1920 hitting 5.45 standard deviations above the absolute mean.   

When you take the home runs per at-bats for each individual player for a given 

year, and rank the standard deviations above the mean for each given year, the top ranked 

home run hitter is Babe Ruth in 1920 (Yankees), 1921 (Yankees), 1919 (Boston), and 

1927 (Yankees). He was 10.58, 8.07, 7.26, and 7.04, respectively, standard deviations 

above the mean. The fifth highest ranked player is Ned Williamson (1884 Chicago), 

followed by Ruth (1926), Ruth (1924), Buck Freeman (1899 Washington Senators), Ruth 

(1928), and Gavvy Cravath (1915 Phillies). From the modern era the highest ranked 

players are Barry Bonds (2001 San Francisco), in 13th place, at 5.85 standard deviations 

above the mean and Mark McGwier (1998 and 1997 St Louis), in 19th and 20th place, at 

5.4 standard deviations above the mean.  

Babe Ruth, in his 1920 playing year with the New York Yankees, was 10.58 

standard deviations above the mean for that season. This is simply amazing and displays 
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his level of performance relative to the competition he faced. To put this in perspective, if 

Babe Ruth was 10.58 standard deviations above the mean in 2001, when Barry Bonds set 

the single season home run record, and had the same 476 at-bats that Barry Bonds did, he 

would have hit 120 home runs. Barry Bond still holds the single season mark with 73. 

Next, we measure the RBIs per at-bat of the players throughout time to measure 

how each player performs relative to the mean of the year they played in, again with at 

least 100 at-bats. 

In Table 10, we report the results of the superstars as measured by standard 

deviations above the mean. We find that Reb Russell, playing for the Pittsburgh Pirates, 

has the highest ranking in RBIs both using the absolute and the benchmark standards.7   

He was 5.04 above the absolute mean and 4.93 standard deviations above the season 

mean. Other notable players on the absolute standard list are Babe Ruth in 1921 in the 

sixth position, Manny Ramirez in 1999 in the seventh position and Mark McGwier in 

2000 in the ninth position. Using the benchmark standard Babe Ruth has 5 of the top ten 

rankings. Babe Ruth ranks third, fourth, fifth, sixth and tenth. No players from the 

modern era make the top ten. We do find that Manny Ramirez is ranked 13th and 20th as 

the highest ranked modern era player. 

4. Conclusion 

When innovation occurs players/workers who mimic the innovation also receive 

an increase in productivity. As this productivity changes, it becomes increasingly difficult 

for management to compare productivity over different periods of time. When this 

occurs, relative measures have more value. We propose that the use of a benchmark 

                                                
7 Reb Russell was a pitcher from 1912-1917 with the Chicago White Soxs. He did not become a big hitter 
until after developing arm troubles and finding his hitting in the minor leagues. 
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measure is more accurate in finding superstar players in baseball and this strategy can be 

used by managers when analyzing superstar employees over different periods of time.   

Using various hitting performance measures our time series analysis identifies 

two major structural breaks in performance measures, in about 1920 and 1992. We 

suggest that the game of baseball significantly changed during these times. Using 

benchmarking techniques we find that Babe Ruth was the best power hitter in baseball 

compared to his peers particularly just prior to the structural break in the game. We 

suggest that the structural break occurs when players began to mimic Babe Ruth’s 

technique. After focusing on both the structural breaks and the benchmark measure of 

talent, we suggest that Babe Ruth was not only the best power hitter compared to his 

peers but he also changed the game. The other structural change came at, what could be 

argued to be, the beginning of the steroid era.   
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Table 1. LM Unit Root Test Results, 1871-2010 
 

Time Series k Breaks Test Statistic Break Points 
SLUGM 0 1921, 1992 -5.714** λ = (.4, .8) 
SLUGSD 1 1904 -3.806 λ = (.2) 
HRM 0 1949, 1975 -5.094 λ = (.6, .8) 
HRSD 0 1920, 1966 -6.156** λ = (.4, .6) 
BAVEM 6 1891, 1941 -5.151 λ = (.2, .6) 
BAVESD 0 1906, 1933 -7.344*** λ = (.2, .4) 
RBIM 8 1887 -4.397* λ = (.2) 
RBISD 5 1921 -4.707** λ = (.4) 
 
Notes: SLUG, HR, BAVE, RBI, and ERA denote annual slugging percentage, homeruns, 
batting average, runs batted in, and earned run average of all players in the series, where 
M denotes the mean and SD denotes the standard deviation, respectively.  The Test 
Statistic tests the null hypothesis of a unit root, where rejection of the null implies a 
trend-break stationary series. k is the number of lagged first-differenced terms included to 
correct for serial correlation. The critical values for the one- and two-break LM unit root 
tests come from Lee and Strazicich (2003, 2004). The critical values depend on the 
location of the breaks, λ = (TB1/T, TB2/T), and are symmetric around λ and (1-λ). *, **, 
and *** denote significant at the 10%, 5%, and 1% levels, respectively. 
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Table 2. OLS Regression Results of Slugging Percentage Mean (SLUGM) on Level 
and Trend Breaks in 1921 and 1992, 1871-2010 

________________________________________________________________________ 
 
SLUGMt = 0.126D1871-1921 + 0.155D1922-1992 + 0.173D1993-2010 
 
 (4.650)*** (4.978)*** (5.95)*** 
 
 + 0.0002T1871-1921 - 0.0001T1922-1992 - 0.0008T1993-2010 + lags(1) + et 
 
 (1.471) (-1.336) (-2.178)** 
 
 Adjusted R-squared = 0.791 SER = 0.016 
_________________________________________________________________________ 
 
Notes:  Dependent variable is the slugging percentage mean in year t.  t-statistics are 
shown in parentheses.  D and T represent dummy variables for the three identified 
intercepts and trends respectively. White’s robust standard errors were utilized to control 
for heteroskedasticity.  Lagged values of the batting average standard deviation were 
included to correct for serial correlation.  ***, **, and * denote significant at the 1%, 5%, 
and 10% levels, respectively. 
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Table 3. OLS Regression Results of Home Run Standard Deviation (HRSD) on 
Level and Trend Breaks in 1920 and 1966, 1871-2010 

________________________________________________________________________ 
 
HRSDt = 0.002D1871-1920 + 0.006D1921-1992 + 0.008D1993-2010 
 
 (3.876)*** (6.154)*** (5.433)*** 
 
 + 0.00003T1871-1920 + 0.00006T1921-1992 + 0.00002T1993-2010 + lags(1) + et 
 
 (1.967)* (3.142)*** (2.233)** 
 
 Adjusted R-squared = 0.947 SER = 0.001 
_________________________________________________________________________ 
 
Notes:  Dependent variable is the home run standard deviation in year t.  t-statistics are 
shown in parentheses.  D and T represent dummy variables for the three identified 
intercepts and trends respectively. White’s robust standard errors were utilized to control 
for heteroskedasticity.  Lagged values of the batting average standard deviation were 
included to correct for serial correlation.  ***, **, and * denote significant at the 1%, 5%, 
and 10% levels, respectively. 
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Table 4. OLS Regression Results of Batting Average Standard Deviation (BAVESD) 
on Level and Trend Breaks in 1906 and 1933, 1871-2010 

________________________________________________________________________ 
 
BAVESDt = 0.051D1871-1906 + 0.045D1907-1933 + 0.039D1934-2010 
 
 (7.740)*** (7.246)*** (7.653)*** 
 
 - 0.00003T1871-1906 - 0.00007T1907-1933 - 0.00005T1934-2010 + lags(4) + et 
 
 (-0.598) (-1.186) (-4.674)*** 
 
 Adjusted R-squared = 0.875 SER = 0.002 
_________________________________________________________________________ 
 
Notes:  Dependent variable is the batting average standard deviation in year t.  t-statistics 
are shown in parentheses.  D and T represent dummy variables for the three identified 
intercepts and trends respectively. White’s robust standard errors were utilized to control 
for heteroskedasticity.  Lagged values of the batting average standard deviation were 
included to correct for serial correlation.  ***, **, and * denote significant at the 1%, 5%, 
and 10% levels, respectively. 
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Table 5. OLS Regression Results of Runs Batted In Mean (RBIM) on Level and 
Trend Break in 1887, 1871-2010 

________________________________________________________________________ 
 
RBIMt = 0.005D1871-1887 + 0.023D1888-2010 
 
 (0.263) (2.679)*** 
 
 + 0.002T1871-1887 + 0.00002T1888-2010 + lags(5) + et 
 
 (0.989) (0.688) 
 
 Adjusted R-squared = 0.639 SER = 0.010 
_________________________________________________________________________ 
 
Notes:  Dependent variable is the runs batted in mean in year t.  t-statistics are shown in 
parentheses.  D and T represent dummy variables for the two identified intercepts and 
trends respectively. White’s robust standard errors were utilized to control for 
heteroskedasticity.  Lagged values of the batting average standard deviation were 
included to correct for serial correlation.  ***, **, and * denote significant at the 1%, 5%, 
and 10% levels, respectively. 
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Table 6. OLS Regression Results of Runs Batted In Standard Deviation (RBISD) on 
Level and Trend Break in 1921, 1871-2010 

________________________________________________________________________ 
 
RBISDt = 0.025D1871-1921 + 0.026D1922-2010 
 
 (2.930)*** (3.388)*** 
 
 - 0.00008T1871-1921 - 0.00002T1922-2010 + lags(4) + et 
 
 (-1.040) (-1.635) 
 
 Adjusted R-squared = 0.396 SER = 0.004 
_________________________________________________________________________ 
 
Notes:  Dependent variable is the runs batted in standard deviation in year t.  t-statistics 
are shown in parentheses.  D and T represent dummy variables for the two identified 
intercepts and trends respectively. White’s robust standard errors were utilized to control 
for heteroskedasticity.  Lagged values of the batting average standard deviation were 
included to correct for serial correlation.  ***, **, and * denote significant at the 1%, 5%, 
and 10% levels, respectively. 
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Table 7: Batting Average: Absolute Standard vs. Benchmark 
 

!! Player! Year!

SD!above!
the!season!

mean! Rank! Player! Year!

SD!above!
!the!season!

mean!
1! Levi!Meyerle! 1871! 5.659514! 1! Bob!Hazle! 1957! 3.86!

2! Hugh!Duffy! 1894! 4.368691! 2!
Manny!
Ramirez! 2008! 3.75!

3! Tip!O'Neill! 1887! 4.258268! 3! Ted!Williams! 1941! 3.69!
4! Ross!Barnes! 1872! 4.187384! 4! George!Brett! 1980! 3.68!
5! Cal!McVey! 1871! 4.164273! 5! Tip!O'Neill! 1887! 3.65!
6! Ross!Barnes! 1876! 4.095538! 6! Tony!Gwynn! 1994! 3.59!
7! Nap!Lajoie! 1901! 4.043987! 7! Oscar!Gamble! 1979! 3.57!
8! Ross!Barnes! 1873! 4.019332! 8! Tris!Speaker! 1916! 3.54!
9! Willie!Keeler! 1897! 3.977446! 9! David!Dellucci! 1999! 3.54!

10!
Roger!
Hornsby! 1924! 3.971277! 10! Jack!Glasscock! 1884! 3.51!
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Table 8: Slugging Percentage: Absolute Standard vs. Benchmark 
 

Rank! Player! Year!
SD!above!the!
absolute!mean! Rank! Player! Year!

SD!above!the!
season!mean!

1! Barry!Bonds! 2001! 5.65! 1! Babe!Ruth! 1920! 5.77!
2! Babe!Ruth! 1920! 5.49! 2! Babe!Ruth! 1921! 5.21!

3! Babe!Ruth! 1921! 5.45! 3!
Barry!
Bonds! 2001! 5.03!

4! Barry!Bonds! 2004! 5.06! 4!
Barry!
Bonds! 2004! 4.91!

5! Barry!Bonds! 2002! 4.90! 5!
Barry!
Bonds! 2002! 4.79!

6! Babe!Ruth! 1927! 4.59! 6! Babe!Ruth! 1927! 4.57!
7! Lou!Gehrig! 1927! 4.51! 7! Babe!Ruth! 1926! 4.50!

8! Babe!Ruth! 1923! 4.50! 8!
Lou!

Gehrig! 1927! 4.49!

9!
Rogers!
Hornsby! 1925! 4.40! 9!

Ted!
Williams! 1941! 4.36!

10!
Mark!

McGwier!! 1998! 4.36! 10! Babe!Ruth! 1924! 4.35!
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Table 9: Home Runs: Absolute Standard vs. Benchmark 
 

Rank! Player! Year!
SD!above!the!
absolute!mean! Rank! Player! Year!

SD!above!the!
season!mean 

1!
Barry!
Bonds! 2001! 7.37! 1! Babe!Ruth! 1920! 10.58!

2!
Mark!

McGwier! 1997! 6.53! 2! Babe!Ruth! 1921! 8.07!

3!
Mark!

McGwier! 1998! 6.51! 3! Babe!Ruth! 1919! 7.26!

4!
Mark!

McGwier! 2000! 6.40! 4! Babe!Ruth! 1927! 7.04!

5!
Mark!

McGwier! 1999! 5.81! 5!
Ned!

Williamson!! 1884! 7.01!

6!
Mark!

McGwier! 1995! 5.71! 6! Babe!Ruth! 1926! 6.83!

7!
Mark!

McGwier! 1996! 5.71! 7! Babe!Ruth! 1926! 6.50!

8!
Hill!

Glenallen! 2000! 5.62! 8!
Buck!

Freeman!! 1899! 6.41!

9!
Barry!
Bonds! 2004! 5.58! 9! Babe!Ruth! 1928! 6.11!

10! Babe!Ruth! 1920! 5.45! 10!
Gavvy!
Cravath!! 1915! 6.08!

11!
Barry!
Bonds! 2003! 5.30! 13! Barry!Bonds! 2001! 5.85!

12!
Frank!
Thomas! 2005! 5.24! 19!

Mark!
McGwier!! 1998! 5.42!

13!
Barry!
Bonds! 2002! 5.23! 20!

Mark!
McGwier!! 1997! 5.41!
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Table 10: RBIs: Absolute Standard vs. Benchmark 
 

Rank! Player! Year!
SD!above!the!
absolute!mean! Rank!! Player! Year!

SD!above!the!
season!mean!!

1! Reb!Russell! 1922! 5.04! 1! Reb!Russell! 1922! 4.93!
2! Hack!Wilson! 1930! 4.71! 2! Cap!Anson! 1886! 4.74!

3!
Sam!
Thompson! 1894! 4.62! 3! Babe!Ruth! 1920! 4.65!

4!
Charlie!
Ferguson! 1887! 4.61! 4! Babe!Ruth! 1919! 4.21!

5!
Rynie!
Wolters! 1871! 4.54! 5! Babe!Ruth! 1921! 4.21!

6! Babe!Ruth! 1921! 4.49! 6! Babe!Ruth! 1926! 4.20!

7!
Manny!
Ramirez! 1999! 4.47! 7!

Charlie!
Furguson! 1887! 4.17!

8! Jimmie!Foxx! 1938! 4.33! 8!
Gavvy!
Cravath!! 1913! 4.05!

9!
Mark!

McGwier!! 2000! 4.32! 9! Joe!Wood! 1921! 4.04!
10! Joe!Wood! 1921! 4.32! 10! Babe!Ruth! 1932! 4.03!
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Figure 1.  Slugging Percentage Mean, 1871-2010, and OLS Regression on Level and 
Trend Breaks in 1921 and 1992 
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Figure 2.  Home Run Standard Deviation, 1871-2010, and OLS Regression on Level 
and Trend Breaks in 1920 and 1966 
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Figure 3.  Batting Average Standard Deviations, 1871-2010, and OLS Regression on 
Level and Trend Breaks in 1906 and 1933 
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Figure 4  Runs Batted In Mean, 1871-2010, and OLS Regression on Level and 
Trend Break in 1887 
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Figure 5.  Runs Batted In Standard Deviation, 1871-2010, and OLS Regression on 
Level and Trend Break in 1921 
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Figure 6.  Slugging Percentage Standard Deviation, 1971-2010 
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Figure 7.  Home Run Mean, 1971-2010 
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Figure 8.  Batting Average Mean, 1971-2010 
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