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Abstract: Cross sectional employment data is not random.  Individuals who survive to a 
longer level of tenure tend to have a higher level of productivity than those who exit 
earlier.  This result suggests that in cross sectional data high productivity workers are 
over-sampled at high levels of tenure.  In wage equations using cross sectional data, 
results could be biased from the over sampling of high productive workers at long levels 
of tenure.  This survival effect in cross sectional data could possibly bias the coefficient 
on tenure upwards.  We explore techniques to correct for survival bias using a panel 
study of National Basketball Association players.  In particular we focus on a modified 
Heckman selectivity bias procedure using duration models to correct for survival bias. 
 



Introduction 
 
 Wages tend to increase with labor market experience.  In a cross sectional wage 

equation the coefficient on experience is generally found to be positive and the 

coefficient on experience squared is generally found to be negative.  These coefficients 

show that experience has a positive but concave relation to wages.  We suggest that the 

coefficients on experience and experience squared may be biased because in a cross 

sectional data set the observations are not random.  In particular, we suggest that 

individuals with greater ability have a higher survival rates in occupations than low 

ability workers that leads to an over-representation of high ability workers at high levels 

of experience.   

 In a series of articles using professional sports data increased performance has 

been shown to lower the probability of exiting a career (Groothuis and Hill 2004, 

Groothuis and Hill 2008, and Groothuis and Groothuis 2008.)  Groothuis and Hill (2004) 

focusing on career duration in the National Basketball Association (NBA) found that 

performance and weight of the basketball player determined career length.  They found 

that the race of the player did not matter.  Groothuis and Hill (2008) research focusing on 

Major League Baseball (MLB) found that career length of both pitchers and hitters 

depended on performance not the race of the player.  Groothuis and Groothuis (2008) 

found that career length also depended on performance, not family status of the driver.  In 

all cases individuals with high performance had longer career duration than low 

performance individuals.   

 In this article using NBA data, we explore techniques to correct for survival 

effects in wage equations.  In section one, we provide a literature review of the theories 



of the wage tenure profile explaining why wages are expected to rise with labor market 

experience.  In section two, we review a duration model of career length and discuss how 

the inverse-Mills ratio can be used to correct for survival bias.  In section three, we 

estimate wage equations for NBA players. In this section we estimate wage equations 

using OLS estimates and a survival-bias corrected model.  We conclude with a discussion 

of possible extensions of the survival bias model. 

 

Section One: Wages Tenure Profile 

Three main theories have been developed to explain the positive relationship 

between wages and experience.   The first model is the human capital model.  The human 

capital model suggests that investment in training occurs early in a career and enhances 

productivity later in a career (Becker 1962).  Thus wages rise as productivity rises.  If all 

training is general, wages should equal productivity in all periods.   If training is firm- 

specific, wages should be higher than measured productivity in the first period and lower 

than measured productivity in the second period as firm specific human capital is a 

shared investment.   

The second model used to explain the wage-tenure profile is the deferred 

compensation model.  In this model, to induce effort, workers are paid lower than 

productivity wages in the first period and rewarded with wages above productivity later 

in their careers for their earlier career efforts (Lazear 1979).  In this model wages should 

be lower than productivity in the first period and higher than productivity in the second 

period.   



The third model suggests that wages rise not as a function of training or deferred 

compensation but because of a better labor market match.  In this model the wage tenure 

relation is based on the idea that workers who last in a career are either better workers 

(more productive) or have better worker-employer matches (Abraham and Farber 1987).      

The cross sectional wage equation thus captures job duration effects that are reflected in 

increased productivity of the sample who remain and not each individual worker. 

We suggest a way to test the implication of the three models by controlling for 

duration effects by using a modified Heckman selectivity bias procedure.  In this study, 

we use a panel data set of all NBA players from the 1989 through the 1999 season for an 

eleven year panel.  In table 1, we report the means of the variables used; in particular we 

find the average career length was about six years.  In addition, we find that the median 

career length for the same time period was 5 years with the longest career being 21 

seasons.  In the next section, we review a stock-flow duration model that supports the 

claim that workers who last in a career are more productive than those who exit earlier. 

 

Career Duration Analysis 

 To test for survival effects we estimate semi-parametric hazard functions 

following Berger and Black (1998), Berger, Black, and Scott (2004), Groothuis and Hill 

(2004), Groothuis and Hill (2008) and Groothuis and Groothuis (2008); since our data is 

at the season level we calculate our hazard model as a discrete random variable.  As with 

Berger, Black, and Scott (2004), we model the durations of a single spell and assume a 

homogeneous environment so that the length of the spell is uncorrelated with the calendar 

time in which the spell begins.  This assumption lets us treat all the players' tenure as the 



same regardless of when it occurred in the panel study.  For instance, all fourth year 

players are considered to have the same base line hazard regardless of calendar time so a 

fourth year player in 1990 has the same baseline hazard as a fourth year player in 1997. 

 To understand how stock data influences a likelihood function we follow the 

notation of Berger, Black, and Scott (2004).  Suppose the probability mass function (pmf) 

of durations is defined as f t x( , , )β , where t is the duration of the career, x is a vector of 

performance and personal characteristics, and β is a vector of parameters.  Now denote 

F(t,x,β) as the cumulative distribution function; then the probability that a career lasts at 

least t° years is simply 1 - F(t°,x,β).  If we define the hazard function as h(t,x,β) ≡ f(t,x,β) 

/ S(t,x,β) where S is the survivor function,  and apply the 

definition of conditional probabilities, we may express the pmf as 
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If we have a sample of n observations, {t1, t2, . . ., tn}, the likelihood function of the 

sample is  
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Often it is not possible to observe all careers until they end, hence careers are often right- 

censored.  Let the set A be the set of all observations where the players' careers are 

completed and the set B be the set of all observations where the careers are right 



censored.  For the set of right-censored observations, all we know is that the actual length

of the career is greater than ti, the observed length of the career up through the last year. 

Because we know that the actual length of the career is longer than we observe then the 

contrib

 

 

ution of these observations to the likelihood function is just the survivor function 
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.  Taking into account all four sets: A, B, C, and D the likelihood function 

ecomes 
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 To introduce stock sampling, let the set C be the set of careers that were in 

progress when data collection began.  For these observations, we know that the career i

has lasted for r years before the panel begins so the likelihood must be adjusted by the

conditional probability of the career having length r.  Of course, some stock-sampled 

observations may be right-hand censored.  Let the set D be the set of all stock-sampled 

observations that are also right-hand censored.  An example of a career that is both right 

and left censored would be a player that starts his career prior to 1989 and ends his ca

after 1999
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In equation (3) the contribution of censored, stock-sampled observations to the likelihood 

function is strictly from the last two terms; s

he survivor function between (r,t).   

Thus we, as Berger, Black and Scott (2004), have expressed the likelihood 

function as a function of the hazard functions.  All that remains is to specify the form of a 

hazard function and estimate by means of maximum likelihood estimation.  As the hazar

function is the conditional probability of exiting NBA given that the NBA career lasted



until the previous season, the hazard function must have a range from zero to one.  In 

principle, any mapping with a range from zero to one will work.   For our purposes we

choose the probit model.  We choose the probit model over the more traditional log

model because the probit model provides the benefit of the ability to calculate the 

inverse-M

 

it 

ills ratio.  We will review the implication of the inverse-Mills ratio in the next 

section

.  

s in 

 zero for the first 5 years (tenure one through five) and be equal to one for 

th 

 

years 8 and 9 and in the 10th year it takes on a value of one with this player appearing in 

.   

The intuition behind the probit model for the hazard function is relatively simple

For each year during the survey in which the player is in NBA, the player either comes 

back for another season or ends his career.   If the career ends, the dependent variable 

takes on a value of one; otherwise, the dependent variable is zero.  The player remain

the panel until the player exits NBA or the panel ends.  If the panel ends, we say the 

worker’s spell is right-hand censored.  Thus a player who begins his NBA career during 

the panel and plays for 6 years will enter the data set 6 times: the value of his dependent 

variable will be

the sixth year. 

 To illustrate a stock sample consider another player who enters the panel with 7 

years of NBA job tenure prior to 1990 the first year of the panel, then plays for an 

additional 3 years for a 10 year career.  For this player we ignore his first 7 years of 

tenure because he is left-hand censored.  As the equation of the likelihood function wi

stock data indicates, the duration of a NBA career prior to the beginning of the panel 

makes no contribution to the value of the likelihood function.  Therefore only years 8 

through 10 will enter the data set with the dependent variable taking on the value zero for



the data set a total of 3 times.  Note for all players who are right-hand censored, we do 

not know when their career ends so their dependent variables are always coded as zero. 

 Because the players in the panel have varying degrees of job tenure prior to the 

beginning of the panel, we identify the hazard function for both long and short careers.  

The disadvantage to this approach is that the vector γt of equation (3) can be very large.  

In our study it would require 21 dummy variables.  We also run into problems with the 

dummy variable technique because we have too few players who have long careers.  To 

simplify the computation of the likelihood function and be able to keep the long careers, 

we simply approximate the γt vector with a 4th order polynomial of the players’ tenure in 

NBA, which reduces the number of parameters to be estimated from 21 to 4.  Thus, the 

hazard function becomes 

 

  ))(Pr(),Pr( βφβ xtxt += ,    (4) 

 

where φ(t) is a 4th order polynomial of  the player’s tenure in NBA.  The 4th order 

polynomial therefore includes tenure to the first, second, third, fourth and fifth powers.  

Once again, we choose the Taylor series approximation technique over using tenure 

dummies due to the small number of observations for high tenures.1 

 In table 2 we report the results of equation 6 for NBA players.  We find that 

points per minutes, assists per minutes, blocked shots per minute, games per season, 

weight of player, and higher draft position all lower the probability of exiting a career.  

These results show that performance lengthens the careers of NBA players suggesting 

                                                 
1 When higher order polynomials of the fifth and sixth  power are included results do not change suggesting 
that a fourth order polynomial is flexible enough to capture the influence of the base line hazard 



that higher performance players are over represented latter in careers.    In the next 

section we explore if survival bias effects wage equations. 

 

 

Duration effects and Sample Selection Bias 

 The Heckman (1979) procedure has long been used by economist to control for 

self selection in a sample.  In our case, we suggest that performance increases the 

likelihood of survival in the NBA.  We explore if a modified Heckman procedure 

controls for survival bias in wage equations.  Following Green’s (1998) notation consider 

the basic sample selection model where,  

  di*=z’γ + υ  and  di=1 if  di* > 0;  di=0 otherwise,   (5) 

 yi=x’β +εi       (6), 

and y is only observed if di is equal to one.  Suppose as well that υ and ε have a bivariate 

normal distribution with zero means and a correlation of ρ.  Then  

 E(y| y is observed)  = E(y| d* >0)    (7) 

    =E(y| υ >-z’γ)    (8) 

   = x’β +E(ε| υ>-z’γ)   (9) 

    = x’β +ρσελ(αυ )   (10) 

 or    = x’β +βλλ(αυ )    (11) 

Where λ(αυ ) is the inverse Mill’s ratio.  The overall equation of interest becomes 

  yi|d*>0 |= x’β +ρσελ(αυ ) +εi,      (12) 

Thus the marginal effect of a regressor in the observed sample consists of two parts 

 ∂ E(y| y is observed)  = βk +γk (ρσε  / συ)λ(αυ )  (13) 
  ∂xk 



 

where the first part β is the marginal effect of the observed equation and γ is the influence 

the variable has on the likelihood of being observed.  Heckman (1979) recommends a 

two step procedure: first estimate a probit on the selection equation to obtain estimates of 

γ. Then estimate the OLS regression along with the inverse Mill’s ratio to estimate β and 

βλ. 

 In our case the selection equation comes from equation 5 from the above career 

duration model.  The probit estimates the probability of exiting from a career so instead 

of estimating the probability of being in the sample, as in Heckman’s approach, we 

estimate the probability of exiting the sample.  Equation 6 in our analysis is a cross 

sectional wage equation where the data on workers are selected into the sample with 

higher skilled workers remaining in the sample while low skill workers are more likely to 

leave.  

In table 3, we report the results of the log wage equation for NBA players.  In 

column one, we report the results of the log wage equation using OLS.  In this model we 

find that tenure and tenure squared follow the traditional relation.  In addition, we find 

that improved performance and height increase wages.  In particular, increases in points 

per minute, assists per minute, and blocks per minute all increase the wage rate.  We also 

find that higher draft numbers correspond with lower wages and the more games played 

per season correspond with higher wages.  In column two, we correct for survival bias 

using the inverse Mill’s ratio as an additional independent variable to correct for survival 

bias.  The results show that the coefficient on the inverse Mill’s ratio is positive and 



significant.  The results suggest that survival bias exists for players in the NBA 

confirming that high quality players are over sampled at long levels of tenure.   

A closer look at the results show that the coefficient on tenure is positive while 

tenure squared is negative and changes slightly from .240 to .234 after controlling for 

survival bias suggesting a slightly lower influence of tenure on wages at the magnitude of 

a 2.5 percent.  This result is consistent with the Abraham and Farber’s (1987) model that 

suggest that the tenure variable captures survival effects.  Survival bias, however, is 

relatively modest with tenure still having a large impact on wages.  In addition Becker’s 

(1962) human capital model is not supported.  It is not supported because in the wage 

equation tenure and tenure squared does not change when including the performance 

measures in the equation.   

 

Conclusion  

 Cross sectional employment data is not random.  Individuals who survive to a 

longer level of tenure tend to have a higher level of productivity then those who exit 

earlier.  These results suggest that in cross sectional data high productivity workers are 

over-sampled at high levels of tenure.  To correct for survival bias we use a modified 

Heckman technique.   We find that in a log wage equation of NBA players that survival 

bias is present and influences the coefficients on tenure but does not influence the 

coefficients on tenure squared or performance measures.  Future research will attempt to 

measure survival bias in a panel study instead of a cross sectional wage equation. 

 

 



TABLE 1 
Means 

Variable Means 
(standard deviation) 

Career length 5.78 
(3.89) 

White .21 
(0.41) 

Height 79.2 
(4.1) 

Weight 221.9 
(29.6) 

Games per season 57.0 
(24.2)) 

Points per minute .385 
(.135) 

Assists per minute .087 
(.062) 

Rebounds per minute .178 
(.085) 

Steals per minute .033 
(.018) 

Turnovers per Minute .074 
(0.28) 

Blocks per minute .021 
(0.22) 

Draft Number 24.3 
(23.4) 

Number observations 
Number of players 

3886 
1113 

Salary 1998 $3,737,229 
(3,436,466) 

Number of players 295 



TABLE 2 

NBA Career Duration Semi-parametric Analysis 
1989-1999 

Variable Probit Model

Constant 1.75 
(4.29) 

Weight -.007 
(4.50) 

Games per season -.026 
(20.49)) 

Points per minute -.410 
(2.04) 

Assists per minute -2.11 
(3.23) 

Rebounds per minute -.475 
(1.09) 

Steals per minute -1.59 
(1.07) 

Turnovers per Minute .012 
(0.16) 

Blocks per minute -.548 
(0.34) 

Draft Number .003 
(2.31) 

Chi-squared 692.30 
Number observations 3889 

--First through fourth order tenure polynomials are also included to provide for 
general functional form of baseline hazard. They are jointly significant.  
--The numbers in parentheses are absolute value of t-ratios. 



Table 3 
Log Wages 1998 

Variable OLS 
 

OLS 
 

Constant 7.78 
(5.11)

8.50 
(5.51)

Tenure .240 
(6.02)

.234 
(5.88)

Tenure Squared -.013 
(4.96)

-.012 
(4.60)

Games per season .020 
(5.54)

.016 
(3.96)

Points per minute 2.59 
(6.19)

2.60 
(6.27)

Assists per minute 5.20 
(4.70)

4.97 
(4.50)

Rebounds per minute .77 
(0.98)

.46 
(0.56)

Steals per minute -2.12 
(0.68)

-2.24 
(0.72)

Turnovers per Minute .010 
(0.14)

.029 
(0.39)

Blocks per minute 7.88 
(2.62)

7.67 
(2.94)

Draft Number -.010 
(3.80)

-.009 
(3.96)

Height .050 
(2.70)

.045 
(2.46)

Inverse Mills Ratio  .497 
(2.31)

R2 .46 .47 
Number observations 295 295 
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