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Hand in the Cookie Jar: An Experimental Investigation of  

Equity-based Compensation and Managerial Fraud:  

 

Abstract 

 The use of equity-based compensation is an increasingly popular means by which to align 

the incentives of top management with that of the shareholders. However, recent theoretical and 

empirical research suggests that the use of equity-based compensation has the unintended 

consequence of creating the incentive to commit managerial fraud of the type being reported in 

the press.  This paper reports experimental evidence showing that the amount of fraud committed 

by subjects is positively correlated with the level of equity, as is the level of effort.  As well, the 

amount of fraud that is committed is negatively correlated with the probability of detection and 

subjects’ risk aversion.  The experimental design permits the identification of causal relations in 

the directions just noted. 
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I. Introduction 

It has long been recognized that the managers and owners of a firm have different 

incentives.  The owner seeks to maximize the value of the firm while the manager may derive 

utility from additional factors such as the firm’s market share, total output and, total 

employment.  Equity-based compensation has been an increasingly popular means by which to 

align the incentives of top management with those of the shareholders.  By providing a share in 

the ownership of the firm, equity provides the manager with a greater incentive to maximize the 

value of the firm.  However, recent theoretical and empirical work suggests that the use of 

equity-based compensation has the (unintended, presumably) consequence of creating an 

incentive to commit fraud.  Management’s ability to manipulate information regarding the firm’s 

actual performance raises the possibility that reported output (profits) will be overstated.  This 

paper provides behavioral evidence, gleaned from a laboratory experiment, that increasing the 

level of equity causes both the level of effort and the amount of fraud to increase. 

Several recent empirical studies have cited the increasing use of equity-based 

compensation for top-level executives (Itner, Lambert, and Larcker (2003), Anderson, Banker, 

and Ravindran (2000), Murphy (2003), Hall and Murphy (2002), and Hall (2003)).  In 1984, for 

example, stocks and options comprised less than one percent of total CEO compensation for the 

median firm for U.S. publicly traded corporations.  By 2001 stocks and options accounted for 

nearly two-thirds of total executive compensation for the median firm.  This phenomenon is even 

more pronounced in “new economy” firms, defined as companies in the computer, software, 

Internet, telecommunications, and networking industries.  Fama (1980) alludes to this 

phenomenon in arguing that it is the market for executive labor that demands the use of 

performance-based compensation.  It is ironic that the very market creating the incentive to use 
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equity-based pay may be a victim of the incentive equity-based pay creates to improve 

accounting and financial statements, fraudulently if necessary.  Erickson, Hanlon, and Maydew 

(2006), Johnson, Ryan, and Tian (2006), and Denis, Hanouna, and Sarin (2006) find that 

executives in firms accused of corporate malfeasance relied significantly more on equity-based 

compensation than those in firms that had not been accused of fraud.  Furthermore, Chen et al 

(2006) find evidence that weaker corporate governance, as measured by board characteristics, are 

associated with a higher incidence of fraud.1 

Recent theoretical models emphasize management’s ability to manipulate the reported 

earnings of the firm.  Goldman and Slezak (2006) and Robison and Santore (2006) derive agency 

models in which a key element is the agent’s ability to provide false information to the principal 

concerning the outcome of the agent’s effort.  While these models differ in the details, in both, 

equity compensation provides the incentive for the agents to overstate the value of the firms they 

manage.  Thus, increasing equity compensation is predicted to increase managerial effort as well 

as fraudulent reporting, though this latter effect will be damped by increased auditing 

(enforcement) and sanctions for fraudulent activity.  The purpose of this paper is to empirically 

test of these theoretical predictions with behavioral evidence from a laboratory experiment. 

There are obvious limitations to the use of laboratory investigations of managerial 

malfeasance.2  Despite the many insights of the empirical literature utilizing field data, there are 

several issues that are difficult to address with such data.  While the component of executive 

compensation that is based on the equity value of the firm is public knowledge, the effective 

enforcement (audit) effort is not.  Further, absent an explicit policy intervention, the field data 

typically do not contain specific changes in the enforcement levels.  The theoretical predictions 

of management behavior are often predicated on the fact that the managers are fully aware of the 
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probability of an audit by a regulatory agency and of the effectiveness of such audits but, as we 

have noted, there is often considerable uncertainty and the analyst working with field data must 

make inferences of managements’ perceptions of the regulatory processes.  Of course, with field 

data by necessity one can only measure detected fraud.  Finally, the reactions to changes in 

equity compensation levels and to the probability of fraud being detected depend on individual 

risk attitudes, which are not easily observed in the field.3 

The laboratory offers the researchers considerable control via the construction of the 

institution and the use of induced values (Smith, 1982).  This control affords us an opportunity to 

test the predictions of the recent theoretical models of managerial malfeasance through varying 

parameters predicted to affect the level of such malfeasance.  In the controlled environment of 

the lab we are able to collect data on the actual effort and fraud choices of human subjects, and 

observe how these choices are affected by a change in the level of equity-based compensation 

and in the likelihood of fraud detection. Unlike the field data, the laboratory allows us to observe 

the amount of fraud committed when it goes undetected. Also, by manipulating a single variable 

and holding all other factors constant, we are able to observe causation rather than simply 

correlation.4 Our design introduces orthogonal variation in the equity-based compensation and 

the probability that fraud will be detected.  Further, our design allows us to control for risk 

attitudes since we are able to elicit individual risk attitudes over the domain of the payoffs 

provided in the effort and fraud decision setting.   

 

II. A Model of Managerial Behavior  

 Goldman and Slezack (2006) and Robison and Santore (2006) provide the basis for the 

following theoretical discussion of the effects of equity-based pay and monitoring on the amount 
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of fraud that is committed.  In these models, the manager is compensated via a two-part contract, 

(w, α), where w denotes the manager’s salary income and α denotes the percentage of total firm 

equity given to the manager.  For her part, the manager must make two decisions; the level of 

effort and, then, the value of the firm to report to the market. 

More precisely, the manager first must choose an effort level, L, which adds value to the 

firm.  There are diminishing marginal returns to effort such that the value of the firm, g(L), is a 

strictly concave function of the amount of effort the manager contributes (i.e. g′(L) > 0, g′′(L) < 

0).  Providing value-adding effort is costly to the manager and therefore reduces the manager’s 

(certain) salary based income.  In the following discussion the cost of effort is normalized; each 

unit of effort costs the manager one unit of salary income. The manager’s choice of effort 

determines the true value of the firm, but this value is observed by the manager only; the owners 

do not observe the true value of the firm.  

After the manager chooses effort, she must choose the value of the firm to report to the 

shareholders.  Any value in excess of the true value reported by the manager is considered fraud. 

Thus, the reported value of the firm is the true value of the firm plus any additional value the 

manager chooses to report, g(L) + F, where F is the amount of fraud committed by the manager.5  

The potential to commit fraud is sufficient to generate a reaction from the market.  The market 

rationally expects some level of fraud, Fe.6  It is not costless for the manager to defraud the 

shareholders.  There is a known probability, p, that the manager will be caught committing fraud 

and sanctions, s(F) will be imposed on the manager.  The sanctions function is increasing and 

strictly convex in the amount of fraud (i.e., s′(F) > 0, and s′′(F) >0).  

The manager’s preferences over potentially random distributions of wealth are given by 

the mean-variance utility function shown in equation 1, 



 

 

7

 EUM   = E(WM) − rMσwm
2,      (1) 

where WM is the manager’s wealth, σwm
2 is the variance of the manager’s wealth, and rM ≥ 0 is a 

risk aversion parameter. It is straightforward to calculate the variance of s(F), which equals the 

variance in the manager’s wealth.7  

  σS
2(F) = p[s − ps]2 +(1−p)[0 − ps]2  = p(1− p)s2     

Recalling that s′′(F) >0, it follows that   
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Choosing a greater value of fraud increases the variance of the manager’s wealth. So the 

cost of choosing greater fraud has two costs for the risk-averse manager: the first is the increase 

in the expected sanction and the second is the increase in risk. 

We solve for the manager’s optimal choices backwards since a rational manager will 

anticipate her future choice of fraud when she chooses effort.  Once effort has been chosen, the 

manager must choose a level of fraud.  The manager’s objective function is given by: 

0≥F
Max   α(g(L) + F − Fe ) − L − ps(F) − rMσS

2(F)     (2) 

At an interior solution to equation 2, the first order condition with respect to F is: 

α − ps′(F)  − rM 
dF

Fd S )(2σ  = 0          (3) 

Given that s(F) is convex the sufficient second-order condition is satisfied: 

     − ps′′(F)  − rM 2
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Equation 3 implicitly defines the optimal level of fraud, F* = F(α, p), which is independent of 

the level of effort.  In choosing the optimal level of effort, the manager anticipates her future 

choice of fraud:  

L
Max   α( g(L) + F* −Fe ) −L − ps(F*) − rMσS

2(F*)  

At an interior solution, the first order condition with respect to L is: 

αg′(L) – 1 = 0       (4) 

Equation 4 implicitly defines the optimal level of effort, L* = L(α). The only parameter that 

enters the manager’s choice of effort is α, the percentage of equity. 

As equation 5 shows effort is increasing in α.  
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The optimal level of fraud is increasing in the share of the firm and decreasing in the probability 

of detection and degree of risk aversion: 
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Equation 6 shows that as the share of the firm the manager owns increases, there is also 

an increased incentive to artificially inflate the firm’s market value.  On the other hand, 
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equations 7 and 8 show that the optimal amount of fraud is a decreasing function of the 

probability of the fraud being detected and the degree of the agent’s risk aversion. 

 

III. Experimental Design 

The experimental setting assigns human subjects the role of manager while the 

shareholder role is computerized.  We implement the basic elements of the theoretical model 

presented above to investigate the effects of equity-based pay and monitoring on the amount of 

fraud committed. In the first stage of a period, subjects choose the level of effort and in the 

second stage subjects choose a level of fraud. Finally, the results of a random audit process are 

revealed to the subjects and the outcomes and payoffs for the period is summarized.  

The experiment was programmed and conducted with the software Z-Tree (Fischbacher, 

2007).  In the experiment subjects interacted with a computer interface where the instructions 

were presented and their decisions were recorded.  Subjects were volunteers recruited through 

announcements in undergraduate classes at the University of Tennessee.  When they arrived at 

the lab, the subjects were seated in individual privacy carrels and entered all of their decisions 

via the computer mouse.  They were not permitted to communicate with other subjects and they 

proceeded through the experiment at their own pace.  Sessions lasted approximately 60 minutes 

and subjects earned an average of $15 US dollars (actual range of earnings is $8 to $19) based on 

their decisions.  After the subjects read the instructions and the experimenter answered clarifying 

questions, the experiment began.  Subjects completed five practice periods and twenty periods 

for actual money. 

 Both the Robison and Santore (2006) and the Goldman and Slezack (2006) models are 

based on the assumption that the manager is risk averse.  In order to control for the risk 
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preferences of subjects we employ a measure similar to Holt and Laury (2002).8  For each of ten 

individual gambles subjects choose between a lottery paying either 1000 or 0 lab dollars, or a 

guaranteed payoff of 500 lab dollars.  The gambles vary in their respective probabilities of 

winning the large prize.9  Figure 1 presents the screen image for the gamble choice exercise.10  A 

subject’s pattern of responses results in an independent measure of risk preference. If preferences 

are as described in equation (1), the subject’s risk aversion parameter determines the option at 

which they choose to switch from the guaranteed amount (Choice B) to the gamble (Choice A).  

Thus, the subject will choose Choice B if: 

)1(1000
5001000

2
jj

j
i pp

p
r

−

−
>  

Since subjects make 10 decisions we are able to construct bounds on the implied risk aversion 

parameter. The ranges of the implied risk aversion parameter are given in column 2 of Table 1.  

The observed frequencies are given in column 4. 

Table 1 Here 

As can be seen from Table 1, subjects are fairly symmetrically distributed around risk neutrality.  

Employing a random utility framework first introduced by McFadden (1974) allows us to 

estimate the average risk aversion parameter from equation (1).  In order to account for the panel 

structure of our data we estimate a random effects probit model.11  The estimated population 

average risk aversion parameter is –0.0002 but is not statistically different from zero.  Thus our 

subjects appear to be risk neutral on average but to exhibit some heterogeneity. 

After entering their decisions for the gamble exercise, subjects receive written 

instructions, which they retain throughout the experiment, and also proceed through more 

thorough instructions on the computer.  Here they are presented with examples of the relevant 
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information screens, definitions and descriptions of the information being provided on those 

screens, and the calculations that will determine their payoffs. 

In the first stage of a period the computer displays the two-part contract to the subject; the 

endowment and the share.  Subjects are told that the first part of their payoff for the period is 

simply their endowment (salary) less their contribution (effort).12  The second part of their payoff 

is their share (equity) multiplied by their reported level of output.  After observing the contract 

the subject must choose the level of contribution (effort) by selecting a radio button on the 

screen.  Choice of contribution ranges from 0 to 200 in increments of 8 units.13  A payoff table 

containing the first part of their payoff and the amount of output that will result from their choice 

is displayed on the screen.  Figure 2 shows the subject’s screen image for the first decision. 

In the second stage of the experiment the computer displays the true level of output that 

results from their choice of contribution, their share (equity) of reported output, and the 

probability that they are checked (audited).  If they are checked and they have reported additional 

output, a penalty is subtracted from the second part of their payoff.  Subjects are informed that 

the penalty is an increasing function of additional output reported.14  Another payoff table is 

displayed reporting the second part of their payoff and the possible penalty associated with each 

amount of additional output.  The amount of additional output that can be reported ranges from 0 

to 500 in 20 unit increments.  Subjects are then asked to choose how much additional output to 

report.  Additional output is reported by selecting a radio button on the screen.  Figure 3 shows 

the subject’s screen image for this second decision.   

After the two decisions have been completed, the subjects are informed of the audit 

outcome and shown a summary page with the parameter values, their decisions, and their payoffs 
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for the round.  The subjects are informed whether they were checked or not and the penalties that 

have been incurred as a result.  The period summary screen is shown in Figure 4. 

The experiment treatment structure yields a 2 X 2 factorial design resulting in four 

experiment treatments.  The treatment parameters in each session are the value of αi, the 

manager’s percentage equity, and the value of p, the probability of an audit. The equity 

parameter αi takes two levels, 30%, and 50% and the probability of an audit p also takes two 

values, 15% and 25%. Table 2 summarizes the design. 

Table 2 here 

The theoretical model directly lends itself to some testable hypotheses and the following 

hypotheses will be tested using the data from our experiments: 

H1: Effort is strictly increasing in the level of equity, ceteris paribus. According to equation (5), 

the optimal choice of effort is an increasing function of the level of equity. Thus, the level 

of effort is predicted to increase from T1 to T3 and from T2 to T4. 

H2: Effort is independent of the probability of detection, ceteris paribus. According to equation 

(4), the optimal choice of effort is independent of the probability of detection. Thus, the 

level of effort chosen is predicted to be the same for T1 and T2 and for T3 and T4. 

H3: Fraud is increasing in the level of equity, ceteris paribus. According to equation (6), the 

optimal choice of fraud is an increasing function of the level of equity. Thus, the level of 

fraud is predicted to increase from T1 to T3 and from T2 to T4. 

H4: Fraud is decreasing in the probability of detection, ceteris paribus. According to equation 

(7), the optimal choice of fraud is a decreasing function of the probability of detection. 

Thus, the level of fraud is predicted to decrease from T1 to T2 and from T3 to T4. 
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H5: There is an interactive effect of equity and the probability of detection on the level of fraud 

chosen, ceteris paribus. According to equation (6), the response of the optimal choice of 

fraud to a change in the level of equity is dependent upon the probability of detection. 

Thus, the change in the level of fraud chosen from T1 to T3 is predicted to be greater 

than the change in the level of fraud chosen from T2 to T4.15 

H6: Fraud is decreasing in the degree of risk aversion, ceteris paribus. According to equation 

(8), the optimal choice of fraud is a decreasing function of the agent’s degree of risk 

aversion. Thus, across all treatments individuals who are more risk averse are predicted 

to choose lower levels of fraud. 

Twenty subjects participated in each treatment and they faced the decision setting for 20 periods.  

This is a between subject design; subjects face a single set of parameters in a given session and 

the subjects are only permitted to participate in one session (set of parameters). 16  

 

IV. Data Analysis and Results 

Our dataset constitutes a panel of 1600-pooled observations.  Observations for any given 

subject are correlated across periods, thus any analysis must account for such correlation.  To 

account for the structure of the data we utilize a panel estimation approach, which accounts for 

the repeated observations on each individual and allows us to incorporate the potential for 

learning and feedback during the experiment session. The variables used in our analysis are 

defined in Table 3 with descriptive statistics included. The first two variables are the dependent 

variables in the subsequent estimations. There are four treatment dummy variables.  Since we use 

a between subjects design all treatment parameters are time invariant.17  We construct a dummy 

variable that indicates whether or not a subject exhibited risk averse preferences in the gamble 
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exercise.18 There are lagged feedback variables that include a dummy indicator as to whether a 

subject was audited in the previous period, the amount of the penalty the subject incurred in the 

previous period, and the amount of accumulated earnings at the beginning of a decision period.19  

We also use the inverse of the decision period as a proxy for learning.20 

Table 3 here 

In Table 4 we report the results from generalized least squares estimation of the level of 

effort chosen.  Three alternate specifications are reported here.  In order to account for the panel 

structure of the data, all three specifications are estimated with panel specific heteroskedastic 

error terms. The first model is the most parsimonious, containing only treatment effects. The 

second model incorporates learning by including the inverse of the period (inverse period). The 

static model being tested does not account for learning effects; thus they must be controlled for 

in the analysis. The third model adds to the learning effects the possible feedback effects such as 

whether the subject was audited in the previous period (lagged audit), the amount of any 

penalties in the previous period (lagged penalty), and the amount of accumulated earnings in the 

experiment (lagged wealth). Again, since we are testing a static model, there are no theoretical 

predictions about the sign or magnitudes of these effects. However, in order to appropriately test 

the theoretical predictions these effects must be controlled for in the analysis. The third model is 

used for hypotheses tests. Thus, the estimated effort equation can be written as: 

iewealthlaggedpenaltylaggedauditlaggedperiodinverse
averseTTTTeffort

++++
+++++=

____ 9876

544332211

ββββ
βββββ

 

Table 4 here 

Recall the first two hypotheses presented in the previous section are related to the response of 

effort to changes in the level of equity compensation and the probability of detection 

respectively. We formally test these two hypotheses using a Wald test: 



 

 

15

 

H1: Effort is strictly increasing in the level of equity.  

Β3 – Β1 > 0  

χ2 = 342.40    p-value of 0.000 

Β4 – Β2 > 0. 

χ2 = 332.14    p-value of 0.000 

For either level of the probability of detection, we reject the null hypothesis that effort is 

independent of the level of equity. Thus, we find support for our first hypothesis. 

 

H2: Effort is independent of the probability of detection, ceteris paribus.  

 Β1 – Β2 = 0 

 χ2 = 16.01    p-value of 0.000 

Β3 – Β4 = 0 

 χ2 = 9.76    p-value of 0.002 

We reject the null hypothesis that the level of effort is the same for both levels of the probability 

of detection, holding equity constant. Thus, we do not find support for our second hypothesis.  

We do find weak evidence of some feedback effect given the negative and significant 

coefficient on Lagged Audit. 21 We also find evidence of learning on the part of subjects given 

the positive and significant coefficient on Inverse Period. A dynamic model is required to 

incorporate the possibility of such effects and is beyond the scope of this paper.  

Table 5 reports the results of our analysis of the fraud decision.  The estimations utilize 

the random-effects tobit specification to account for subject heterogeneity and the censoring of 

the level of fraud.22  Our approach is similar to that of the estimation of the effort equation. We 

start with the most parsimonious model first, which includes the treatment indicator variables 

along with the subject specific dummy variable indicating whether the subject exhibited risk 

averse preferences in the gamble choice exercise.23 We then control for learning effects by 
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including the inverse of the period (inverse period) in the second model. The third model adds to 

the second feedback effects such as whether a subject was audited in the previous period (lagged 

audit), the amount of penalties in the previous period (lagged penalties), and the amount of 

accumulated earnings (lagged wealth). The third model is used for hypotheses tests. Thus, the 

estimated effort equation can be written as: 

iewealthlaggedpenaltylaggedauditlaggedperiodinverse
averseTTTTfraud

++++
+++++=

____ 9876

544332211

ββββ
βββββ

 

Recall the last four hypotheses in the previous section were concerned with the response 

of fraud to changes in the level of equity compensation and the probability of detection 

respectively. We formally test these four hypotheses using a Wald test. 

Table 5 here 

 

H3: Fraud is strictly increasing in the level of equity.  

Β3 – Β1 > 0  

χ2 = 14.77    p-value of 0.000 

Β4 – Β2 > 0. 

χ2 = 6.51   p-value of 0.011 

For either level of the probability of detection, we reject the null hypothesis that fraud is 

independent of the level of equity. Thus, we find support for our third hypothesis that fraud is 

strictly increasing in the level of equity. 

 

H4: Fraud is strictly decreasing in the probability of detection, ceteris paribus.  

 Β1 – Β2 < 0 

 χ2 = 1.69    p-value of 0.194 

           Β4 – Β3 < 0 

 χ2 = 7.50    p-value of 0.006 
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For the low level of equity we accept and for the high level of equity we reject the null 

hypothesis that the level of fraud is decreasing in the probability of detection. Thus, we only find 

weak support for our fourth hypothesis. Furthermore, our results are indicative of an interactive 

effect between the level of equity and the probability of detection. This will be explored further 

in our next hypothesis test. 

 

H5: There is an interactive effect between equity and the probability of detection on the level of 

fraud.  

 Β3 – Β1 > Β4 – Β2 

 χ2 = 0.74    p-value of 0.390 

We accept the null hypothesis that the response of fraud to a change in the level of equity is 

independent of the probability of detection. Thus, we do not find support for our fifth hypothesis 

of an interaction effect between equity and the probability of detection. 

 

H6: Fraud is decreasing in risk aversion.  

 Β5 < 0 

 Z = -2.70    p-value of 0.007 

We reject the null hypothesis that fraud is independent of risk aversion. Thus, we find support for 

our sixth hypothesis that fraud is decreasing in risk aversion. 

There is no evidence that the subjects “learned” the optimal amount of fraud as the 

experiment progressed given the estimated coefficient on the inverse of the period (inverse 

period) is not statistically different from zero.24 However, there is evidence of feedback effects. 

The estimated coefficient on lagged penalty is 2.34 and significant at the 1% significance level. 

This is consistent with the often-observed gambler’s fallacy. That is, after being caught and 

assessed penalties, subjects increased the amount of fraud they chose in the subsequent period.25  
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But, the estimated coefficient of lagged audit is not statistically different from zero. The 

estimated coefficient on Lagged Wealth is consistent with decreasing absolute risk aversion. 

 Table 6 presents the point predictions for both effort and fraud from the theoretical model 

assuming risk neutrality.  Conditional means are obtained from the estimated coefficients on the 

treatment dummy variables from the effort and fraud equations, which allow us to partial out any 

subject specific effects, as well as feedback and learning effects.  

Table 6 here 

The mean level of effort for each treatment is close to the theoretical prediction. The 

theoretical level of effort for treatments 1 and 2 was 32 while the mean level of effort was 31.51 

and 40.70 respectively. The theoretical level of effort for treatments 3 and 4 was 80 while the 

mean level of effort was 89.39 and 80.53 respectively.  The mean level of fraud is close to the 

theoretical prediction for treatments 1 and 4. The theoretical level of fraud for both treatments 1 

and 4 are between 200-220 and the mean levels of fraud are 188.55 and 239.35 respectively.26  

Treatments 2 and 3 are predicted to generate corner solutions (in fraud) of 0 and 500. However, 

the design permits errors from the predicted outcomes in only one direction respectively for each 

treatment.27  It is apparent (Table 6) that mean levels of fraud for treatments 2 and 3 reflect an 

inward bias due to the censoring involved with our experimental design. That is, the mean 

predicted level of fraud for Treatment 2 (136.17) is greater than the theoretical prediction and, 

conversely for Treatment 3 (338.08) is below the predicted level. 

Before concluding our analysis a discussion of the relative effects of our treatment 

variables (equity share and probability of detection) would be useful.  Given we observe two 

distinct levels for each of our treatment variables, we can evaluate the average unconditional 

discrete change in fraud due to each of the treatment variables (Model 3, Table 6).  For the level 
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of equity the average unconditional discrete change was 75.59.28  For the probability of detection 

the average unconditional discrete change was -44.15.  Thus we find for the levels of the 

treatment variables we observe, the increase in fraud caused by a 66 percent increase in the level 

of equity is almost twice as large as the decrease in fraud caused by a 66 percent increase in the 

probability of detection. 

 

V. Conclusions 

 The recent publicity of high profile cases of corporate fraud has drawn the attention of 

not only the media but also political agents.  In response, the U.S. Congress passed the Sarbanes-

Oxely Act (SOX) in an effort to restore investor confidence by appearing to attack corporate 

fraud.  Central to the debate is the question of the root causes of fraudulent behavior. One well-

received hypothesis, provided by academics as well as policy makers, is that the use of firm 

equity to compensate managers has had the unintended consequence of making fraud more 

attractive to these managers.  The results of the experimental investigation reported here suggest 

that, while it does increase productive effort, equity compensation has the effect of increasing 

managerial fraud. 

The multivariate analysis strongly confirms the predictions of the theoretical framework: 

both the level of effort chosen and the level of fraud committed are increasing in the share of 

output (equity) the manager subjects received.  Increasing enforcement, the probability that fraud 

is detected, is shown to reduce the amount of fraud committed.  The conditional means from the 

estimated equations suggest support for the theoretical model.  Higher levels of equity-based 

compensation are correlated with higher levels of effort and as well as higher levels of fraud.  

Our subject managers clearly understand the incentives established by the laboratory setting. 
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Finally, in our experiments the level of equity compensation was a treatment variable 

and, therefore, exogenous. However, in the natural occurring world the level of equity 

compensation is determined by owners, who are influenced by external factors such as the 

regulatory environment and the market’s potential reaction to the revelation of fraud.  Given that 

equity compensation is expected to result in more fraud, it is natural to ask whether owners will 

provide greater equity compensation in response to legislation (such as SOX) that imposes 

greater monitoring on the managers. If so, the net effect on the actual amount of fraud may be 

damped. One important avenue for future research is to examine the response of the optimal 

compensation contract to regulation designed to decrease corporate fraud.  

The usual caveat is in order regarding the use of laboratory experiments to inform our 

understanding of behavior in the naturally occurring world.  We address the central question: 

does the laboratory setting provide for the necessary degree of “parallelism” to the naturally 

occurring world that is crucial to generalizing our experimental results beyond the setting of the 

lab (Smith, 1982; Plott 1987)?  The experimental setting need not attempt to capture all of the 

variation in the naturally occurring environment, but it should sufficiently recreate the 

fundamental elements of the naturally occurring world if the results are to be relevant in policy 

debates.  While our payoffs are relatively small, our experimental setting provides the 

computations necessary for the decision and a clear link between decisions and rewards, thus 

reducing the decision costs. List and Levitt (2007) describe several factors that they assert limit 

the experimenter’s ability to generalize behavior beyond the lab.  Most, if not all, of the issues 

raised by List and Levitt are minimized by incorporating the precepts of experimental design 

articulated by Smith (1982) and ensuring that payoffs are salient and that the financial rewards 

dominate such factors as the subjects’ desires to please (or punish) the experimenter.29 
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Endnotes  

 
                                                 
1 The use of field data is problematic since fraud is only observed if it is detected, creating an 

identification problem. We employ a bivariate probit model with partial observability to address 

this concern.  See Poirier (1980) for a discussion. 

2 List and Levitt (2005) discuss some limitations as they affect our ability to generalize beyond 

the lab.  Essentially, these address the external validity of the behavior observed in the laboratory 

conditions and the extent to which we can achieve parallelism in the lab.  We return to these 

issues in our concluding section. 

3 We are not the first to investigate corporate malfeasance in the lab.  Yu (2004), for example, 

reports on a set of lab experiments in which the fraud takes the form of embezzling the company 

assets.  Yu’s method differs from ours in three important ways: fraud is a binary choice, not a 

level; subject risk attitudes are not measured; and subjects are not exposed to an audit each 

period. Rather, subjects are selected for an audit that covers all periods of the experiment; such 

audit being announced only at the end of the session.  

4 Analysis based on field data is only able to detect correlation between variables due to the 

potential for confounding unobservable effects.  

5 Contrary to the concept of earnings management in the accounting literature there is no 

incentive to understate the value of the firm. 

6 The expected level of fraud will be normalized to zero for purposes of the experiment. 

7 Since the sanction is the only random component of wealth, the variance in wealth is equivalent 

to the variance in the sanction. 
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8 Employing such a mechanism to obtain a measure of subject’s risk preferences is not without 

critics. Both Holt and Laury (2002, 2005) and Harrison, Johnson, McInnes, and Rustrom  (2005) 

demonstrate that the measure of risk aversion obtained by such a mechanism is sensitive to the 

magnitude of payment. That is, scaling up real payments results in an increase in risk aversion. 

Furthermore, the gamble choice exercise only allows for gains while in the fraud experiment 

both gains and losses were possible. In the context of alternative theories for decision-making 

under uncertainty, such as Prospect Theory (see Khaneman and Tversky 1979), any measure for 

risk preference in the first setting cannot be generalized to the second. However, in our 

experimental setting the payment from the gamble choice exercise is comparable to that of a 

decision period in the actual experiment.  Also, if the subjects view the guaranteed payoff as a 

reference point, then the gamble choice exercise involves both gains and losses. Thus, any 

inferred risk preference from the exercise should remain stable across the actual fraud 

experiment.  Goeree, Holt, and Palfrey (2003) report findings that risk attitudes obtained from 

generalized matching pennies games are consistent with those from the Holt-Laury procedure for 

the same subject pool.  Lange, List, and Price (2007) demonstrate the requirement to incorporate 

risk attitudes into the econometric specification.    

9 The realization of the gamble phase is not revealed to subjects until after completion of the 

managerial decision experiment.  This prevents interaction between the decision tasks in the 

experiment session. 

10 Our Table 1 is derived in the same fashion as Table 5 in Goeree, Holt, and Palfrey (2003). We 

had 20 subjects exhibit inconsistent preferences by switching from the certain amount to the 

gamble and then back to the certain amount. We also had 4 subjects exhibit irrational preferences 
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by opting for the certain payoff in option 10, in which they could have chosen a “gamble” with a 

100% chance of winning the large payoff. These subjects are coded as missing observations. 

11 See Bruner (2006) for details 

12 Neutral language was used in order to minimize possible framing effects. 

13 The use of radio buttons invoked a tradeoff between approaching continuous decision space 

and the cognitive burden associated with evaluating each choice. Thus, we divided the decision 

space for both effort and fraud into 25 equally spaced discrete choices. 

14 Again, subjects are informed via text in the instructions and can observe such in the payoff 

table on the decision screen. 

15 This is true for the values of the probability of detection, p, which we investigate since 

variance of sanctions is a concave function of p.  A strength of employing a 2x2 experimental 

design is the ability to detect interaction effects between the treatment variables since the 

variables are perfectly orthogonal. 

16 The experiment required parameterization of both the G(L) and the S(F) functions. Both 

functions assumed the form θixλi, where i is either G or S and x represents the decision variable. 

Specifically, θG = 50 and θS = 1 and λG = 0.45 and λS = 1.11. The choice of parameters was made 

in order to make the objective function as concave as possible to maximize the likelihood that the 

gains from discovering the unique maximum surpassed the cognitive cost of searching. Risk 

neutrality was assumed during the choice of parameters since risk aversion requires some 

knowledge of individual characteristics. 

17 This also prevents us from running a pure treatment effects model since treatment indicator 

variables will be perfectly correlated with either the subject fixed or random effects. 
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18 24 subjects provided inconsistent or irrational responses (see footnote 10).  These people are 

coded as missing observations for the risk aversion dummy variable. Thus, they are excluded 

from the estimated fraud equations because they include that dummy variable. Our results are 

robust to coding these subjects as 0 for the risk aversion dummy variable. 

19 Note that the minimum level of the wealth variable is negative.  If subjects are detected 

committing fraud in the early rounds of the session, the fine is sufficient to result in negative 

wealth.  

20 The reason the inverse of the period is used is to allow for diminishing marginal effects of 

learning. That is, subjects are most likely to learn in the early decision periods.  

21 The correlation between lagged audit and lagged penalty is 0.699. Thus, multicollinearity is of 

concern and may be responsible for the insignificance of the estimated coefficient on lagged 

audit. 

22 Subjects could choose levels of fraud between 0 and 500. Thus, the observations are censored 

at 0 and at 500. Given our experimental design we expect 400 observations to occur at both of 

these levels of fraud. We actually observe 180 observations that occur at 0 and 211 observations 

that occur at 500. OLS estimates are inconsistent in the presence of censoring and this prohibits 

the use of a Hausman test to verify the appropriateness of the random-effects specification. 

23 Since we employ a between subjects design our treatment dummies are perfectly correlated 

with any subject specific fixed or random effects. Thus, the most parsimonious model we can 

estimate must include at least one subject specific variable so that the random effects are not 

perfectly correlated with the explanatory variables. 

24 There is an inconsistency in the sense that estimated “learning” effects are significant in the 

effort equation and insignificant in the fraud equation.   The fraud decision was more difficult 
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than the effort decision in that it required subjects to calculate expected values.  Thus, it could be 

there were too few periods for any “learning” effects to be estimated for the fraud decision while 

there were enough for such effects to be estimated for the effort decision. 

25 This could be considered irrational behavior.  As Davis and Holt (1993, p. 509) note 

individuals are observed to make decisions in lottery settings which may be seen to be irrational 

due to errors in probability estimation such as due to subjective probability assessment (Davis 

and Holt, p 465).  Of course, this is a plausible explanation but we cannot be certain of the 

estimated coefficients, given the correlation between lagged audit and lagged penalty (see 

footnote 22). See Croson and Sundali (2005) for a detailed discussion concerning the prevalence 

of the gambler’s fallacy in both laboratory and field experiments. 

26 The objective function yields payoffs that are very similar at the 200 and 220 choices for fraud 

and we have elected to represent the prediction as a range. 

27 Andreoni (1995) cites this issue in reference to the often higher than predicted levels of 

contributions in public goods experiments. In our setting, subjects can only make errors in their 

fraud decision greater (less) than the theoretical prediction for treatment 2 (4). 

28 Calculated as [(∆3-∆1)+( ∆4-∆2)]/2. 

29 As Friedman and Sunder (1994) note, one cannot “prove” parallelism through deductive 

reasoning.  In the end, it is inductive reasoning that allows us to assert that, because we have 

observed regularities, these will continue.  Smith and Walker (1993) argue for ensuring that the 

decision rewards are commensurate with the decision costs and task complexity. 

 

 

 


