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Convergent Validity of Revealed and Stated Recreation Behavior with Quality Change:  

A Comparison of Multiple and Single Site Demands  

Abstract 

We consider the convergent validity of several demand models using beach recreation 

data. Two models employ multiple site data: a count data demand system model and the Kuhn-

Tucker demand system model. We explore the role of existing variation in beach width in 

explaining trip choices, and analyze a hypothetical 100 foot increase in beach width. We 

compare these models to a single equation model where we jointly estimate revealed and stated 

preference trip data, and focus on a hypothetical scenario considering a 100 foot increase in 

beach width. In each case we develop estimates of the change in beach visits and the welfare 

impacts from the increase in width. The trip change estimates from two of the three models are 

similar and convergent valid, though the willingness to pay estimates differ in magnitude. 
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Introduction 

Assessment of the benefits and costs of environmental regulation is often needed to 

determine the efficiency of policy alternatives. The benefits of environmental quality can be 

measured with revealed and stated preference approaches. Revealed preference (RP) approaches, 

such as the travel cost method, relate data on actual choices to observed levels of environmental 

quality (Phanuef and Smith, 2005). Stated preference (SP) approaches, such as contingent 

valuation or contingent behavior, use hypothetical choices to measure preferences for a wider 

range of environmental quality levels (Carson and Hanemann, 2005). In this paper we contribute 

to the literature comparing estimates for like policy measures obtained from the different 

approaches.  

The travel cost method uses the inverse relationship between trip costs, derived from 

distance to the recreation site, and visits to estimate recreation demand models. A strength of the 

travel cost method is that it is based on actual recreational trip behavior. With revealed 

preference data, individuals consider the costs and benefits of their actions and experience the 

consequences of their choices. A weakness of the travel cost method for environmental valuation 

is its reliance on historical data. Proposed policy changes for environmental quality may be 

beyond the range of historical experience and predictions based on revealed preference models 

may therefore be limited.  

 The contingent behavior method is a stated preference approach that can directly elicit 

recreational trip information from survey respondents based on hypothetical conditions. The 

method involves the development of a hypothetical situation in which respondents are informed 

about the status quo and some change away from the status quo. A hypothetical question is 

presented that confronts respondents with a choice about behavior under the new environmental 
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quality (and/or changed costs) vis-à-vis the status quo. A feature of the contingent behavior 

approach is its flexibility. Hypothetical choices may be the only way to gain policy relevant 

information when historic variability in environmental conditions is limited. A weakness of the 

contingent behavior approach is its hypothetical nature. Respondents are placed in unfamiliar 

situations in which complete information is not available. Respondents may discount costs or 

income constraints or optimistically forecast avid recreation behavior.  

The combination and joint estimation of revealed and stated preference data exploits the 

contrasting strengths of the travel cost method and contingent behavior (see Whitehead et al., 

2008 for a review of this literature). Combining SP data with RP data grounds hypothetical 

choices with real choice behavior and may improve forecasts beyond the range of historical 

experience. Continuous choice RP and SP data have a common structure and can be stacked and 

jointly estimated. For example, Layman, Boyce and Criddle (1996) and Eisworth et al. (2000) 

pool the data and estimate models assuming the errors are independently and identically 

distributed. Englin and Cameron (1996) compare the pooled data model with a fixed effects 

model, treating the data as a panel, and find few differences. Whitehead, Huang, and Haab 

(2000) and Azevedo, Herriges, and Kling (2003) treat the data as a panel and use random effects 

Poisson and Tobit models, respectively.  

With all valuation methods the goal is to estimate the true benefits of environmental 

quality, though it can be difficult to recognize when estimates are indeed unbiased. Comparison 

of nonmarket valuation estimates to a known true value is a construct validity test. Construct 

validity tests in the environmental valuation literature can be conducted using experimental 

methods and with the happenstance of natural experiments. In the contingent valuation literature, 

a large number of construct validity studies compare actual willingness to pay obtained from 

 3



laboratory and field experiments with hypothetical willingness to pay obtained from contingent 

valuation surveys. Convergence in actual and hypothetical willingness to pay is evidence of 

construct validity. List and Gallet (2001) perform a meta-analysis of these studies. They find that 

private goods generate better convergence than public goods, as do SP scenarios based on 

familiar behavior (e.g. behavior that leads to use value). These results suggest that stated 

behavior responses should have greater predictive validity than stated willingness to pay 

responses, since willingness to pay data may confound use and nonuse values. Little and Berrens 

(2004) expand the List and Gallet sample to include studies with incentive compatible contingent 

valuation questions and hypothetical bias correction methods; they find no evidence that private 

goods generate better convergence than public goods, and show that  referendum formats and 

certainty corrections increase convergence.  

Construct validity tests outside field and laboratory experiments are rare, with only two 

reported to our knowledge. Grijalva et al. (2002) survey rock climbers about their past trip 

behavior and hypothetical behavior under future access conditions. Following the actual closure 

of rock climbing areas, respondents are surveyed again to determine if their hypothetical choices 

predict actual behavior under the altered conditions. Whitehead (2005) surveys respondents 

about their past hurricane evacuation behavior after low-intensity storms and hypothetical 

behavior with low- and high-intensity storms. Two hurricanes followed the survey and 

respondents were contacted again to determine their actual evacuation behavior. Both studies 

find some evidence of construct validity with jointly estimated revealed and stated preference 

models. While an independently estimated revealed preference model could not be used to make 

these predictions, left unresolved is the ability of the stated preference data alone to make 

accurate forecasts. 
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When no value for the true theoretical construct of willingness-to-pay exists, convergent 

validity tests involve comparisons between different nonmarket valuation estimates (Carson et 

al., 1996). For example, a consumer surplus estimate of recreation benefits derived from the 

travel cost method can be compared to a willingness to pay estimate of site access derived from 

the contingent valuation method. If the estimates converge, or diverge for expected reasons, then 

there is increasing confidence in both approaches. Jeon and Herriges (2005) conduct a 

convergent validity test for revealed and stated trip behavior with a multiple site demand model. 

Comparing lake recreation trip predictions based on existing variation in water quality with 

stated preference trips following a hypothetical improvement in water quality, they find a lack of 

convergent validity. The revealed preference data predicts a larger trip change than the stated 

preference data.  

In this paper we examine beach recreation behavior using several models and through 

these models address several issues. We compare two models that use multiple site revealed 

preference data: a count data demand system model, and the Kuhn-Tucker (KT) demand system 

model. Both models provide a characterization of seasonal preferences for the beaches and their 

attributes. We exploit the existing variation in beach width in our choice set to analyze the 

behavioral and welfare effects of a 100 foot increase in beach width across all sites in the study 

area. We compare these models to a single equation model where we jointly estimate aggregate 

trip demand using RP data and SP data describing responses to a hypothetical 100 foot increase 

in beach width. In each case we develop estimates of the increased number of beach trips from 

an increase in beach width, and the non-market value of the increase. We assess the convergent 

validity of trip predictions and welfare effects from the three approaches.  
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Data 

The study area includes beaches in five southern North Carolina counties (Figure 1). 

Bogue Banks, a barrier island, is located in Carteret County, and encompasses a twenty-four mile 

stretch of beach communities. Topsail Island, a barrier island, is located in both Pender and 

Onslow Counties and contains a twenty-two mile stretch of beach communities. New Hanover 

County includes a thirteen mile stretch of beach communities lying between Pender and 

Brunswick Counties. The Brunswick County beaches are located between the Cape Fear River 

and the South Carolina border and encompass a twenty-four mile stretch of beach communities.  

We use beach recreation data from a recent US Army Corps of Engineers (USACE) 

funded study (Herstine et al., 2005). The target survey population was chosen based upon the 

results of an on-site survey conducted during the summer of 2003 at the study area beaches. One 

finding from the on-site survey is that 73 percent of day users traveled 120 miles or less to get to 

the beach. For this study, day users are defined as those who leave their home, visit the beach, 

and return home afterwards without spending the night. Overnight users spend at least one night 

away from home. Locals are those who live within walking or biking distance of the beach.  

A telephone survey of all types of beachgoers who traveled 120 miles or less to get to the 

beach – day users, overnight users and locals – was administered by the Survey Research 

Laboratory at the University of North Carolina at Wilmington. Survey Sampling, Inc. provided 

telephone numbers within the study area. The telephone survey was conducted during May 2004 

and a 52 percent response rate was realized.  

 Our analysis sample was determined as follows. Among the telephone survey 

respondents 1509 stated that they had considered going to an oceanfront beach in North Carolina 

during the last year (2003). Of this number, 1375 completed the survey; removal of ineligible 
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respondents (e.g., younger than 18 years) reduced the sample to 1276. Deleting responses with 

incorrect zip codes (and therefore missing distance variables required to calculate travel costs), 

missing income and demographics, or those living further than 155 miles from a site reduced the 

sample to 1112. Removing respondents with missing revealed preference trip data reduces the 

sample to 868. Removing people who report taking more than one hundred trips in the season 

and deleting respondents with missing stated preference trip data further reduces the core sample 

to 638.  

 In order to enhance comparability between the multiple site and single site data we delete 

cases for which the sum of the trips from the multiple site data is not equal to the aggregate 

number of trips from the single site data. These data may not be equal for a variety of reasons. 

Respondents may suffer from recall error with multiple site or aggregate beach trip questions. 

Also, respondents may report trips taken to beaches other than one of the 17 study sites or fail to 

report trips to all 17 study sites when reporting aggregate beach trips. Our final analysis sample 

size is 419. Summaries for observable socioeconomic factors do not differ between respondents 

included in the analysis sample and those excluded.1  

Approximately 80% of the respondents stated that 2003 was a typical year in terms of 

their oceanfront beach trips to the southern NC coast. Of those who reported that 2003 was not a 

                                                 
1 Selection effects are certainly a concern given how our analysis sample was obtained. To address this, we have 

analyzed the various subsamples of data and compared consumer surplus estimates and trip predictions for beach 

width change scenarios using single-site and multi-site models. Trip predictions and welfare measures do not differ 

substantially across the subsamples. While selection effects may still remain, their importance is likely small for our 

model comparison (as opposed to population prediction) objectives. By accepting the risk of selection bias, we 

eliminate confounding effects related to recall or other errors. The results from our auxiliary analyses are available 

upon request.  
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typical year in terms of oceanfront beach trips to the southern NC coast, 75% would normally 

have taken more trips. Of all respondents who took at least one trip to the southern NC coast, 

96% planned to take at least one oceanfront beach trip to this area in 2004.  

The telephone survey elicited information on whether respondents took day trips only or 

a mix of day and overnight trips. Thirty-eight percent of the sample took only day trips. The 

problem with multiple purpose trips is that the willingness to pay for the recreation trip or a 

characteristic of the trip may be biased. The bias may be positive if the beach trip is a minor 

reason for taking the overnight trip. For example, vacationers may spend more time at an 

amusement park or shopping than at the beach. There exists a variety of approaches to overnight 

trips (Parsons 2003). Since we are unable to distinguish between day trips and overnight trips, 

we pool the data. In our modeling we assume that beach recreation is the primary purpose of the 

trip and attribute all of the willingness to pay to that purpose. Since our objective is to compare 

estimates across models, the inclusion of multiple purpose overnight trips should have little 

impact.  

The single site revealed preference beach trips were elicited by asking respondents who 

had actually taken oceanfront beach trips to the North Carolina coast in 2003 how many of their 

oceanfront beach trips were to the southern NC coast from the Beaufort/Morehead City area in 

Carteret County to the South Carolina border. The number of annual trips ranges from 0 to 100 

and the mean annual number of trips is nearly 8 (see Table 1). Respondents who planned to take 

at least one oceanfront beach trip to the southern NC coast during 2004 were asked how many 

trips they would take. The average number of planned trips with current quality conditions is 10. 

Improved access conditions are described as “no time spent searching for a parking spot, 

reasonable fees, and no change in congestion.” The average number of planned trips with 
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improved access conditions is 14. Increased beach width is described as “adding an average of 

100 feet to beach width with periodic beach nourishment every 3 to 5 years.” The average 

number of planned trips with increased beach width is 11. 

Travel distances and time between each survey respondent’s home zip code and the zip 

code of the population center of each beach county were calculated using the ZIPFIP correction 

for “great circle” distances (Hellerstein et al. 1993). Additional distance to each beach town was 

calculated using Mapquest. Travel time was calculated by dividing distance by 50 miles per 

hour. The cost per mile used was $0.37, the national average automobile driving cost for 2003 

including only variable costs and no fixed costs as reported by the American Automobile 

Association (AAA, 2005). Thirty-three percent of the wage rate was used to value leisure time 

for each respondent. The round-trip travel cost is p=(2·c·d)+(θ·w)·(2·d⁄mph), where c is cost per 

mile, d is one-way distance, θ is the fraction of the wage rate, w, and mph is miles per hour. We 

use household income divided by 2000 hours to estimate the household wage. In Table 1 we 

report the travel cost associated with the distance for each household to the most visited beach 

among the 17 beaches in the study site. When there are two or more beaches that are visited 

equally, the distance is chosen randomly among the subset of beaches. 

The beach site characteristics data and visitation frequency are presented in Table 2. The 

most popular beaches are Atlantic Beach, Emerald Isle and Wrightsville Beach. Beach 

characteristic data include beach width, beach length, the number of parking spaces and the 

number of public access points. Average beach length was found using various USACE project 

books. Parking access points and parking spaces were also collected from USACE project data. 

Average beach width was estimated using USACE aerial photography from 2002 and was from 

the mean high water line to the first line of vegetation. The average beach width is 130 feet, the 
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minimum beach width is 80 feet (Caswell Beach), and the maximum width is 400 feet (Fort 

Fisher).  

Recreation Demand Models 

Single Equation Revealed-Stated Preference Model 

Consider a single-site recreation demand model with revealed and/or stated preference 

data. A common functional form for the single-site demand model is the semi-log 

(1) 0 1 2exp( ),x p yβ β β= + +  

where x is the number of trips, p is the own-price (i.e., round trip travel costs to the beach site), y 

is income and β0, β1, β2 are coefficients. The intercept term may implicitly or explicitly include 

site quality or respondent characteristic variables. We estimate a version of (1) using RP and SP 

data. Revealed preference information on total trips to beaches in our study region at status quo 

conditions is available for all respondents in our analysis sample. The same people answered 

stated preference trip questions about future trips: (a) under status quo conditions, (b) with an 

improvement in access conditions, and (c) with an increase in beach width.  

In our most general models we pool the data for all individuals and responses. In these 

cases we use panel methods to account for the separate variances across individuals and 

scenarios. In particular, we estimate equation (2) with the random effects Poisson model that 

includes a stated preference dummy variable and interaction terms: 

(2) 0 1 2 3 3 4 4ln lnit it i i iu p y q q

1 2 3                                   + ( ) ( ) ,i i iSP SP p SP y u
μ λ β β β β β

δ δ δ
= + = + + + +

+ × + × +
 

where i denotes a respondent, t = 1,…,4 indicates alternative trip decision situations in the 

pseudo-panel data, q3 (q3 = 1 when t =3) and q4 (q4 = 1 when t = 4) are beach access and width 

scenario variables, and  is the random effect for group (person) i. The SP dummy variable and iu
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interaction variables are included to test for shift and slope differences in RP and SP data, where 

SP = 1 for hypothetical trip data (t = 2, 3 or 4) and 0 for revealed trip data (t = 1). 

Single-site demand models are typically estimated with the Poisson or negative binomial 

count data regression models, which account for the integer nature of trips (Haab and McConnell 

2002). In our model, the distribution of trips xit conditioned on ui and the covariates is Poisson 

with conditional mean and variance μit. By mixing a person-specific draw from a gamma 

distribution into the conditional means (i.e. exp(ui) is distributed gamma), the random effects 

Poisson model implies the demand for trips is negative binomial, but that correlation is induced 

across the panel. In this sense, specifications using single and multiple elements from the panel 

are comparable (Cameron and Trivedi 1998).  

With estimates of the parameters for the demand equation in hand we are interested in 

predicting the change in trips resulting from a change in beach width, and the welfare effects of 

this change. To assure comparability with the welfare estimates arising from our demand system 

models, for the latter we use the exact welfare formulas implied by the semi-log functional form. 

For the specific case of equation (2) the expected quasi-indirect utility function is 

(3) 2 0 1 3 3exp( ) exp( )( ) ,i i
i

y p qE V 4 4

2 1

qβ β β β β
β β
− + + +

= − −  

where for exposition the SP dummy variable has been set to zero, and exp(ui) is set to its mean of 

one. Equation (3) allows us to conduct exact welfare analysis. In particular, person i's expected 

compensating variation, CV, for a change in price or non-price attributes is given by 

(4) ( )1 02

2 1

1( ) ln 1 ( ) ( )i iE CV E x E xβ
β β

,i

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
 

where  
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(5)  0 1 2 3 3 4 4( ) exp( ), 0,1,k k k k
i i iE x p y q q kβ β β β β= + + + + =

and k=0 and k=1 denote status quo and changed conditions, respectively.2  

Count Data Demand System 

 Consider a multiple site situation in which a person has available J recreation sites and 

makes decisions on the number of trips to make to each site over the course of a season. We once 

again use the semi-log form for the demand equations, given in general by 

(6) 
1

exp( ), 1,..., ,J
j j jk j yjk

x p y j Jβ β β
=

= + + =∑  

where pj is the travel cost to site j, y is annual income, and the intercept can contain site quality 

or individual characteristic variables. In order for (6) to be consistent with a rational preference 

ordering (the so-called integrability conditions) restrictions on the parameters are necessary (see 

von Haefen, 2002, for a full discussion). In particular, the restrictions βjk=0 for k≠j and βyj=βy for 

all j must be imposed such that the demand equation is given by 

(7) exp( ), 1,..., .j j jj j yx p y j Jβ β β= + + =   

In our empirical modeling we specify βj as a linear combination of site quality attributes such 

that βj= β0+γ′qj, where qj is a vector of attributes for site j. 

 To make the model operational we assume trips to each site follow an independent, 

negative binomial distribution in which the conditional mean μij for visits to site j by person i is 

(8) ln ln( ) , 1,..., ,ij ij ij j jj ij y i iju p y u j Jμ λ β β β= + = + + + =   

where uij is a random variable in which exp(uij) is distributed gamma. With the semi-log, 
                                                 

−2 This expression is found by implicitly defining CVi via  using (3), and 

solving out for CVi to arrive at (4). See Freeman (2003, p.70) for discussion of this strategy for ‘exact’ welfare 

analysis.  

0 0 0 1 1 1
3 4 3 4( , , , ) ( , , , )i i i i i i iV p q q y V p q q y CV=
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negative binomial assumptions for our demand equations the count data demand system 

specification is parallel to that used in the single equation analysis. Estimation by maximum 

likelihood over the N respondents and J equations provides a characterization of the demand 

equation parameters.3 

 With the demand equation parameters in hand it is possible to write the expected indirect 

utility function for person i as 

(9) 
1

exp( ) exp( )
( ) .Jy i j jj ij

i j
y j

y p
E V

j

β β β
β β=

− +
= − − ∑  

In a generalization of equation (4) the expected compensating variation for a change in price or 

quality terms is  

(10) ( )1 0
1

1( ) ln 1 ( ) ( )Jy
i ij

y jj

E CV E x E x
β

β β =
,j ij

⎡ ⎤
= − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

where  

(11)  ( ) exp( ), 0,1, 1,..., ,k k k
ij j jj ij y iE x p y k j Jβ β β= + + = =

and k=0 and k=1 again denote status quo and changed conditions, respectively.  

Kuhn-Tucker Model 

Consider again a multiple-site recreation setting, but suppose now that people 

simultaneously decide which sites to visit and how many trips to make to each over the course of 

a season. The Kuhn-Tucker (KT) demand model (Phaneuf et al. 2000; von Haefen et al. 2004) 

models this behavior as stemming from a single utility maximization problem. It therefore 

                                                 
3 Estimation is straightforward given the assumption that the J count random variables are independent within and 

between individuals. A more general mixing distribution allowing correlation results in a more complicated model 

that requires simulation for estimation. See Eagan and Herriges (2006) for examples of these types of models.  
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provides a theoretically-consistent approach to describing the combination of interior and corner 

solutions that are an empirical regularity in multiple site recreation data. The model is, however, 

computationally more demanding than those outlined above; we thus provide in this section only 

an overview of its main components. A detailed technical description is given in von Haefen and 

Phaneuf (2005), and a tutorial-style discussion is provided by Phaneuf and Sideralis (2003).   

The model begins with the specification of the consumer’s direct utility function 

U(x,q,z,β,ε) where x is a J-dimensional vector of visits to a set of available recreation sites, q is 

an LxJ matrix of site-specific quality attributes for the recreation sites, z is a strictly positive 

numeraire denoting spending on all other goods, β is a vector of utility function parameters, and 

ε is a J-dimensional vector of errors. The consumer maximizes utility subject to the budget 

constraint and non-negativity constraints: 

(12) 
,

max ( , , , , )  . .  ' ,   0,   1,..., ,jx z
U x q z s t y p x z x j Jβ ε = + ≥ =  

where p is the vector of travel costs to each of the available sites and y is the consumer’s annual 

income. The first-order Kuhn-Tucker conditions that characterize the optimal solution to this 

problem are given by 

(13) 
, 1,..., ,

0, 1,..., .

j
j

j
j j

U x
p j J

U z
U x

x p j
U z

∂ ∂
≤ =

∂ ∂

∂ ∂⎡ ⎤
× − = =⎢ ⎥∂ ∂⎣ ⎦

J
 

Equation (13) is central to both the estimation and welfare calculation strategies employed in this 

model. With assumptions on the functional form for utility and the distribution of the error terms, 

the J weak inequalities in (13) can be used to specify the probability of observing a particular 

individual’s choice outcomes, and maximum likelihood used to recover estimates of the utility 

function parameters. 
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 Estimation of the structural parameters of U(·) provides a characterization of preferences 

that can be used to calculate Hicksian welfare measures for a change in prices and/or quality 

levels. In general the compensating variation for a change in quality from baseline conditions q0 

to a new level denoted q1 is given by  

(14) 1 0( , , , , ),CV y e p q U β ε= −  

where e(·) is the expenditure function and U0 is the baseline level of utility.   

 In equation (14) e(·) is an endogenous regime switching function in which the regimes 

correspond to each of the 2J possible combinations of interior and corner solutions for the J sites. 

In addition the error terms ε are not observed and thus e(·) is not fully known by the analyst, 

implying CV is a random variable from the analyst's perspective. The inference goal is therefore 

to calculate the expectation of compensating surplus, denoted E(CV). This requires Monte Carlo 

integration techniques in which multiple realizations of the errors are simulated and CV 

calculated conditional on each simulated value. These two aspects of (14) imply that calculating 

welfare effects (and predicting new trip totals) for counterfactual scenarios involves non-trivial 

computational challenges. Von Haefen et al. (2004) and von Haefen and Phaneuf (2005), 

however, describe efficient algorithms for conducting this computation for versions of the utility 

function that we employ in this paper.  

 The specific parameterization of the utility function that we use in our analysis is given 

by: 

(15) 

1

*

*

( ) ln

ln

ln

1 exp( )
ln ,

J

j j j
j

j j j

j j

zU x

s

q

ρ

φ θ
ρ

α δ με

φ γ

ρ ρ

μ μ

=

⎡ ⎤⋅ = Ψ + +⎣ ⎦

′Ψ = + +

′=

= −

=

∑
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where s is a vector of household characteristics, qj is a vector containing the L quality attributes 

for site j, (αj,δ, γ, θ, ρ∗) are the structural parameters to be estimated and μ is a scale parameter 

common to all the errors. Maximizing (15) with respect to the budget constraint and non-

negativity constraints implies a set of first order conditions that, following some manipulation, 

can be written as 

(16) ( )1 ln ln ( 1) ln( ) , 1,..., .j
j j j j

j

p
x y jε α δ φ θ ρ

μ φ
⎛ ⎞

′ ′≤ − − + + + + − − =⎜ ⎟⎜ ⎟
⎝ ⎠

s p Jx  

If each element of ε is an independent draw from a type I extreme value distribution with scale 

parameter μ then equation (16) can be used to state a closed form expression for the probability 

of observing an individual’s trip-taking outcomes. In particular the likelihood of observing a 

person’s outcome x conditional on the structural parameters is 

(17) 01* *( | , , , , ) exp( ( )) / exp exp( ( )) ,x j

j j
j

l gδ γ θ ρ μ μ >⎡ ⎤ ⎡= − ⋅ × − −⎣ ⎦ ⎣∏x J g ⎤⋅ ⎦
 

where gj(·) is the right hand side of (16), |J| is the determinant of the Jacobian of transformation, 

and  is an indicator function equal to one if xj is strictly positive and zero otherwise. 

Equation (17) can be used to form the sample likelihood, and standard maximum likelihood 

search algorithms used to estimate the structural parameters. 

01
jx >

 Once the parameters of the utility function are estimated welfare calculation and trip 

prediction can proceed using the techniques described in von Haefen et al. (2004) and von 

Haefen and Phaneuf (2005). We follow emerging consensus for these models and apply von 

Haefen’s (2003) conditional welfare measurement approach. This approach implies that, when 

simulating unobserved heterogeneity from a model with unobserved components, the errors 

should be drawn conditionally to replicate the observed behavior at baseline conditions. This 

 16



notion places specific ranges of support on the values that individual-level unobserved effects 

can take, and makes greater use of the information in the sample. Additional details on welfare 

calculation and prediction for this application are given in the appendix. 

Empirical Results 

Parameter Estimates 

Four single equation recreation demand models are estimated with the pseudo-panel data, 

and results are shown in the top part of Table 3. The first is the RP model estimated with the 

negative binomial. The second is the SP model estimated without the RP data. The third and 

fourth are jointly estimated RP-SP models. The latter three are estimated as random effects 

Poisson models which correct for over-dispersion and allow correlation across the panel (Haab 

and McConnell, 2002). In each model the coefficient on the own-price variable is negative and 

statistically significant and the coefficient on the income variable is positive and statistically 

significant. The household characteristics variables are generally, but not always, significant 

across the models. There are no obvious quantitative differences between the independently 

estimated RP and SP models amongst these standard variables. Finally, in the SP model the 

coefficients on the improved access and the increase in beach width variables act as demand 

shifters in the expected direction.  

The jointly estimated RP-SP model is almost identical to the SP model with a statistically 

significant coefficient on the SP dummy variable. This indicates that respondents state that they 

will take more trips than the revealed preference data indicate. One interpretation of this result is 

the stated preference data exhibit hypothetical bias; respondents state that they will take more 

trips than their budget constraints suggest. The final model in Table 3 supports this 

interpretation. Another interpretation is that the RP data were collected in an unusual year in 
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which fewer trips were taken. Some survey evidence supporting this second interpretation was 

noted in the data section. The final RP-SP model tests for differences in slope coefficients with 

interaction effects between the SP dummy variable and own-price, income, and the household 

variables. We find that the SP demand data is less income elastic (income elasticity of 0.98 vs. 

0.81) suggesting that SP responses pay less attention to income constraints. The travel cost 

elasticity of -0.89 is essentially equal for the RP and SP demand data.4 

 Selected parameter estimates for four specifications of the count data demand system 

model are shown in Table 4, and the full set of estimates (including all price parameters) are 

shown in the Appendix. Models 1 and 2 are our full specifications in that they include all four 

site attributes as well as dummy variables for Fort Macon and Fort Fisher, which are 

differentiated by their status as state parks of historic interest. The two full specifications are 

distinguished by the use of level width in model 1 and log width in model 2. Models 3 and 4 

maintain the log width transformation while dropping the length and parking attributes, 

respectively.  

 Two observations emerge from these models as well as several others examined but not 

reported. First, and most obviously, we find essentially no evidence that beach width affects trip 

demand among the sampled individuals. Instead price and income effects dominate, and in some 

models other attributes are marginally significant. The income elasticity for all sites is 1.16, and 

the price elasticities computed at the data averages range from -4.56 to -0.39 (the median for the 

17 sites is -2.22). These findings are consistent across specifications and hold for Poisson models 

as well (which are more robust to misspecification of the conditional mean). Second, and related 

                                                 
4 We also include SP interaction terms with the married and children variables. SP responses are less responsive to 

demographic constraints. The SP interaction variables are jointly significant according to the LR test.  
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to this, the level and log specifications for width have different behavioral implications, but we 

find little practical difference between models using one or the other. We focus on the log 

specifications here and subsequently, since it seems intuitive that the behavioral effect of 

increased beach width is not monotonically increasing. Taken together the results from our count 

system models imply that the multiple site RP data as used with this model do not replicate the 

qualitative findings from the SP analysis.  

The KT model estimation results are shown in Table 5. We report four specifications that 

match those used in the count system models in terms of how site and household characteristics 

enter the models. We note, however, that the KT model is highly non-linear in its parameters and 

comparisons of coefficient magnitudes across the two multiple site models are not appropriate. 

All the models are estimated with fixed effects (separate αj's) for each of the 17 beaches, thereby 

providing some accounting for unobserved site attributes. As with our count specifications, we 

focus primarily on the log specification for beach width.  

The estimates for the utility function and error variance parameters (θ, ρ∗,μ∗) are 

significant, appropriately signed, and similar across the different model specifications. The 

household variables generally provide little explanatory power, though their signs match what 

was found in the other models. The fixed effects function as site specific intercepts that enter 

through the Ψj(·) terms in equation (15). In contrast to the count demand system model, these 

provide some accounting for unobserved site attributes. Of more direct interest are the estimates 

for the observed site attributes. Unlike the count system, we find a positive effect for beach width 

that is robust across model specifications. The size of the effect is relatively stable, though it 

does depend to some degree on which of the other site attributes are included in the specification. 

Surprisingly, the other site attributes are generally not significant determinants of behavior. 
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Nonetheless the robustly positive and significant coefficient on beach width suggests that, when 

the KT multiple site RP model is used, we are able to replicate the qualitative findings from the 

combined SP-RP model.  

Welfare and Trip Predictions 

To conduct our convergent validity analysis with more formality we examine trip 

predictions and welfare effects from each modeling approach for a common policy scenario. 

Point estimates for seasonal welfare effects and trip changes from a 100 foot increase in width at 

all beaches in the study area are shown for all specifications of our single equation, count system, 

and KT models at the bottom of Tables 3, 4, and 5, respectively. In Table 6 we show a 

comparison of estimates and standard errors across the three approaches, using in each case a 

preferred specification. All welfare estimates are individual, exact compensating variation 

measures for the recreation season. Changes in trips are aggregates for all seventeen sites in the 

study area.  

Focusing first on the preferred specifications in Table 6, we find that the KT and RP-SP 

models provide similar and statistically indistinguishable predictions for the change in trips. On 

average according to these models, respondents will take 1 extra trip per season as a result of the 

increased beach width. Our estimates of welfare effects are roughly similar in their order of 

magnitude and statistically similar due to the comparatively noisy estimates from the KT model. 

The size of the point estimates ($106-$126 vs. $309), however, are different enough to imply 

economically meaningful differences in the welfare predictions. Thus we conclude that the KT 

and RP-SP models are convergent valid in trip prediction, but convergent invalid in welfare 
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effects.5 

A different story emerges for the count system model. Having found no effect from beach 

width we do not find economic or statistically significant changes in trip demand from the 

increased beach width. From this we conclude that the count model is convergent invalid with 

both the KT and RP-SP models.  

As a final note we consider the convergent validity of the SP and RP-SP versions of the 

single equation model. The point estimates for trip changes and welfare effects shown at the 

bottom of Table 3 suggest that quite similar results emerge from the analysis regardless of the 

inclusion of the RP data. The comparison with standard errors in Table 6 confirms that the 

estimates are statistically indistinguishable. Thus, for analyzing the quality change, the SP and 

RP-SP models are convergent valid. We note, however, that the larger number of predicted trips 

in the SP-only model implies a larger total value of beach access compared to the RP-only and 

RP-SP models.  

The ultimate use of estimates as described here lies in policy analysis. Though the KT 

and RP-SP models are convergent valid in some dimensions, their willingness to pay estimates 

show differences that are likely economically significant. As an illustration consider a 

comparison of the recreation benefits and costs of beach nourishment. With 1.58 million 

                                                 
5 An earlier version of this paper included a linked nested logit-aggregate trip frequency negative binomial model 

estimated with the RP data (see Parsons et al. 1999 for a description). This model also predicted respondents would 

take one additional trip per year following a 100 foot increase in beach width across all 17 beach sites. The annual 

willingness to pay for the improvement of approximately $32 was notably smaller than that obtained from the KT 

and RP-SP models. This suggests trip predictions were convergent valid between the linked, KT, and RP-SP models 

but convergent invalid in welfare measurement. The linked model was ultimately removed from the paper due to its 

ad hoc nature and incomparability of welfare effects with the structural models.  
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households in the study region, the aggregate annual recreation benefit is $167 million and $488 

million when estimated with the single equation and Kuhn-Tucker models, respectively. A rule 

of thumb is that the annual cost to replace one foot of eroded beach is $32,000 per mile. In the 

study region there are 60 miles of beach length. Adding 100 feet every 4 years would cost $48 

million annually. The annual net benefits of beach nourishment range from $119 million to $440 

million. Use of either model would suggest that beach nourishment is an efficient policy. 

However, in a benefit cost analysis with other beach management alternatives relative to the 

status quo (e.g., beach hardening, beach retreat), the choice of recreation demand model could 

have implications for the preferred policy alternative. 

Conclusions 

This paper has compared three types of models using a rich beach recreation data set for 

southern North Carolina. In general we find that the models provide reasonable descriptions of 

recreation behavior, though they vary in the extent to which site attributes explain observed 

choices. In an analysis of the benefits of increased beach width we find plausible and significant 

welfare measures for two of the three approaches examined. A problem for policy application is 

choosing amongst different welfare measures. When estimates from different models yield 

convergent results (or diverge for known reasons) there is increased confidence in the suitability 

of estimates for meaningful policy inference.  

Our assessment of the convergent validity of the three models examined is mixed. Trip 

predictions from the RP-SP and KT models (and the unreported linked model) are convergent 

valid. Welfare measures, while similar statistically and in order of magnitude, are economically 

different. Thus these models converge in behavior predictions but not in willingness to pay 

estimates. Nonetheless for many policy applications similar inference may result from the two 
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models. For the count data demand system models no significant effect was found for our policy 

attribute, and as such predictions from this model are convergent invalid with both the KT and 

RP-SP models.  

What explanations can be given for these findings? Three observations are relevant for 

answering this. First, the sources of variability used in the single equation and multiple site 

models are quite distinct. In the single equation analysis identification of the width effect comes 

from the SP design, and the relevant behavioral margin is aggregate trip frequency as it responds 

to an experimentally designed discrete change in width. In the multiple site models identification 

of the width effect is off of the observed variability in beach width across the seventeen beaches 

in the study region. The behavioral margin responding to beach width variability is trip 

frequency and site choice.  

This leads to the second observation, which concerns how the multiple site models 

exploit the natural variation in beach width. The count demand system model fits an average 

interior solution for the system of J equations (recall all expected demands are strictly positive). 

While the negative binomial distribution accommodates zero valued outcomes, the underlying 

model does not address the extensive margin decision over which set of sites to visit. This 

implies that the count system model identifies the beach width effect only by differences in trip 

frequency among the several sites. The KT model in contrast uses information on both trip 

frequency and site choices to capture the role of beach width and other attributes. The robustly 

positive effect from the KT models and absence of an effect from the count data models suggest 

the site choice aspect of visit decisions is perhaps more relevant for understanding the role of 

beach width using multiple site models.  
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Our third observation relates to how the individual models control for confounding 

effects. The single equation model depends on the SP design, which asks respondents to answer 

questions while cogitatively holding all else fixed. This assumption is not tenable in the RP data, 

where outcomes are driven by many factors, only some of which can be objectively measured. 

The linearity (in logs) of the count demand specification implies one cannot include site specific 

constants and site attributes that vary only across sites. This suggests that omitted attributes that 

are correlated with an attribute of interest (i.e. beach width) can generate biased estimates. The 

KT model, primarily via its non-linearity, allows inclusion of fixed effects and site attributes in 

different sub-functions of the utility specification. Though certainly not an ideal solution to the 

omitted attributes problem, this suggests the KT model may be more robust to misspecification 

vis-à-vis the count data model. 

These observations lead us to conclude that the KT and count data demand system 

models diverge for plausible reasons in this application, suggesting that some confidence can be 

taken from the comparison of trip predictions from the RP-SP and multiple equation models. 

Nonetheless differences in willingness to pay estimates remain.  

Our analysis raises a number of issues. First, combined with the evidence of Jeon and 

Herriges (2005), the typical concern with contingent behavior data that respondents will 

overstate trip taking behavior does not appear to be a problem for quality change applications. 

This conclusion comes with a caveat. Stated preference scenarios must include a status quo 

question. Without the status quo SP scenario in our model, a jointly estimated RP-SP model 

yields a trip estimate that is 25% larger and a willingness to pay per trip estimate that is over 

three times as large as we report in this paper. This suggests that trip overstatement may tend to 
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occur in baseline forecasts of behavior and not in changes in forecast behavior as quality and 

other conditions change.  

A second issue is that joint estimation of RP and SP data is often touted as a solution to 

hypothetical bias. We find that an independently estimated SP model performs just as accurately 

as the jointly estimated model. In addition, an independently estimated RP model combined with 

the univariate estimate of the change in trips between the SP status quo and SP beach width 

scenario would yield similar results as reported here.  

Third, a typical concern with RP data is the inability to forecast beyond the range of 

historical experience. We find the models provide trip forecasts that align with the SP estimates. 

This result may be due to the wide range of beach widths at the southern NC beaches. Multiple 

site recreation demand with more limited variation in quality may not find results that are 

convergent valid.  

Finally, our results illustrate that multi-site and single-site models can be usefully 

compared. Our SP elicitation focus was on aggregate trips in order to reduce the cognitive 

burden on survey respondents. At the time of the NC survey, obtaining multi-site SP data seemed 

like a difficult task for both the researcher and respondent. However, Jeon and Herriges (2005) 

subsequently report multiple-site SP and RP models that are convergent invalid. Further research 

to determine if multiple-site SP data lacks validity is needed.  

Future research with these data might consider the beach access scenario. Yet, convincing 

tests of convergent validity using this scenario will be elusive. With the SP scenario we ask 

respondents for the number of beach trips they would take with a qualitative improvement in 

parking and beach access. Parking spaces is a quantitative measure in the RP models. The only 

comparison available is to estimate the additional trips and willingness to pay per trip with the 

 25



SP data and then determine the number of parking spaces that leads to convergent validity with 

the multiple site RP data. An estimate of the number of additional parking spaces that is 

reasonable and convergent valid would be useful to policy makers.  
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Appendix 

 Welfare analysis and demand prediction in the KT model relies on Monte Carlo 

integration in which the unobserved heterogeneity (error) terms are drawn conditionally so that 

behavior at baseline travel cost and site conditions is replicated in the simulated outcomes. Given 

multiple simulated error vectors for each person compensating surplus is calculated for each 

error draw, and the average over people and draws provides an estimate of E(CS).  

Conditionally simulating the unobserved heterogeneity involves using the structure of the 

model and observation of each person’s combination of interior and corner solutions for the 

available sites. For a particular person (suppressing the individual subscript i), how each element 

of the J-dimensional vector ε is simulated depends critically on whether a site is visited. If the 

site j is visited the structure of the model and the person’s observed trips implies εj=gj(·), where 

gj(·) is the right hand side of (16). If site j is not visited then equation (16) implies εj ≤ gj(·). In 

this case εj can be simulated from a truncated type I extreme value distribution using the 

transformation 

(A1)  ( )ln ln exp( exp( ( ))) ,j jg Uε ⎡ ⎤= − − − − ⋅⎣ ⎦

where U is a draw from a uniform distribution.  

 With values for the errors simulated all arguments of the general compensating surplus 

function in equation (14) are observed, and a computational device is needed to obtain CS 

conditional on an error draw. Von Haefen and Phaneuf (2005, p. 150) describe an efficient 

algorithm for this calculation that exploits the additive separability of the utility function in 

equation (15). Since it solves the expenditure minimization problem for each draw of the error 

the algorithm also provides predictions of changes in trip-taking behavior under changed site 
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conditions. With this algorithm available the steps in the overall welfare calculation procedure 

for computing E(CS) for a change in site characteristics can be summarized as follows: 

1. On iteration r simulate r
ijε  for i=1,…,N people and j=1,…,J sites where ( )r

ij ijg  if 

person i visited site j at baseline conditions, and r
ij

ε = ⋅

ε  is generated using (A1) if the site was 

not visited. 

2. For each vector 1( ,..., )r r r
i i iJε ε ε ′=  compute r

iCS  using the algorithm described by von 

Haefen and Phaneuf.  

3. Upon completion of r=1,…,R iterations estimate the population E(CS) using 

 1 1
1 1

( ) R N r
ir i

E CS R N CS− −
= =

= ∑ ∑ .

If standard errors on the estimate of E(CS) or changes in trips taken are desired the three steps 

can be nested in a parametric or non-parametric bootstrap procedure. 
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Table 1. Single Site Data Summary         

 Mean Std.Dev. Minimum Maximum    

Revealed preference trips 7.61 14.41 0 100 
Stated preference trips 10.01 16.58 0 123 
Stated preference trips with increased access 13.91 24.23 1 200 
Stated preference trips with improved width 11.20 19.9 1 200 
Typical trip travel cost ($'s) 104.82 67.1 1.03 305.07 
Household income ($'s) 58,436 27,160 10,000 100,000 
Married (=1) 0.69 - 0 1 
Children (count) 0.76 1.05 0 5 
Sample size = 419         

 

 

33 
 



 

Table 2. Multiple Site Data Summary             

County
Trips 
(% of 
total)

Mean 
Trips/Person

Public 
Access

Parking 
SpacesBeach Width Length    

   

 

Carteret Fort Macon 1.69 0.13 90 2 602 1.4 
Carteret Atlantic Beach 17.43 1.33 135 19 662 4.9 
Carteret Pine Knoll Shores 1.82 0.14 110 6 195 4.8 
Carteret Indian Beach / Salter Path 0.53 0.04 90 2 131 2.5 
Carteret Emerald Isle 12.10 0.92 130 69 550 11.5 
Onslow-
Pender North Topsail Beach 7.21 0.55 82 42 929 9.7 
Onslow-
Pender Surf City 4.36 0.33 90 36 272 5.1 
Onslow-
Pender Topsail Beach 1.00 0.08 110 37 234 4 
New Hanover Wrightsville Beach 18.59 1.42 160 45 1479 4.5 
New Hanover Carolina Beach 10.44 0.79 185 26 452 2 
New Hanover Kure Beach 1.47 0.11 130 20 223 2.8 
New Hanover Fort Fisher 0.31 0.02 400 2 240 1.9 
Brunswick Caswell Beach 0.66 0.05 80 12 103 2.8 
Brunswick Oak Island 3.61 0.27 120 66 821 7.5 
Brunswick Holden Beach 5.74 0.44 90 21 200 6.8 
Brunswick Ocean Isle Beach 9.12 0.69 85 28 341 5.3 
Brunswick Sunset Beach 3.92 0.30 115 34 260 1.2 
Sample size = 419 (3190 observed trips)       
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Table 3. Single Site Demand Models                     

 
RP Negative 

Binomial SP RE Poisson RP-SP RE Poisson RP-SP RE Poisson 

Parameters Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio        

Constant 2.043 10.990 2.609 21.640 2.280 19.100 2.026 16.200 

Travel cost -
0.008 -7.300 -0.009 -10.800 -0.008 -10.880 -0.008 -10.390 

Income 0.016 5.370 0.014 6.060 0.014 6.350 0.017 7.070 

Married -
0.221 -1.270 -0.402 -3.200 -0.373 -2.990 -0.240 -1.830 

Children -
0.158 -2.340 -0.167 -3.350 -0.166 -3.360 -0.132 -2.530 

Access improvement   0.329 16.240 0.329 16.240 0.329 16.240 
Increase in beach width   0.112 5.270 0.112 5.270 0.112 5.270 
Stated preference     0.274 11.670 0.581 11.540 
SP x Married       -0.160 -3.290 
SP x Children       -0.042 -1.980 
SP x Travel Cost       0.000 -0.050 
SP x Income       -0.003 -3.410 
Alpha 1.426 12.464 0.989 15.656 0.976 15.765 0.976 15.761 
Log-Likelihood -1221.820 -3524.500 -4855.670 -4827.100 
Cases 419 419 419 419 
Periods 1 3 4 4 

Predictions                

Baseline Trips 7.55 9.92 7.54 7.57 
Change in Trips  1.17 0.89 0.90 
Willingness to Pay   $138 $105 $106 

 35



 

Table 4. Selected Count Data Demand System Resultsa         

 Model 1 Model 2 Model 3 Model 4 

Parameters Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio        

Constant -1.42 -1.54 -0.98 -0.26 -1.30 -0.40 -3.35 -0.97 
Income 0.02 4.95 0.02 4.95 0.02 4.98 0.02 5.04 
Children -0.22 -2.68 -0.22 -2.67 -0.22 -2.69 -0.21 -2.70 
Married -0.17 -0.91 -0.18 -0.94 -0.18 -0.93 -0.20 -1.09 
Parking Spaces 0.0007 1.82 0.0008 2.00 0.0008 1.86   
# Public Access 0.02 1.28 0.02 1.36 0.02 1.91 0.03 1.79 
Length 0.0006 0.01 -0.01 -0.14   0.02 0.21 
Width 0.0012 0.17       
Log(Width)   -0.06 -0.08 0.00 0.00 0.46 0.66 
Fort Macon 0.39 0.53 0.31 0.43 0.34 0.47 0.76 1.07 
Fort Fisher -1.53 -0.71 -1.11 -0.76 -1.20 -0.89 -1.74 -1.27 
Alpha 26.95 14.17 26.96 14.17 26.96 14.17 27.08 14.35 
Log-Like -2668.55 -2668.57 -2668.58 -2669.86 
Observations 419 419 419 419 

Predictions                

Baseline Trips 6.96 6.95 6.95 6.88 
Change in Trips 0.85 -0.254 0.004 2.16 
Willingness to Pay $99 -$29 $0 $270 
aRobust standard errors used. Estimates for the 17 price parameters are shown in the Appendix. 
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Table 5. Kuhn-Tucker Demand Resultsa 
            

 Model 1 Model 2 Model 3 Model 4 

 Coeff. t-
ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio       

 

Children -0.03 -0.56 -0.03 -0.56 -0.03 -0.57 -0.03 -0.57 
Married -0.01 -0.06 -0.01 -0.07 -0.01 -0.08 -0.01 -0.06 
Parking Spaces 0.02 1.40 0.02 1.17 0.01 1.08   
# Public Access -0.01 -1.13 -0.01 -1.19 0.00 -1.39 0.00 -0.84 
Length 0.02 0.48 0.02 0.53   0.01 0.33 
Width 0.01 2.51       
Log(Width)   0.86 2.92 0.78 3.13 0.98 3.24 
Fort Macon 0.56 2.72 0.61 2.96 0.58 2.94 0.67 3.33 
Fort Fisher -1.10 -1.53 -0.47 -1.04 -0.38 -0.91 -0.63 -1.37 

θ 1.57 4.16 4.95 3.39 4.51 3.77 5.41 3.61 
ρ∗ -0.46 -2.34 -0.46 -2.42 -0.46 -2.42 -0.46 -2.34 
μ∗ 0.24 6.52 0.24 6.51 0.24 6.52 0.24 6.52 

Log-Like -2693.27 -2692.78 -2692.85 -2693.01 
Fixed Effects YES YES YES YES 
Observations 419 419 419 419 

Predictions                

Baseline Trips 7.61 7.61 7.61 7.61 
Change in Trips 1.23 1.08 0.98 1.20 
Willingness to Pay $374 $311 $279 $354 
aRobust standard errors used.              
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Table 6. Change in Trips and Willingness to Pay for Beach Width Scenarioa 
 Multiple Site Single Site 

 

RP Count 
(Model 4) 

RP-Kuhn 
Tucker 

(Model 2) 

RP-SP 
(SP=0) 

RP-SP 
(SP=1) 

Baseline Predicted Trips 6.88 (0.61) 7.61 (-) 7.57 (0.49) 9.91 (0.53) 

Change in Trips 2.16 (4.51) 1.08 (0.40) 0.90 (0.18) 1.17 (0.25) 

Annual Welfare Change $270 (842) $309 (115) $106 (22) $126 (92) 

aStandard errors in parentheses computed using 100 Krinsky-Robb replcations. 
 



 

Appendix Table: Full Count Data Demand Results 
          

 Model 1 Model 2 Model 3 Model 4 
 Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio        

Constant -1.42 -1.54 -0.98 -0.26 -1.30 -0.40 -3.35 -0.97 
Income 0.02 4.95 0.02 4.95 0.02 4.98 0.02 5.04 
Children -0.22 -2.68 -0.22 -2.67 -0.22 -2.69 -0.21 -2.70 
Married -0.17 -0.91 -0.18 -0.94 -0.18 -0.93 -0.20 -1.09 
Parking Spaces 0.00 1.82 0.00 2.00 0.00 1.86   
# Public Access 0.02 1.28 0.02 1.36 0.02 1.91 0.03 1.79 
Length 0.00 0.01 -0.01 -0.14   0.02 0.21 
Width 0.00 0.17       
Log(Width)   -0.06 -0.08 0.00 0.00 0.46 0.66 
Fort Macon 0.39 0.53 0.31 0.43 0.34 0.47 0.76 1.07 
Fort Fisher -1.53 -0.71 -1.11 -0.76 -1.20 -0.89 -1.74 -1.27 
p1 -0.02 -4.28 -0.02 -4.28 -0.02 -4.28 -0.02 -4.28 
p2 0.00 -1.29 0.00 -1.17 0.00 -1.38 0.00 -0.97 
p3 -0.01 -2.36 -0.01 -2.31 -0.01 -2.48 -0.01 -2.46 
p4 -0.02 -4.45 -0.02 -4.48 -0.02 -4.48 -0.02 -4.44 
p5 -0.02 -4.77 -0.02 -4.61 -0.02 -5.09 -0.02 -6.21 
p6 -0.03 -4.52 -0.03 -4.50 -0.03 -4.66 -0.03 -4.54 
p7 -0.02 -5.09 -0.02 -5.19 -0.02 -5.45 -0.02 -5.56 
p8 -0.03 -5.06 -0.03 -5.10 -0.03 -5.31 -0.03 -5.38 
p9 -0.01 -4.74 -0.01 -4.79 -0.01 -4.97 -0.01 -3.93 
p10 -0.01 -2.61 -0.01 -2.60 -0.01 -2.60 -0.01 -3.16 
p11 -0.02 -6.71 -0.02 -6.59 -0.02 -6.56 -0.02 -7.50 
p12 -0.02 -2.71 -0.02 -2.71 -0.02 -2.71 -0.02 -2.71 
p13 -0.03 -4.48 -0.04 -4.50 -0.03 -4.54 -0.04 -4.52 
p14 -0.03 -7.16 -0.03 -7.24 -0.03 -7.49 -0.03 -7.49 
p15 -0.01 -3.07 -0.01 -3.05 -0.01 -3.09 -0.01 -3.43 
p16 -0.01 -3.86 -0.01 -3.91 -0.01 -3.95 -0.01 -3.91 
p17 -0.03 -5.30 -0.03 -5.41 -0.03 -6.59 -0.03 -5.55 
Alpha 26.95 14.17 26.96 14.17 26.96 14.17 27.08 14.35 
Log-Like -2668.55 -2668.57 -2668.58 -2669.86 
Observations 419 419 419 419 
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Figure 1. Southern North Carolina Beaches 
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