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Abstract 
 
 In this paper, we propose a minimum LM unit root test that endogenously 
determines a structural break in intercept and trend.  Critical values are provided, and size 
and power properties are compared to the endogenous one-break unit root test of Zivot 
and Andrews (1992).  Nunes, Newbold, and Kuan (1997) and Lee and Strazicich (2001) 
previously demonstrated that the Zivot and Andrews test exhibits size distortions in the 
presence of a break under the null.  In contrast, the one-break minimum LM unit root test 
exhibits no size distortions in the presence of a break under the null.  As such, rejection 
of the null unambiguously implies a trend stationary process. 
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1. INTRODUCTION 

  The importance of allowing for structural breaks in unit root tests is now well 

documented in the literature.  Whereas Perron (1989) assumed that the break point was 

known a priori, or exogenously given, subsequent literature has allowed for the break 

point to be determined from the data.  Zivot and Andrews (1992, ZA hereafter) suggested 

adopting a minimum statistic that determines the break point where the unit root t-test 

statistic is minimized (i.e., the most negative).  Perron (1997) and Vogelsang and Perron 

(1998) suggest selecting the break by examining the significance of the dummy variables 

in the testing regression that capture the structural break.  We refer to these and other 

similar tests as endogenous break unit root tests.   

  One important issue regarding these augmented Dickey-Fuller (ADF) type 

endogenous break unit root tests is that they omit the possibility of a unit root with break.  

If a break exists under the unit root null, two undesirable results can follow.  First, these 

endogenous break unit root tests will exhibit size distortions such that the unit root null 

hypothesis is rejected too often.  When utilizing such tests, researchers may incorrectly 

conclude that a time series is stationary with break when in fact the series is 

nonstationary with break.  As such, “spurious rejections” might occur and more so as the 

magnitude of the break increases.  This problem has been previously noted in Nunes, 

Newbold, and Kuan (1997), Vogelsang and Perron (1998), and Lee and Strazicich 

(2001).  It is important to note that this nuisance parameter problem is restricted to the 

endogenous break tests and does not occur with the exogenous break unit root test.  The 

asymptotic distribution of Perron’s (1989) exogenous test does not depend on the 

magnitude of the break, even when a break occurs under the null.  Thus, there is no size 
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distortion in the exogenous break test, even when the magnitude of a break is very large.  

A second consequence of utilizing these ADF type endogenous break unit root tests is 

that the break point is incorrectly estimated.  Lee and Strazicich (2001) note that these 

tests tend to identify the break point at one period prior to the true break point (i.e., at TB–

1 rather than TB), where the bias in estimating the persistence parameter is maximized and 

spurious rejections are the greatest.  This problem occurs under both the null and 

alternative hypotheses. 1 

 In this paper, we propose an alternative one-break unit root test that does not lead 

to the above problems.  We utilize the theoretical findings presented in Lee and 

Strazicich (2003), who propose an endogenous two-break Lagrange Multiplier (LM) unit 

root test that is unaffected by structural breaks under the null.  Similar to the two-break 

LM test, the one-break test proposed here is invariant to the magnitude of a structural 

break under the null and alternative hypotheses.  Thus, spurious rejections will not occur 

in either case.  Finally, by combining the two-break unit root test of Lee and Strazicich 

(2003) with the one-break test developed here, researchers can more accurately determine 

the correct number of breaks. 

 The remainder of the paper is organized as follows.  In Section 2, we discuss 

properties of the minimum LM unit root test in the presence of a structural break.  

Section 3 discusses asymptotic properties of the LM unit root test and derives the 

                                                 
1 The problem of size distortions with the endogenous break unit root test is not restricted to 
behavior under the null.  In the presence of a break, the null distribution shifts to the left and 
causes more rejections than the true power of the test.  Accordingly, the null hypothesis is 
rejected too often under the alternative unless size-corrected critical values are employed.  Thus, 
these endogenous break unit root tests may appear more powerful, but this is often simply a 
reflection of the size distortions under the null.  This point has not been clearly emphasized in the 
literature. 
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invariance results.  Section 4 provides simulation results on the performance of the 

minimum LM test and comparisons to the ZA test.  The paper summarizes and concludes 

in Section 5. 

 

2.  TESTING PROCEDURES 

 Consider the following data generating process (DGP) based on the unobserved 

components model: 

  yt = δ'Zt + Xt  ,   Xt = βXt-1 + εt  ,     (1) 

where Zt contains exogenous variables.  The unit root null hypothesis is described by β = 

1.  If Zt = [1, t]', then the DGP is the same as that shown in the no break LM unit root test 

of Schmidt and Phillips (1992, hereafter SP).  We consider two models of structural 

change.  “Model A” is known as the “crash” model, and allows for a one-time change in 

intercept under the alternative hypothesis.  Model A can be described by Zt = [1, t, Dt]', 

where Dt = 1 for t ≥ TB+1, and zero otherwise, TB is the time period of the structural 

break, and δ' = (δ1, δ2, δ3).
2  ‘Model C” allows for a shift in intercept and change in trend 

slope under the alternative hypothesis and can be described by Zt = [1, t, Dt, DTt]', where 

DTt
 = t - TB for t ≥ TB + 1, and zero otherwise. 

 According to the LM (score) principle, unit root test statistics are obtained from 

the following regression: 

   ∆yt = δ’∆Zt + φS∼t-1 + ut  ,      (2) 

                                                 
2 When Zt = [1, t, DTt*]', the model becomes the “changing growth” Model B, where DTt* = t for 
t ≥ TB+1 and zero otherwise.  Model B will not be examined here as most economic time series 
can be adequately described by Model A or C (see, for example, Table VII in Perron, 1989). 
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where S∼t = yt - ψ
∼

x  - Ztδ
∼, t=2,..,T; δ∼ are the coefficients in the regression of ∆yt on ∆Zt; 

and ψ∼x is the restricted MLE of ψx (≡ ψ + X0) given by y1 - Z1δ
∼.  Note that the testing 

regression (2) involves ∆Zt instead of Zt.  Therefore, ∆Zt is described by [1, Bt]′ in Model 

A and [1, Bt, Dt]′ in Model C, where Bt = ∆Dt and Dt = ∆DTt.  Thus, Bt and Dt correspond 

to a change in intercept and trend under the alternative, and to a one period jump and 

(permanent) change in drift under the null hypothesis, respectively.  The unit root null 

hypothesis is described by φ = 0 and the LM t-test statistic is given by: 

   τ∼ = t-statistic testing the null hypothesis φ = 0 .   (3) 

To correct for autocorrelated errors, we include augmented terms ∆S∼t-j, j = 1,..., k in (2) as 

in the standard ADF test.3  Ng and Perron (1995) suggest utilizing a general to specific 

procedure to determine the optimal number of k augmented terms.  The location of the 

break (TB) is determined by searching all possible break points for the minimum (i.e., the 

most negative) unit root test t-test statistic as follows: 

  Inf τ∼(λ∼) = Inf
 λ

 τ∼(λ) ,       (4) 

where λ =  TB/T. 

 

3.  ASYMPTOTICS AND INVARIANCE PROPERTY 

                                                 
3 We determine k by following the “general to specific” procedure suggested by Perron (1989).  
We begin with a maximum number of lagged first-differenced terms k = 8 and examine the last 
term to see if it is significantly different from zero at the 10% level (critical value in an 
asymptotic normal distribution is 1.645).  If insignificant, the maximum lagged term is dropped 
and the model re-estimated with k = 7 terms.  The procedure is repeated until either the maximum 
term is found or k = 0, at which point the procedure stops.  This technique has been shown to 
perform well as compared to other data-dependent procedures to select the number of augmented 
terms in unit root tests (Ng and Perron, 1995). 
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 To examine the asymptotic distribution of the minimum LM test, we define V(r) 

as a standard Brownian bridge over the interval [0, 1], and V_(r) as the demeaned 

Brownian bridge (see SP, equation (23)).  The asymptotic distribution of the minimum 

LM unit root test in Model A is described as follows.4 

 
Theorem 1.  Assume that (i) the data are generated according to (1) with Zt = (1, t, Dt)', 

(ii) the innovations εt satisfy the regularity conditions of Phillips and Perron (1998, p. 

336), and (iii) TB/T → λ  as T → ∞.  Then, under the null hypothesis that β = 1, 

  Inf τ∼(λ∼) → Inf
 λ

 [-
 1 
 2 ⌡⌠0

1 V_(r)2]-1/2   .      (5) 

(See Appendix for proof.) 5 

 An important implication of Theorem 1 is that the asymptotic distribution in (5) 

does not depend on the size (δ) or location (λ =  TB/T) of the break under the null.  The 

result that the asymptotic null distribution does not depend on the size or location of the 

break follows from the same invariance property found in the exogenous one-break LM 

unit root test of Amsler and Lee (1995).  Thus, an important advantage of the endogenous 

break LM unit root test is revealed.  In the presence of a break under the null it is not 

necessary to simulate new critical values in empirical applications, as critical values for 

the minimum LM unit root test are invariant to the magnitude and location of the break. 

 The invariance property is an important feature of the endogenous break LM unit 

root test that makes the test free of spurious rejections.  As shown by Amsler and Lee, 

                                                 
4 Throughout the paper, the symbol “→” denotes weak convergence of the associated probability 
measure. 
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allowing for one known or “exogenous” structural break will not affect the asymptotic 

null distribution of the SP type LM unit root test statistic.  Regardless of the presence or 

absence of a structural break, the null distribution of the minimum LM unit root test 

statistic remains compact and well defined, implying that it will be unaffected by the 

magnitude of the break or correctly estimating its location. 

 The invariance results of the LM unit root test do not apply to the ZA test.  In 

particular, the asymptotic null distribution of the ZA test depends on the location of the 

break (λ) through the projection residual W(λ, r) of a Brownian motion projected onto the 

subspace generated by [1, r, d(λ,r)], where d(λ,r) = 1 if r > λ and 0 otherwise.  The 

dependence of the asymptotic distribution of the sequential minimum ADF-type test on 

the nuisance parameter λ is cumbersome in applied work, and provides a rationale for ZA 

to assume no structural break under the null.  That is, ZA omit Bt under the null by 

assuming that d = 0 in (6a), and thus omit α2 = 0 from their test regression as follows: 

Null    yt = µ0 + dBt + yt-1 + vt     (6a) 

Testing Regression  yt = α0 + α1t + α2Bt + α3Dt + βyt-1 + ∑
j=1 

k
 cj∆yt-j + et  . (6b) 

As previously suggested, the ZA test depends upon the magnitude of the break term 

under the null and exhibits size distortions and spurious rejections as the break increases 

in absolute value.  Thus, while the ZA test is valid if d = 0 in (6a), the test may give 

misleading inference results when d ≠ 0.  Lee and Strazicich (2001) investigate this issue 

further, and find that regardless of whether Bt is included or excluded in the ZA test 

                                                                                                                                                 
5 See Lee and Strazicich (2003) for a proof of Model C in the context of two breaks in level and 
trend.  The proof is similar for the one break minimum LM test and is omitted here to conserve 
space. 
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regression, the size distortions and spurious rejections remain.  The problem is that the 

ZA test (and other similar ADF-type endogenous break tests) tends to select the break 

point incorrectly at TB-1, where bias in estimating β, the coefficient that tests for a unit 

root, and spurious rejections are the greatest. 6 

 While the accuracy of estimating the break point with the minimum LM unit root 

test does not matter under the null, it does matter when the alternative is true.  Namely, as 

Perron (1989) initially showed, failure to allow for an existing structural break leads to a 

bias in unit root tests that makes it more difficult to reject a false null hypothesis.  If the 

magnitude of the break is large, the minimum LM test estimates the break point fairly 

well.  When the magnitude of the break is small, the break point cannot be accurately 

estimated, but the LM test does not suffer a significant loss of power in this case, as this 

is similar to having no break.7 

 

3.  SIMULATION RESULTS 

  This section provides critical values and simulation results for the one-break 

minimum LM unit root test.  To perform our simulations, we generate pseudo-iid N(0,1) 

random numbers using the Gauss (version 3.2.12) RNDNS procedure, where the DGP 

                                                 
6 Harvey, Leybourne, and Newbold (2001) suggest adapting the ADF-type endogenous break test 
by moving the break point forward one period to: T̂B * = 1 + T̂B , where T̂B * is the revised break 
point and T̂B is the estimated break.  Given that the break point tends to be determined correctly at 
the true break when using the LM test, there is no need to move the break point as in Harvey et 
al. (2001). 
7 Asymptotic properties for the one-break minimum LM unit root test are similar for Model C, 
except that the test statistic is no longer invariant to the location of a break under the null.  
However, simulation results show that even though the minimum LM test for Model C is not 
invariant to the location of a break under the null, it is nearly so.  See Lee and Strazicich (2003) 
for discussion of the asymptotic properties of Model C in the context of two breaks in level and 
trend. 
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has the form described in equation (1).  Initial values of y0 and ε0 are assumed to be zero 

and σε
2 is assumed to equal 1.  All simulations are performed using 5,000 replications 

with T = 100 and a break at TB = 50.  Critical values for Models A and C are provided in 

Table 1.  Since critical values for Model C depend (somewhat) on the location of the 

break, we provide critical values for a variety of break locations.  Critical values at 

additional break points can be interpolated.  Properties of size and power, and accuracy of 

estimating the break, are examined in simulations displayed in Table 2 for Model A.8  

Simulations are first performed for the case where the unit root null hypothesis is true (β 

= 1), and then where the alternative is true (β = 0.8).  The size (frequency of rejections 

under the null) and power (frequency of rejections under the alternative) properties of the 

test are evaluated at the 5% significance level in each case.  While the primary goal in 

this section is to examine the performance of the minimum LM test, simulation results for 

the ZA test are provided for comparison.9 

 To begin our investigation, we examine the one-break minimum LM unit root test 

for properties of size.  Using a 5% critical value, Table 2 (a) examines the rate of 

rejecting the null hypothesis (β = 1) given that the DGP is a unit root with break.  For 

example, with no break under the null (δ3 = 0), column 3 indicates a 5.7% rejection rate, 

which is close to the nominal size of 5%.  In the presence of a unit root with break (i.e., 

δ3 ≠ 0), the LM unit root test statistic is relatively stable with correct size across all break 

                                                 
8 Size and power properties are examined only for Model A to conserve space.  For detailed 
simulations of Model C in a two-break framework please see Lee and Strazicich (2003). 
9 See Lee and Strazicich (2001) for more detailed simulation results that examine properties of 
the ZA test.  The ZA test simulation results repeated here are provided for convenience of 
comparison.  Copies of computer code to run the minimum LM unit root test for Model A and 
Model C are available on the web site http://www.cba.ua.edu/~jlee/gauss/. 
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magnitudes.  Desirable size properties can also be observed when examining the 5% 

empirical critical values in column 4.  Results show that the empirical critical values are 

mostly invariant to the magnitude of a break under the null.  Overall, we see that the one-

break minimum LM test is free of size distortions and spurious rejections in the presence 

of a unit root with break.  This is true even for a relatively large break of δ3 = 10.  In 

contrast, the minimum ZA unit root test exhibits significant size distortions and spurious 

rejections in the presence of a break under the null, which increase as the magnitude of 

the break increases. 

 To further examine performance of the one-break LM unit root test, Table 2 (b) 

displays simulations under the alternative hypothesis when β = 0.8.  For the case of no 

break, δ3 = 0, we see that the power to reject the null when the alternative is true is 

relatively high at 71%.  As the magnitude of the break increases, the power of the test 

decreases (equal to 45% when δ3 = 10), but remains relatively strong. 

 We next examine the accuracy of estimating the break point.  Lee and Strazicich 

(2001) examined the frequency of estimating the structural break point correctly using the 

ADF-type minimum tests of ZA (1992) and Perron (1997).  They found that these tests 

tend to determine the break point incorrectly where bias and spurious rejections are the 

greatest.  Frequency of estimating the break point at different locations is shown in 

columns 5-11 in Table 2 (a) and (b).  Setting the break at TB = 50 in the DGP, the 

frequency of estimating the break at TB – 5 to TB – 2, TB –1, TB, TB + 1, TB + 2 to TB + 5, 

TB ± 10, and TB ± 30 is reported for different magnitudes of the break term, δ3.  As the 

magnitude of a break under the null increases, the frequency of estimating the break point 

correctly at TB increases (becoming 48% at δ3 = 10).  The ability to determine the break 
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point improves with the magnitude of the break.  Under the alternative, the story is 

similar, only more pronounced.  As the size of the break increases, the minimum LM test 

estimates the break point accurately with increasing frequency (90% at δ3 = 10). 

 

4. CONCLUSION 

This paper proposes a minimum LM unit root test that endogenously determines 

one structural break in level and trend.  Properties of the test were discussed and critical 

values presented.  In contrast to similar ADF-type endogenous break tests, the one-break 

minimum LM unit root test tends to estimate the break point correctly and is free of size 

distortions and spurious rejections in the presence of a unit root with break.  In addition, 

the test is invariant to the magnitude of a break under the null and is mostly invariant to 

its location.  Finally, by combining the one-break LM unit root test presented here with 

the two-break LM test in Lee and Strazicich (2003), researchers can more accurately 

determine the correct number of structural breaks in their unit root test. 
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Table 1.  Critical Values of the One-Break Minimum LMτ Test 
 

Model A 
 

1% 5% 10% 
-4.239 -3.566 -3.211 

 
 

Model C 
 

λ 1% 5% 10% 
.1 -5.11 -4.50 -4.21 
.2 -5.07 -4.47 -4.20 
.3 -5.15 -4.45 -4.18 
.4 –5.05 -4.50 -4.18 
.5 -5.11 -4.51 -4.17 

 
Note:  All critical values were derived in samples of size T = 100.  Critical values 
in Model C (intercept and trend break) depend (somewhat) on the location of the 
break (λ = TB/T) and are symmetric around λ and (1-λ).  Model C critical values 
at additional break locations can be interpolated. 
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Table 2.  Rejection Rates and Frequency of Estimated Break Points 
 

Frequency of Estimated Break Points in the Range  
Test 

 
δ3 

 
5% 
Rej. 

 
Emp. 
Crit. 

TB-5 ~ 
TB -2 

TB-1 TB TB+1 TB+2 ~ 
TB+5 

TB± 10 TB± 30 

 
(a) Under the Null (β = 1) 

 
LM 0 .057 -3.62 .048 .015 .013 .010 .054 .259 .721 

 4 .046 -3.53 .020 .006 .325 .005 .019 .446 .809 
 6 .050 -3.56 .023 .013 .401 .009 .022 .519 .832 
 8 .049 -3.56 .035 .019 .448 .018 .035 .598 .861 
 10 .039 -3.48 .051 .031 .480 .029 .046 .682 .877 

ZA 0 .060 -4.89 .048 .009 .013 .012 .049 .248 .726 
 4 .081 -5.04 .099 .191 .003 .003 .019 .414 .801 
 6 .169 -5.66 .108 .367 .003 .001 .009 .552 .859 
 8 .325 -6.75 .085 .584 .002 .000 .002 .719 .918 
 10 .506 -7.87 .064 .758 .005 .000 .000 .850 .963 

 
(b) Under the Alternative (β = .8) 

 
LM 0 .710 -5.20 .057 .012 .014 .015 .062 .305 .745 

 4 .581 -4.91 .040 .026 .553 .027 .048 .746 .907 
 6 .537 -4.70 .041 .028 .737 .028 .047 .908 .962 
 8 .492 -4.64 .041 .018 .834 .017 .036 .967 .982 
 10 .454 -4.63 .026 .014 .898 .013 .024 .985 .991 

ZA 0 .389 -5.77 .054 .015 .013 .015 .050 .276 .735 
 4 .472 -6.15 .197 .493 .001 .001 .013 .778 .916 
 6 .472 -6.15 .197 .493 .001 .001 .013 .778 .916 
 8 .921 -8.48 .042 .949 .000 .000 .000 .996 .998 
 10 .987 -9.94 .011 .988 .000 .000 .000 1.0 1.0 

 
Note:  All simulations were performed in samples of size T = 100. 
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APPENDIX 

Proof of Theorem 1 

 We employ the functional limit theory used in Phillips and Perron (1988) and 

utilize the results of Zivot and Andrews (1992) on continuity of the composite functional. 

First, we consider the following regression: 

  ∆yt  = δ(λ)'∆Zt(λ) + φ(λ) S∼t-1(λ) + et  , t = 2,..,T  ,  (A.1) 

where S∼t(λ) = ∑j=2
t εj - (δ∼(λ)' - δ(λ)')(Zt(λ)- Z1(λ)), and the vector Zt(λ) includes 

deterministic terms such that Zt(λ) = [1, t, Dt]′.  Let St = ∑j=2
t εj and [rT] be the integer part 

of rT, for r ∈ [0,1].  Following a procedure similar to ZA, we let P∆Ζ(λ) = 

∆zT(λ)[∆zT(λ)′∆zT(λ)]-1∆zT(λ), and M∆Ζ(λ) = I - P∆Ζ(λ), where ∆zT(λ) = 

(∆z1,T(λ),..,∆zT,T(λ))′.  Pre-multiplying (A.1) by M∆Ζ(λ), we obtain: 

  M∆Ζ(λ)∆Y = φ(λ) M∆Ζ(λ)S∼1(λ) + M∆Ζ(λ) e  ,    (A.2) 

where ∆Y = (∆y2,.., ∆yT)′, S∼1(λ) = (S∼1(λ),..,S∼T-1(λ))′ and e = (e2,..,eT)′.  Then, the Inf τ∼(λ∼) 

statistic can be written as: 

 Inf τ∼(λ∼) = Inf
 λ

  [T-2S∼1(λ)′ M∆Ζ(λ) S∼1(λ)]-1/2[T-1S∼1(λ)′ M∆Ζ(λ) e] / sT(λ)  , (A.3) 

where sT(λ) is the corresponding standard error of the regression.  We then obtain: 

 T-2S∼1(λ)′ M∆Ζ(λ) S∼1(λ) = σ2

⌡⌠0
1[ST(r) - P∆Ζ(λ) ST(r)]2 dr  ,    (A.4) 

 T-1S∼1(λ)′ M∆Ζ(λ) e = σ2

⌡⌠0
1ST(r)dST(r) - σ2

⌡⌠0
1P∆Ζ(λ) ST(r)dST(r)  .  (A.5) 

The effect of applying M∆Ζ(λ) or P∆Ζ(λ) to the above expressions is twofold; one is to 

demean the process, and the other is to de-trend the structural dummy effect.  We can 
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establish the result that the effect of de-trending the structural break in the minimum LM 

unit root test vanishes asymptotically.  To see this, we note that: 

 
⌡⌠0

1∆zT (λ,s)∆zT (λ,s)′ds = ⎝
⎛

⎠
⎞ 1  0 

 0  0   .      (A.6) 

This is so because the term Bt in ∆Zt is asymptotically negligible, whereas ∆Zt = [1, Bt]′.  

Then, it is clear that: 

 
⌡⌠0

1[ST(r) - P∆Ζ(λ) ST(r)]2 dr = σ2

⌡⌠0
1V_T(r)2 dr  ,     (A.7) 

where V_T(r) is the demeaned Brownian bridge, V_T(r) = VT(r) – 
⌡⌠0

1VT(r)dr.  Therefore, 

using the results in Schmidt and Phillips (p. 286), and (A.7), we can establish the limiting 

distribution of the minimum LM test.  In particular, it does not depend on λ.  The 

remaining procedure of the proof is to show continuity of a composite function.  We 

simply follow ZA (1991) and Perron (1997), and express the Inf τ∼(λ∼) t-statistic as: 

 Inf τ∼(λ∼) = g[ST(r), V_T(r), 
⌡⌠0

1ST(r)dST(r), 
⌡⌠0

1P∆Ζ(λ) ST(r)dST(r), s2] + op(1)  , (A.8) 

where g = h*[h[H1(•), H2(•), sT(λ)]], with h*(m) = Inf m(•) for any real function m(•), 

and h[m1, m2, m3] = m1
-1/2m2/m3.  The functionals H1 and H2 are defined by (A.4) and 

(A.5).  Continuity of h* and h is proved in ZA. 

 


